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ABSTRACT

A numerical experiment is described in which an attempt was made to
reduce the calculation time of a two-dimensional, Lagrengian, hydrody-
namics code, without loss of accuracy. The reduction was accomplished
by utilizing a space-dependent time step; i.e., the frequency with which
a point is calculated depends on the rate at which changes are occurring
in the vicinity of the point. This system permitted savings to be made
by eliminating calculations in regions undergoing relatively slow changes.
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I. INTRODUCTION

In many numerical models approximating physical or mathematical
systems where successive approximations are used to describe model
changes as the calculation proceeds, there are often regions in which
changes are taking place more rapidly than in others. The usual com-
puting procedure is to extrapolate all regions of the system at the
interval required by the region of most rapid change, resulting in un-
necessary calculations for regions undergoing slow changes. It was the
purpose of this program to see if eliminating these superfluous calcula-
tions might save calculation time, with little loss in accuracy. The
disadventages inherent in such a procedure are the additional storage
required and the increased complexity of the code logic, neither of
which turns out to be serious in practice, especially when a modern
computer with a large memory is used.

Because numerical calculation of two-dimensional hydrodynamics is
time-consuming and relatively complicated, and because the authors are
somewhat familiar with two-dimensionsal, lLagrangian hydrodynamics, this
field was chosen for experimentation. It was decided to experiment
with a Magee-type code inasmuch as it had been studied in some detail
by one of the authors and his cow'orkers.l The Magee code was initiated
at Los Alamos by H. K.olsky,2 and has been developed, improved, and used
extensively by S. R. Orr3 and others. It is appropriate to mention
here that some other work using a space-dependent time interval has been
done by Goad,u using other methods in the code WAT with good success.

The concept of a space-dependent time step can easily be applied
to one-dimensional hydrodynamics problems; and the authors feel, with

some conviction, that the same approach can be used with problems in-



volving heat or radiation diffusion, in either one or two dimensions.
It is possible to speculate further and suggest that similar schemes
be used in numerical systems wherever successive approximations are
used.

II. A BRIEF DESCRIPTION OF THE MAGEE CODE (NON~SPACE-DEPENDENT TIME

INTERVAL)

Consider a physical system of cylindrical symmetry, which is repre-
sented in a cylindrical (r,z) coordinate system by a mesh consisting of
quadrilateral zones (as shown in Fig. 1), rotated through an angle of
one radian about the z axis. (The use of this angle simplifies the
formilae and calculations by eliminating the factor 2m.) Thus, each
guadrilateral zone represents an element of volume. Because of the
cylindrical symmetry, all quantities are dependent only on r and z.
Tnesmuch as the Lagrangian viewpoint has been adopted, the mesh is con-
sidered to be imbedded in and to move with the fluid.

Fig. 1. A Typical Magee Mesh




In order to describe a hydrodynamic system mathematically, it is
necessary to use the principles of conservation of mass, momentum, and
energy, together with an equation of state relating the thermodynamic
quentities. Also, it is necessary to know the initial condition of the
system and some boundary conditions as the hydrodynamic activity unfolds.
In the following paragraphs, the required variables and difference-

approximations of these equations will be enumerated.

ITA. The Variables
In Magee, meny of the quantities are assumed to be associated with

the points (the intersections of grid lines) and are identified by a pair

of integers, (i,j), as subscripts, i.e.:

)

The coordinates of a point, (ri P and z
2

i,J
The velocity components of a point, (fi ; and ii j) (1)
2 )
The acceleration components of a point, (fi ; and Ei J.)
2 )

Other quantities are assumed to be associated with the zones and are
identified by a pair of fractiomal subscripts, (i-},3-%), i.e.:

The pressure and Richtmyer-Von Neumann artificial dissipative\
5,6

term,”’ . 1= P,
? (P+q)i'%:3‘% 1’%:3'%

The internal energy per unit original volume, € 1 33 (2)
TEadTE

The mass, density, and relative volume, m. , . 4,
1-%,J-5

3

\' .
pi‘%:j‘%, i’%:J'% o
The stability number, (w/b .
Y ) ( / )i-%,J-%

The times, t, t+At, teat/2, at which quantities are assumed to be
known or calculated are identified by superscripts such as n, nt+l and

n+%. The superscript n+i is also used to identify the change in a



quantity between £2 'bn+l. The superscript O denotes the initial value
’ p

of a quantity at the start of the problem.

IIB. The Difference Equations
The conservation of mass is not expressed explicitly in a separate
equation; but, rather, it is assumed implicitly in writing the momentum

and energy equations. Because the internal energy equation is applied
to a zone as an entity, for that equation the mass of each zone is
assumed to be conserved. And, because the momentum equation is applied
to a point as an entity, for that equation the masses associated with
each point are considered to be always the same (specifically, one-fourth
of the mass of each of the adjacent zones).

To simplify this discussion, the difference equations will be listed
in a plausible sequence for calculation, not necessarily the sequence
actually used in Magee (in which a number of variations have been tried).
Several passes through the mesh might be required to perform the calcu-
lations as presented here.

Assume that all calculations have been performed up through cycle n
(t=tn) , 50 that for all points and zones there are available the values
of':

, 2, i'n-'%, én'%, v?, P?, and ° (3)
The accelerations at time, n, are calculated from an approximationl’ 5
of the law of conservation of momentum given in Eq. (4). The arguments
used to derive these equations are too lengthy to be given here, but will
hopefully be derived in a subsequent report. The quantities used in Eq.
(4) are associated with a group of points and zones as shown in Fig. 2.

10




i-1/2,j+1/2

i,j+1

» Z

Fig. 2. A Typical Magee Point, (i,j), with the Adjacent Zones
and Points, Illustrating the Notation Used in Eq. (4), velow.

n n n n 1,.n n
P, . -P z, - H{r, .+ r, .
B T Y A W I W U G W M W
i, L 2, L+, L)
N i-5,3-3 1+J§':J"§
n n n n 1,.0 n
P 12 Z, z(r + T,
+ ( i+s,J-3 l*%‘;ﬁi)( i,J i+l i) a( i,J 1+llj)
lm -
RECRE R Ty
n n n n 1.0 n
. . P, Z, Z, r., . . s
+ ( 1"%)(]"'% 1‘%:«j+]é)( 1,J X Q+l) §( 1,J l)J+l)
1, .0
(g, 503 * Mo, 9)
n n n n 1,.0 n
P, - P, . - . r, + T, .
+ ( i-3,5+ l-—%,J-%)( 1,J i-1 ,J) 3( i,J 1-1,3)}
l(mo 1 1+ mo 1)
* ~2,Jts 1"%“]'2



- - = By BT Ty
2= %T(Pi'%:j'l?- Pi’*‘}—*')J’l")(ri:j'l ri:J) A i,d-1 1;_3)
1,3 " B 0 L 0
’ 2ng g 5o ¥ e, 53
n - _ 1 rn n -
+ (Piiz,5- 1+l 34%) S T30 * i Y
+ m, .
"”‘(m 1+5,3-3 1+~’§~,,J+%)
n n n _ n 1 rn n
T DG Nl WL g *Ty)
; 0
Ay g+ P, e
n n R n gy Sy
- s r. .) B\r r, .
+ (Pi‘ﬁyj""ff Pi"']'?)ej'%“)(ri"l(y)x] 113) Hl( i-1,J i:J)} ()4_)
0
2wy o a1 * M1
(mi"‘E':J"‘igt" 1"%’:3’%)

These accelerations may now be used to advance the wvelocities of

all points to time, n+}, by

-n+k .n.l.- n+] n n  n-1
r =7 = (t ) - _l._(t +t )]
Z2 =2z t 2z ['lz(t tt ) - ;(b +t )] (5)

Then, these velocities are used to advance the coordinates of all points

to time, n+l, by

+1 L +5
e —rn+rn‘[yt:n2
n+l B +3
22 = 2Ry 2TE AT
where
n+k n+l n
At 2=t -t

12
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The next steps involve the calculation of V, P, €, etc., for the

zones at time, ntl.
The actual volunme Uﬁ of a quadrilateral zone can be calculated

exactly as the sum of the volumes of two zones of triangular cross

section (see Fig. 3).

r i-1,j-1

i-1,j L

Fig. 5. The Two Triangular Zones Making up a Quadrilateral Zone

The volume s, of a triangular zone is given by

by = AA;'A (7)
where
1 1 1
A, = L r T 8
8= 35 | Tio1,5-1 i, Ti-l,j (8)
z .
1-1,3j-1 1,3 25-1,3
and
T, = centroid of the triangle

1
= +
3(F51, 5077, 551, 5) (9)

For each quadrilateral zone, the relative volume is then obtained from

13




+1 +1, O
Vo= /g (10)

the 1;8 having been obtained at the start of the problem in order to
calculate the masses of the zones by

0 0,0
my = p_ g (11)

These masses, assumed to be constant in time, have been used in Eq. (4).
If, at any time, the density of a zone is required, it is obtained by
0 0
n+l e m

D
Po = "n¥1 " n+l 0
VAR A
The Richtmyer-Von Neumenn artificial dissipative term5 ’6 is cal-
culated from the rate of volume change for each zone by

(12)

L o
n+l 2 n+l 1 rOATE N
&= (1.2)° o) AT e (A ) (13)
0 (v,n+l)2 N\ A‘bn+‘~'~‘ .

where

1
Avn.h‘f V’n+l -V < 0, and

1}

A" - area of quadrilateral at time, n+l.
s
In the case of a zone expansion, i.e., AR >0,
+1
=0 (132)

The pressure, p, and internal energy, €, of each zone are obtained

from the equation of state

pIll+l = P(Vn+l,€n+l) (lll-)

14




and from the equation of conservation of energy, de = -PdV, in difference

form,
1
€n+l = P é(Pn n+l+qn+l)Avn+J (15)

If (14) and (15) cannot be solved simltaneously for the two unknowns,

pn+l and €n+l, then iterative techniques are used.

The White stability nmumber for each zone is calculated by7

% 1
r Bl p g el 2 | et
s P! - 4 + L‘-! (16)
L N\L.27 AB+1 < 1.2 , V,n+l\
Po l
n+3/2

and the time interval, At , to be used for the next cycle is chosen

so that the maximum of the stability numbers for all the zones with

nt3/2 o+

At At
satisfies
S w \2
0.035 < (375! < 0.1k (17)
*“"max
or

0.2245 < Voox < 0.45

Frequent calculation of the total energies in regions of a problem
are useful, although not necessary. The internal energy is added by zones

n U on o
()" =) €3,503 V11,540 (18)
i,J

and the kinetic energy is added by points

15
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ITI. THE HASTTI CODE: GENERAL DESCRIPTION

Because the HASTI code was experimental, emphasis was placed on
achieving a code that would work properly and accurately, yet be con-
venient to chenge. Less attention was given to conserving storage and
machine time by the use of short cuts and clever manipulation. Conse-
quently, there may be instances where the code is inefficient in these
respects.

In any problem, the points of the mesh can be classified into
regions, or groups, according to the maximum time intervals at which
the quantities in those regions may be calculated without producing in-
stability or inaccuracy. Goad has used a method of listing points in
a set of tables. We have chosen a different method, in which two time

values are stored at the end of a cycle for each point:

‘bri1 j = last time at which the point was calculated

3

t;l'% = next time at which the point should be calculated (20)
3

There is also available a time

n+l . n+l
thip = minimm of all ti,j (22)

which is the next time a calculation must be made for some points in
the problem. Furthermore, there is stored a time

16




n+l

mjor - next time at which all points must be calculated (22)

The purpose of this time is to bring the calculation together for analysis
(pointing, plotting, etc.), and its choice is arbitrary. Variations in
time intervals were mede by powers of two.

For each point, 1,j, among the quantities stored are:*

n n

r, . representing r. z. . att,
i,J P 8 T1,37 %1,3 i,d
vn'%' representing r z at -l—( &2 +tn+l) W
i,J i,J° "1, 2''1,J 1, ‘
n Ve e n
a; representing r z. .at t, . K 23
i,J P & i:j’ 1,dJ 1,J ( )
n
V'n . representing V . P, . €, . at t. .
1-%,3-5 P 8 V15,5-8 Ti-3,3-1 Ti-k,d-% 1,
+

At 4 . 3 representing the next time interval allowed by
Z  the stability number

To illustrate the method, consider the problem to be at the stage
where, in the logical mesh, there is one region of points (denoted e
in Fig. 4) for which t*™ = t::i“i. All other points have t%'T 5 tzzi
The values of £ for points may differ. The authors believe that the
arguments and methods to be presented also apply to cases where there
are many such regions and/or regions of more complex shapes. And, in-
deed, the problems run with the code have turned up no exceptions to
this theory.

Because the e points are probably in a region undergoing more rapid
changes than the surrounding points, this rapidly changing domein is en-
closed by a "buffer region", one zone thick (denoted by the shaded area
in Fig. 4). Enough calculations are made for the buffer region so that
the stability number can be calculated for these zones in order to alert
the code if the disturbance is moving into the buffer region. buffer

zone in Fig. 4 is delineated by three kinds of x points &, X, «X)

#For simplification of notation in the subsequent discussion and flow
diagrams, several quantities will be represented by the same symbol.

17
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Fig. k, A Simple HASTI Logical Mesh, Showing the Various Types
of e, x, and o Points

and by five kinds of o points ( Qs 9s 0,0, o’) all of which are
n+l

defined by a succession of tests on t s as shown in the flow diagram
(Fig. 5).

In order to have the required quantities available at the proper
time, the code makes two passes through the mesh, taking points in the

order
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Fig. 5. HASTI - First Pass-Through Mesh
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Fig. 6. HASTI - Second Pass-Through Mesh




1=1,3=1,2, « « . g
1=2,3=1,2 « ..,
(24)
i= 1 ast? j=1,2, . . . jla.st
On the first pass (see Fig. 5) calculations are made for
+ +
rn l, vn l, wn+l, and A‘b+ (25)
while on the second pass (see Fig. 6), the quantities determined are
an+l, w / 2, revised t%, and AL (26)

Because of space limitations, the flow diagrams do not include the
equations used for calculations; these equations are part of the dis-

cussion of the problem illustrated in Fig. L,

IV. THE FIRST PASS

As the calculation proceeds on the first pass through the mesh of
the example in Fig. 4 [following the ordering scheme shown in Eq. (2%) 1,
circle (o) points, dot (e) points, and x points will be encountered.
The first pass is used to calculate the coordinates and thermodynamic
quantities.

IVA. The Circle (o) Points
In the example in Fig. L the first points in the mesh requiring

calculation are the circle (o) points. The coordinates of these points
must be advanced to t;;i because this information is required to obtain
accurate volumes, V, for the adjacent dot (¢) points. Failure to ad-
vance the circle (o) points can and has resulted in the undesirable
effect of an associated zone apparently compressing when, actually, it

2l




is expanding, thereby producing an artificial viscosity by Eq. (13) when
there should be none. Such a fictitiously produced perturbation has a
tendency to spread through the mesh in the form of oscillations of
points about their proper positions, and may result in instability if
the stability condition is not made more severe.

Consider the pictorial time scale of Fig. 7, in which the times for
a dot point are represented below the line by t® and tgzl, and the times

for an adjacent circle point are represented above the line by (t’) and
(t,)n+1

)n+1/2 ,\n+1/2

)" " (t') )

n n+l
t .
min

Fig. 7. A Pictorial Time Scale for Adjacent Circle and Dot Points

The coordinates, rn, and accelerations, an, of the circle point are
1 1
known at (t/)®; the velocities, v*'Z, are known at (t/)™'%F = E[(t/)®
+
+ (t’)n+l], and it is desired to advance the coordlnates to t i. The

simplest way to do this is to assume that v 3 is valid for the whole

interval from (t’)™ to (t’)n+l and, hence, by Eq. (6):
r(rn) = 2+ PR ()7 (21)
min min

e2




%
If more accuracy is desired, the velocity can be adjusted from (t’)nﬁg

to (£")™F - %[(t’) +tn+l] by an equation similar to Eq. (5):
” "I‘l: n‘*‘;‘? " ’ n+:
(V)P o P L B[ (e)RE 2-(t/)" 2] (28)

before using Eq. (27).
Once r(tn+l

then deadvanced to by Eq. (27); and the velocity is corrected back to

+5
v by Eq. (28), so that the proper values are in storage for the two

times (t’ )? and (t’ )n+l still associated with that point. In order to

delay the corrections until after the volumes have been calculated, the

) has been used to calculate the related volumes, it is

corrections are made after other x or dot points, further along in the
mesh, have been calculated (see Fig. 5). The delay is necessary in
order to have the coordinates of all corners of a zone at tﬁ;i, so that

the volume can be calculated more accurately.

IVB. The Dot () Points
Calculations for the dot (e) points are quite straightforward.

Knowing tn, tgzi, a®, and v, one uses Eq. (6) to compute
n+l n+l R
r(8370) - 4 PR (29)
and, subsequently, to compute V(tn+l), w(tn+1), etc. by Egs. (10), (13),

(14), (15) and (16). The At is the largest At that satisfies Eq. (17).
This procedure is equivalent to what is normally described as time-
splitting and -doubling.

IVC. The x Points
The x points are buffer points similar to the circle points; but

whereas the circle points are deadvanced to their original positions
after use, the x points are left in their new positions.
Consider the pictorial time scale in Fig. 8 in which times for a
n+l

dot point are represented above the line by £2 and tmi ; and the times

23




for an adjacent x point are represented below the line by (t’ )* and
(£’ )n+l.

n+1
min

| ] | :

n+1/2 « )n+1/2 ( t,.,)n+1/ 2 )

@)y ")

Fig. 8. A Pictorial Time Scale for Adjacent x and e Points

The coordinates, rn, and accelerations, an, of the x point are known at
: +
(t’)®. The velocities, vm%, are known at (t’)n-% = %[(t’)n+(t’)n l];
and it is desired to advance the coordinates to tﬁi Agein, as a first
approximation one can use Eq. (27) or, for a better approximetion, Egs.

(28) and (27). Now, however, it is desired to retain r(t%%1), so the
velocity must be advanced to (t/,,)n'h%}ﬁf - %[t$i+( £)7 1] by
R LR T e (O AR (30)

V. THE SECOND PASS

At the start of the second pass, the coordinates and thermodynamic
quantities have been calculated for all the necessary points at tg;rll'.
During this pass it is necessary to calculate accelerations and velocities,

and to analyze the stability number in order to set up a new pair of times,

where necessary.
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New accelerations at tzli are calculated only for the dot points
by Eq. (#). Before new velocities are computed, the times must be ana-
lyzed.

For each point, the At+'s of the four adjacent zones are exemined;

and the smallest, nonzero At+ is chosen to obtain

n+2 = (¢ n+l

(ti,j)min -

) + At (31)

which is the next time at which that point must be calculated. The

point is thus controlled by the adjacent zone in which the most severe

stability condition is present. The (tn'+2)mi value is then compared
to tmajor’ and the smaller of the two is chosen as the actual tn+§ to
)

be used for the point.
For the dot points, the new velocities are then calculated as in
Eq. (5) )

n+3/2 n+k ntly 1o 042l n+l 0
v =V +a(t )[-(tl »J mln) 2(tm1n 1,3)]
_ . nit n+l n+2_.n
=v ° +a(t )[5(’%,3 i,5] (32)

The remainder of Fig. 6 deals with the shifting of times in storage to
prepare for the next cycle.

VI. RESUILTS

There is no need to describe in detail the problems used to test the
code. Suffice it to say that the problems included a number of one-dimen-
sional systems, such as planes, cylinders, and spheres, in order to in-
sure that HASTI did not affect the symmetry of such systems. Further,
several simple problems with real two-dimensional motions were completed.
The problems involved a variety of situations involving shocks, rarefactions,
free surface motion, sliding motion along a fixed boundary, and fixed

boundaries.
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In all cases, the coordinates and densities of the problems run by
the HASTI code agreed with the problems run by a Magee-like code to
within one percent. In accurate tests of machine time used (excluding
input-output), the HASTI problems ran two to three times faster than the
Magee ones. Because only a limited effort was spent making HASTI an
efficient code, while the Magee-type code is very efficient, there is a
good possibility of increasing this time-saving factor.

VII. CONCIUSIONS

The time-saving possibilities of a space-dependent time step in the
mumerical calculation of two-dimensional, Lagrengian hydrodynamics have
been illustrated; and a fairly straightforward method has been suggested.
The method apparently does not save as much time as the system used by
Goad,u but it is felt that further work and experimentation with HASTT
could yield greater time savings. If less emphasis were placed on accu-
racy, (for example, eliminating some of the velocity adjustments in
Section IV) and if more emphasis were placed on efficient use of the
machine (saving quantities calculated on one point for use with another
point), further time savings could result. The method was found to be
sufficiently general and flexible so that changes and refinements of the
code could be made without too much difficulty. For example, a modified
version of the Magee "fudge" was added to stop any point that attempted
to cross the diagonal of the zone.
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