TITLE: FISSION AND EXPLOSIVE ENERGY RELEASES OF PuO₂,
PuO₂-UO₂, UO₂ AND UO₃ ASSEMBLIES

AUTHOR(S): Jerry J. Koelling
Gordon E. Hansen
Cleo C. Byers

SUBMITTED TO: American Nuclear Society 1976
International Conference November
15-19, 1976, Washington, DC

By acceptance of this article for publication, the
publisher recognizes the Government's (licensee) rights
in any copyright and the Government and its authorized
representatives have unrestricted right to reproduce in
whole or in part said article under any copyright
secured by the publisher.

The Los Alamos Scientific Laboratory requests that the
publisher identify this article as work performed under
the auspices of the USERDA.
Fission and Explosive Energy Releases of PuO$_2$, PuO$_2$-UO$_2$, UO$_2$ and UO$_3$ Assemblies

J. J. Koelling, University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87545

G. E. Hansen, University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico, 87545

C. C. Byers, University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87545

J. J. Koelling, P. O. Box 1663, Los Alamos Scientific Laboratory, Los Alamos, NM 87545, Area Code 505-667-4351

15 Pages

1 Table

10 Figures
ABSTRACT

The critical masses and fission and explosive energy releases of PuO$_2$, PuO$_2$ - UO$_2$, UO$_2$ and UO$_3$ assemblies have been calculated. The choice of parameters used in the model are conservative and were chosen after review of appropriate plants that have been and are proposed for construction in the future. The resulting data envelopes are intended to include any conceivable set of circumstances that could ultimately lead to a nuclear incident. All energy release analysis was performed for initial fission spikes only; recriticality mechanisms were not considered.
Figure 1. Critical Mass of PuO₂ Versus H₂O Content.

Figure 2. Critical Mass of MOX Versus H₂O Content.

Figure 3. Critical Mass of UO₂ Versus H₂O Content.

Figure 4. Critical Mass of UO₃ Versus H₂O Content.

Figure 5. Fission Energy Release of PuO₂ Versus Reactivity Insertion Rate.

Figure 6. Neutron Source Strength of PuO₂ Versus kₑff.

Figure 7. Fission Energy Release of MOX Versus Reactivity Insertion Rate.

Figure 8. Fission Energy Release of UO₂ Versus Reactivity Insertion Rate.

Figure 9. Fission Energy Release of UO₃ Versus Reactivity Insertion Rate.

Figure 10. Fission Energy Release of Oxides Versus Reactivity Insertion Rate.
Fission and Explosive Energy Releases of PuO$_2$, PuO$_2$-UO$_2$, UO$_2$, and UO$_x$ Assemblies. J. J. Koelling, G. E. Hansen, C. C. Byers, University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87545.

For the purpose of determining off-site effects of criticality accidents it has been normal practice to postulate accidents in various configurations and media within a plant.\(^{(1,2,3)}\) These potential accidents then assist in determining much of the plant and process design. For these accidents the off-site effects are dominated by the release of gaseous iodine and noble gases through the ventilation system, out the stack, and to the exclusion boundary via appropriate dilution and decay factors. For any specific proposed accident it is the fission energy estimate that ultimately determines the dose at the boundary since all other factors, i.e., fission product yields, decay rates, dilution effect, breathing rates, plateout, etc., involved in the dose estimate are relatively well understood.

The fission and explosive energy release from criticality incidents involving liquid and metal assemblies\(^{(4,5,6,7,8)}\) has been well established from both accidents and experimental induced excursion data; however, to date very little work has been performed in the dry powder or near dry powder assemblies. With the possible advent of plutonium recycle, it has become increasingly apparent that the upper limits of energy release for PuO$_2$, UO$_2$ and PuO$_2$-UO$_2$ assemblies similar to that
found in nitrate to oxide conversion plants and mixed oxide fuel fabrication plants should be established. In addition, it was decided to investigate UO₃ commonly found in UF₆ plants.

This study focused on the following four types of assemblies:

a) PuO₂ assemblies: Light water reactor recycle plutonium in oxide form with approximately 80% fissile and 20% non-fissile plutonium isotopes. Water content was varied from 0 to 10% by weight.

b) PuO₂-UO₂ (MOX) assemblies: A mixture of recycle plutonium with natural uranium, both in oxide form. The mixture contained a maximum of 6% PuO₂. Water content was varied from 5 to 10% by weight.

c) UO₂ assemblies: Uranium oxide with a maximum uranium enrichment of 5%. Water content was varied from 2.5 to 10% by weight.

d) UO₃ assemblies: Uranium oxide with a maximum uranium enrichment of 5%. Water content was varied from 2.5 to 7.5% by weight.

The density (oxide density) of all assemblies was maintained at 5 g/cm³. Reactivity insertion rates were varied from $1 to $100/s. A nominal concrete composition was chosen for fully reflected critical masses. Spherical geometry was chosen for ease of modeling and for minimal critical masses. A Doppler coefficient \[\frac{1}{\tau} \frac{d\kappa}{dT} = -0.02 \] was chosen for all uranium cases. All energy release analysis was performed for initial fission.
spikes only; recriticality mechanisms, e.g., recompaction under the influence of gravity, were not considered.

The fission and explosive energy releases were determined with the Pajarito Dynamics Code (PAD)\(^9\) that has been used by LASL personnel in estimating low order disassemblies which might occur during a reactor or critical assembly accident. PAD is a one-dimensional coupled hydrodynamic-neutronic code with Lagrangian hydrodynamics and the discrete ordinates neutron transport code DTF-IV.\(^{10}\) Neutron multiplication and period calculations were also performed with the aid of DTF-IV. Hansen-Roach cross sections were utilized in both the DTF-IV and PAD calculations.

For the PAD calculations, a two-material option was used whereby the fission energy is deposited in the fuel and then transferred to the water (if present) via a predetermined energy transfer rate. If no water was present the energy remained in the fuel and ultimately changed the state of the media to a vapor phase.

Figures 1 through 4 show the critical masses of PuO\(_2\), PuO\(_2\)-UO\(_2\), UO\(_2\) and UO\(_3\) for various water concentrations. For PuO\(_2\), the critical mass is finite with no water, whereas with MOX and both UO\(_2\) and UO\(_3\) the "minimum" water content was 5 and 2.5\% by weight, respectively. The upper limit for investigation was established when the water content filled up the void space left by the oxide. For PuO\(_2\), UO\(_2\) and MOX this water content was approximately 10\% by weight but for
UO₃ (at the same oxide density) this value was 7.5% by weight. Above these water levels, solution assembly data exist in the literature.

Figure 5 shows the energy release expected for PuO₂ assemblies for various water contents. At low ramp rates, water vaporizes and initiates disassembly. At high ramp rates, fuel vaporization follows the water vaporization. For 0% water, air that fills the void spaces initiates disassembly and may or may not be followed by fuel vaporization depending on the ramp insertion. Gas viscosity and small particle size assure equal velocities in vapor and condensed states.

In the cases studied, the total energy release becomes greater than what is normally considered acceptable in accident analyses only for high reactivity insertion rates (>>$1/s). These rates are much greater than those obtained by maximum estimated material transfer rates (<<$1/s) achievable in conversion and fabrication facilities. In addition to the unlikelihood of achieving these insertion rates, the neutron emission rate from spontaneous fission and the Pu(α,n)O₂ reaction¹¹ as shown in Figure 6 constitutes a formidable neutron source that is easily detected while an assembly is still far subcritical. For example, at kₑff = 0.9, or more than $40 subcritical, the neutron source strength is approximately 10⁷ n/s-kg or 10⁹ n/s for a 100 kg assembly.

Figures 7 through 9 show the energy releases expected for MOX (PuO₂ + UO₂), UO₂ and UO₃ for various water contents.
Except for the inherent PuO\textsubscript{2} source strength (6\% of the values stated for the PuO\textsubscript{2} assemblies) in MOX, all of these low enriched oxides indicate approximately the same level of energy release per kg oxide. The higher release levels of these low quality fuel assemblies are due mainly to the extremely large critical masses in comparison to the relatively small critical masses of PuO\textsubscript{2} assemblies. The large masses imply small neutron leakage probabilities and thus require larger dilations per unit reactivity reduction.

Table I lists maximum kinetic energy (an index of "explosive" energy) as a function of assembly composition and reactivity insertion rate.

Summary:

In all of the cases considered, water vapor pressure constitutes the basic disassembly mechanism even in the case of extremely small amounts (0.1\% by weight for the PuO\textsubscript{2} study). The water content and subsequent vapor pressures resulting from the water will thus ultimately determine the fission yield during an excursion for a given reactivity insertion rate. For zero water content as in the case for PuO\textsubscript{2}, the air in the void spaces supplies enough energy to start disassembly. If vaporization of the fuel is necessary to complete disassembly as in the case of very high ramp rates, very large energy releases can be realized. Of course the calculated energy releases are academic if the
necessary material to achieve a critical mass cannot be present or if a strong inherent neutron source such as seen in PuO₂ or PuO₂-UO₂ assemblies will preclude accumulation of critical masses by proper detection.

As indicated earlier, the choice of parameters used in this investigation are conservative and were determined only after review of appropriate plants. The resulting data envelopes are thus intended to include any conceivable set of circumstances that could ultimately lead to a nuclear incident.
REFERENCES

Table I. Maximum Kinetic Energy in Megajoules as a Function of Powder Composition and Ramp Reactivity Insertion.

<table>
<thead>
<tr>
<th>Composition/ramp($/sec)</th>
<th>5</th>
<th>20</th>
<th>100</th>
<th>(Metric tons per dollar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{PuO}_2)</td>
<td>0.00</td>
<td>1.6</td>
<td>4.6</td>
<td>0.001</td>
</tr>
<tr>
<td>(\text{PuO}_2+0.1 \text{ w/o H}_2\text{O})</td>
<td>0.01</td>
<td>0.02</td>
<td>1.6</td>
<td>0.001</td>
</tr>
<tr>
<td>(\text{PuO}_2+2.5 \text{ w/o H}_2\text{O})</td>
<td>0.02</td>
<td>0.19</td>
<td>0.47</td>
<td>0.0008</td>
</tr>
<tr>
<td>(\text{PuO}_2+10 \text{ w/o H}_2\text{O})</td>
<td>0.00</td>
<td>0.07</td>
<td>0.45</td>
<td>0.0005</td>
</tr>
<tr>
<td>(\text{MOX}+5.0 \text{ w/o H}_2\text{O})</td>
<td>4</td>
<td>50</td>
<td>700</td>
<td>32</td>
</tr>
<tr>
<td>(\text{MOX}+7.5 \text{ w/o H}_2\text{O})</td>
<td>0.5</td>
<td>7</td>
<td>120</td>
<td>2.7</td>
</tr>
<tr>
<td>(\text{MOX}+10 \text{ w/o H}_2\text{O})</td>
<td>0.1</td>
<td>2</td>
<td>40</td>
<td>0.3</td>
</tr>
<tr>
<td>(\text{UO}_2+2.5 \text{ w/o H}_2\text{O})</td>
<td>15</td>
<td>120</td>
<td>650</td>
<td>9.1</td>
</tr>
<tr>
<td>(\text{UO}_2+5.0 \text{ w/o H}_2\text{O})</td>
<td>1</td>
<td>10</td>
<td>80</td>
<td>3.4</td>
</tr>
<tr>
<td>(\text{UO}_2+10 \text{ w/o H}_2\text{O})</td>
<td>0.1</td>
<td>1.5</td>
<td>15</td>
<td>0.03</td>
</tr>
<tr>
<td>(\text{UO}_3+2.5 \text{ w/o H}_2\text{O})</td>
<td>15</td>
<td>150</td>
<td>700</td>
<td>8.5</td>
</tr>
<tr>
<td>(\text{UO}_3+5.0 \text{ w/o H}_2\text{O})</td>
<td>1</td>
<td>10</td>
<td>80</td>
<td>3.0</td>
</tr>
<tr>
<td>(\text{UO}_3+7.5 \text{ w/o H}_2\text{O})</td>
<td>0.5</td>
<td>5</td>
<td>35</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Figure 1. Critical Mass of PuO$_2$ Versus H$_2$O Content.

Figure 2. Critical Mass of MOX Versus H$_2$O Content.
Figure 3. Critical Mass of UO_2 Versus H_2O Content.

Figure 4. Critical Mass of UO_3 Versus H_2O Content.
Figure 5. Fission Energy Release of PuO$_2$ Versus Reactivity Insertion Rate.
Figure 6. Neutron Source Strength of PuO$_2$ Versus k_{eff}.

Figure 7. Fission Energy Release of MO$_x$ Versus Reactivity Insertion Rate.
Figure 8. Fission Energy Release of UO$_2$ Versus Reactivity Insertion Rate.

Figure 9. Fission Energy Release of UO$_3$ Versus Reactivity Insertion Rate.
Figure 10. Fission Energy Release of Oxides Versus Reactivity Insertion Rate.