TITLE: The Shielding Factor Method for Producing Effective Cross Sections: MINX/SFINX and the CCCC Interface System

AUTHOR(S): R. E. MacFarlane, C. R. Weisbin and N. C. Paik

SUBMITTED TO: RSIC Multigroup Cross Section Seminar
Oak Ridge, Tennessee
March 14-16, 1978

NOTICE
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the U.S. Department of Energy nor any of its contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

By acceptance of this article for publication, the publisher recognizes the Government's (license) rights in any copyright and the Government and its authorized representatives have unrestricted right to reproduce in whole or in part said article under any copyright secured by the publisher.

The Los Alamos Scientific Laboratory requests that the publisher identify this article as work performed under the auspices of the USERDA.
THE SHIELDING FACTOR METHOD FOR PRODUCING EFFECTIVE CROSS SECTIONS: MINX/SPHINX AND THE CCCC INTERFACE SYSTEM

R. E. MacFarlane
Los Alamos Scientific Laboratory, University of California
Theoretical Division
P O Box 1663, Los Alamos, NM 87545

C. R. Weisbin
Oak Ridge National Laboratory
P O Box X, Oak Ridge, TN 37830

N. C. Paik
Westinghouse Advanced Reactor Division
P O Box 158, Madison, PA 15663

ABSTRACT

The Shielding Factor Method is an economical designer-oriented method for producing the coarse-group space and energy self-shielded cross sections needed for reactor-core analysis. Extensive experience with the ETOX/1DX and ENDRUN/TDOWN systems has made the SFM the method of choice for most US fast-reactor design activities. The MINX/SPHINX system was designed to expand upon the capabilities of the older SFM codes and to incorporate the new standard interfaces for fast reactor cross sections specified by the Committee for Computer Code Coordination. MINX is the cross-section processor. It generates multigroup cross sections, shielding factors, and group-to-group transfer matrices from ENDF/B-IV and writes them out as CCCC ISOTXS and BRKOXS files. It features detailed pointwise resonance reconstruction, accurate Doppler broadening, and an efficient treatment of anisotropic scattering. SPHINX is the space-and-energy shielding code. It uses specific mixture and geometry information together with equivalence principles to construct shielded macroscopic multigroup cross sections in as many as 240 groups. It then makes a flux calculation by diffusion or transport methods and collapses to an appropriate set of cell-averaged coarse-group effective cross sections. The integration of MINX and SPHINX with the CCCC interface system provides an efficient, accurate, and convenient system for producing effective cross sections for use in fast-reactor problems. The system has also proved useful in shielding and CTR applications.
INTRODUCTION

The complexity of a typical reactor core makes it impractical to solve the neutron transport problem with full space and energy detail. For this reason designers normally use effective cross sections averaged over relatively coarse energy groups and space regions. The Shielding Factor Method (SFM) is an economic method for producing these effective cross section that was originally developed in Russia. Development of the SFM in the US has been chiefly for the fast-reactor program, and extensive experience has been accumulated with the ETOX/IDX and ENDRUN/TDOWN code systems. More recently the SFM has received increased attention for thermal power reactor analysis with the development of EPRI-CELL and EPRI-CPM for the electric utility industry. SFM code systems are traditionally divided into two parts: the cross section processor (e.g., ETOX) and the space-energy collapse code (e.g., IDX). The MINX/SPHINX system follows this pattern. It was designed to expand upon the capabilities of the older SFM codes and to incorporate the standard interface formats for fast reactor codes specified by the Committee for Computer Code Coordination (CCCC). The MINX cross section processor generates a library of multigroup cross sections, shielding factors, and group-to-group transfer matrices from ENDF/B-IV evaluated nuclear data and writes it out as CCCC ISOTXS and BRXOXS files. The SPHINX space-energy code uses specific mixture and geometry information together with equivalence principles and a diffusion or transport flux calculation to construct effective coarse-group cell-averaged macroscopic cross sections in CCCC format.

The MINX/SPHINX system is in routine use on both IBM and CDC equipment. Comparisons with the older SFM codes show generally good agreement. Comparisons with independent codes such as ETOE-2/MC2-2, VIM, and GGC-5 give confidence that the MINX/SPHINX system is suitable for the routine analysis of large fast-reactor cores.

THEORY OF THE SHIELDING FACTOR METHOD

The goal of the SFM is to define effective cross sections for some range of energy (E in group g) and some region of space (r in volume v) that preserve macroscopic observables such as reaction rate. Clearly,

\[\sigma_{i}^{x} = \frac{\int_{v} dE \int_{r} d\vec{r} \sigma_{x}^{i}(E, \vec{r}) \phi(E, \vec{r})}{\int_{g} dE \int_{v} d\vec{r} \phi(E, \vec{r})} \tag{1} \]

where \(\sigma_{x}^{i} \) is the cross section for isotope i and reaction x at E and \(\vec{r} \), and \(\phi \) is the neutron scalar flux at that energy and position. Similar expressions can be constructed to preserve the group-to-group scattering rates and the transport cross section.
Unfortunately, the flux needed for Eq. (1) is not known before the
fact; in fact, it is one of the quantities being sought in the analysis.
In addition it is very complex, being full of sharp dips and peaks caused
by resonances in the cross sections. However, experience has shown that
it is possible to separate the variation of the flux into a part that is
relatively smooth with respect to energy group and spatial zone size and
a remaining resonance part. The variations in the smooth part can be
determined by a multigroup flux calculation, but the intra-group flux
must be selected by model.

The class of codes represented by MC* and GGC-5 determines this
model flux by making a detailed flux calculation for a simplified homog-
eneous system. This is an expensive procedure. The SFM codes, on the
other hand, assume that the intragroup flux can be modeled as

$$\phi(E) = \frac{W(E)}{\Sigma_t(E)} ,$$

where W is a smooth function of energy reflecting the fission and scat-
tering sources into E and Σ_t is the total macroscopic cross section.
Formally, Eq. (2) gives the flux for an infinite homogeneous system sat-
sifying the narrow resonance approximation. However, heterogeneous sys-
tems can be included using equivalence principles. Extension to wide
and intermediate-width resonances is also possible.

Furthermore, in evaluating the numerator of Eq. (1), it is assumed
that the important effect is the interaction between a resonance in σ_x
and the dip in the flux caused by that resonance (self-shielding). The
reaction rate becomes

$$\int \frac{\sigma^i_x(E)}{\sigma^i_0 - \sigma^i_t(E)} W(E)dE ,$$

where

$$\sigma^i_0 = \rho_0^i \sum_{j \neq i} \rho_j \sigma^j_t ,$$

and where ρ_i is the number density for isotope i in the homogeneous mix-
ture. The simplification comes from assuming that σ_0 is constant in g.
The result is a single parameter, the "background cross section per atom,"
which can be used to characterize self-shielding. The cross sections
produced by MINX are computed using
\[
\sigma_{xg}^1 = \int \frac{\sigma_x^1}{\sigma_0^1 + \sigma_t^1} \text{ WdE} \\
\int \frac{1}{\sigma_0^1 + \sigma_t^1} \text{ WdE}
\]

(5)

The results are tabulated as cross sections for \(\sigma_0 = \infty \) and shielding

\[
f_{xg}^1 = \frac{\sigma_{xg}^1(\sigma_0)}{\sigma_{xg}^1(\infty)}
\]

(6)

for several values of \(\sigma_0 \). SPHINX then computes \(\sigma_0^1 \) using Eq. (4). In heterogeneous systems an additional "escape cross section per atom" is added. The corresponding shielded cross section is then obtained by interpolating the \(f \)-factors for this \(\sigma_0 \). Temperature is handled in the same way.

This approach makes a composition-independent cross-section library possible. The economy of the SFM results from being able to use this library many times.

THE MINX PROCESSING CODE

MINX was designed to combine and improve upon the resonance capabilities of ETOX \(^2\) and ENDRUN \(^9\) and the anisotropic scattering capabilities of ETOG \(^7\) and SUPERTOG \(^1\). It is a modular code that uses paging techniques and variable dimensioning to make it possible to process the complex evaluations found in ENDF/B-IV.9 The normal flow through the code is pictured in Fig. 1.

First, detailed pointwise cross sections are generated from ENDF/B resonance parameters and cross sections using the method of RESEND. The energy grid is suitable for linear interpolation to within a user specified accuracy. The results are written out as a "pointwise-ENDF" (PENDF) tape suitable for printing, plotting, or further processing.

These pointwise cross sections are then accurately Doppler broadened to any desired temperatures using the method of SIGMA-1. This approach has the advantage of correctly broadening smooth cross sections, backgrounds, and multi-level representations. Since broadening is a smoothing process, the results are thinned to a user specified accuracy and written out as PENDF tapes. Examples of the number of points produced in reconstruction and Doppler thinning are given in Table 1. Although this highly accurate process is expensive, it only has to be done once for a particular evaluation. Many subsequent averaging runs with different parameters can be made using the one temperature-dependent PENDF
Fig. 1. Structure of MINX code illustrating functional blocks and data flow. ETOPL is not a part of MINX.

Table 1. Results of MINX Resonance Reconstruction and Doppler Broadening

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Points at 0 Ka</th>
<th>Points at 2100 Kb</th>
<th>CP Seconds (CDC7600)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C12</td>
<td>404</td>
<td>404</td>
<td>68.1</td>
</tr>
<tr>
<td>Fe</td>
<td>8798</td>
<td>5033</td>
<td>302.8</td>
</tr>
<tr>
<td>U235</td>
<td>7209</td>
<td>2660</td>
<td>492.3</td>
</tr>
<tr>
<td>U238</td>
<td>50372</td>
<td>6683</td>
<td>3483</td>
</tr>
</tbody>
</table>

a0.5\% reconstruction except 1.0\% for U238.

This procedure will not work in the unresolved energy range where only statistical knowledge of the resonances is available. Effective pointwise cross sections vs T and \(\sigma_0 \) are produced by averaging over the ENDF/B distributions of resonance widths using methods based on ETOX.2

Multigroup cross sections are computed using Eq. (5) and appropriate generalizations. The group structure and smooth weight function are chosen by the user. The energy integrations are performed by adaptive quadrature starting from the union grid of the functions in the integrands. The nature of the PENDF cross section grid assures that all features are well-represented. Fission yields are averaged to preserve \(\sigma_f \) and slowing-down parameters are averaged to preserve \(\mu_0 \sigma_f \) and \(\xi \sigma_f \). The transport cross section is computed as \(\sigma_t \sigma_f \) where \(\sigma_f \) is current5 weighting is used for the total cross section.

Elastic and discrete-inelastic scattering both obey two-body kinematics. MINX usually performs the resulting complex integrals over energy and angle with a semi-analytic method22 based on an expansion in the laboratory system. The analytic integrals are obtained by a recursion relation, and the single energy integral is performed adaptively to a user specified tolerance. When this is not appropriate (e.g., light isotopes and near thresholds) MINX automatically changes to a direct numerical integration in the center-of-mass frame.

Group-to-group cross sections for continuum reactions are evaluated using analytic integrations over secondary energy and the standard adaptive quadrature for initial energy. Fission chi vectors by isotope are
produced by averaging the ENDF/B spectrum appropriate to a specified incident energy.

The final step is to format the results of the multigroup averaging module into the CCCC-III ISOTXS (cross sections and matrices) and BRKX5S (shielding factors) files.

THE SPHINX SPACE-ENERGY CODE

SPHINX combines an extended version of the resonance treatment of IDX with the one-dimensional diffusion theory flux calculation of IDX or the one-dimensional transport flux transport of ANISN. It is modular in structure and uses the flexible POINTR system of dynamic storage allocation. The entire code was assembled in accordance with the CCCC specifications for code compatibility. The use of CCCC interface files makes communication with other CCCC-compatible codes such as TWOTRAN and VENTURE straightforward.

The basic structure of SPHINX is shown in Fig. 2. The various execution paths through the code are administered by the ZEUS CONTROL module using input data from the CCCC standard and code-dependent interfaces listed in Table 2. The fundamental cross-section data, intermediate results, and final answers are transmitted using the CCCC files described in Table 3.

![Fig. 2. Execution paths through SPHINX.](image-url)
Table 2. SPHINX Control Files

<table>
<thead>
<tr>
<th>Name</th>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEUS1A</td>
<td>no</td>
<td>Modular control input</td>
</tr>
<tr>
<td>XSRINP</td>
<td>no</td>
<td>Resonance module input</td>
</tr>
<tr>
<td>SKODXI</td>
<td>no</td>
<td>Diffusion module input</td>
</tr>
<tr>
<td>ANISIN</td>
<td>no</td>
<td>Transport module input</td>
</tr>
<tr>
<td>ZNBTDN</td>
<td>no</td>
<td>Zone atomic densities</td>
</tr>
<tr>
<td>FPRINT</td>
<td>no</td>
<td>Print control</td>
</tr>
<tr>
<td>GEODST</td>
<td>yes</td>
<td>Geometry description</td>
</tr>
<tr>
<td>NDXSRF</td>
<td>yes</td>
<td>Nuclide density and cross section parameters</td>
</tr>
<tr>
<td>ZNATON</td>
<td>yes</td>
<td>Zone nuclide atomic densities</td>
</tr>
<tr>
<td>SEARCH</td>
<td>yes</td>
<td>Criticality search parameters</td>
</tr>
<tr>
<td>SNCONS</td>
<td>yes</td>
<td>S constants</td>
</tr>
<tr>
<td>FIXSRC</td>
<td>yes</td>
<td>Volume and surface sources</td>
</tr>
</tbody>
</table>

a See Ref. 10 for detailed specifications.

b See Ref. 7 for detailed specifications.

Table 3. SPHINX Standard Interface Files

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISOTXS</td>
<td>Nuclide-ordered cross section data</td>
</tr>
<tr>
<td>GRUPXS</td>
<td>Group-ordered cross section data</td>
</tr>
<tr>
<td>BRK0XS</td>
<td>Resonance self-shielding data</td>
</tr>
<tr>
<td>RTFLUX</td>
<td>Regular scalar flux</td>
</tr>
<tr>
<td>ATFLUX</td>
<td>Adjoint scalar flux</td>
</tr>
<tr>
<td>RCURNT</td>
<td>Regular current</td>
</tr>
<tr>
<td>ACURNT</td>
<td>Adjoint current</td>
</tr>
<tr>
<td>RAFLUX</td>
<td>Regular angular flux</td>
</tr>
<tr>
<td>AAFLUX</td>
<td>Adjoint angular flux</td>
</tr>
<tr>
<td>RZFLUX</td>
<td>Regular zone-averaged flux</td>
</tr>
<tr>
<td>PWDINT</td>
<td>Power densities</td>
</tr>
</tbody>
</table>

a See Ref. 7 for detailed specifications.
The first step in most problems is to use the resonance module to prepare effective self-shielded cross sections appropriate to the specified composition and geometry. The background cross section σ_0 is computed for each group and nuclide using Eq. (4). An additional escape term can be added for one of the seven options: (1) cylindrical cell using Sauer's approximation to the Dancoff factor in a hexagonal lattice, (2) cylindrical cell using Sauer's approximation to the Dancoff factor in a square lattice, (3) symmetric slab cell, (4) asymmetric slab cell, (5) isolated rod, (6) cylindrical cell with the Bell approximation to the Dancoff factor, and (7) symmetric slab cell with the Bell approximation. Self-shielding factors are then computed at σ_0 by Langranian interpolation. Effective cross sections are defined as in 1DX except that provision is made for an elastic group-to-group matrix. The results are written in ISOTXS format for communication with the flux modules.

On option, the code then branches to the diffusion module. The calculation is identical to that in 1DX except that input is in ISOTXS format and cross-section storage has been modified to allow for up to 240 groups and for several additional partial reaction types (i.e., n2n, n\alpha, nd, ...). The cross sections are then collapsed to a subset group structure using the computed flux and written out in ISOTXS format.

The optional transport module uses the S_n method to obtain the flux. The method is identical to ANISN except for the ISOTXS interface capability. When the flux has been obtained, cross sections are collapsed to a subset group structure and zone-averaged using either volume or flux weighting. This provides a capability for cell homogenization.

The use of standard files provides many possible paths. For example, the flux from a diffusion calculation is easily available as an input guess for a subsequent transport calculation using already shielded cross sections.

LIBRARIES AND UTILITIES

SPHINX is normally used with one of the existing multigroup libraries generated by MINX. LIB-IV3 is a 50-group 101-isotope library generated from ENDF/B-IV. The library includes all the general purpose evaluations from ENDF/B-IV plus the two copper isotopes and the nine lumped fission products from ENDF/B-III. All materials were run at 300, 900, and 2100 K using 4 to 6 σ_0 values with decade steps. Scattering matrices are given to P_3. The weight function consists of a 1.4 MeV fission spectrum joined at 820.8 keV to a $1/E$ shape which, in turn, joins to a 0.025 eV Maxwellian at 0.10 eV. The library also contains delayed neutron yields and spectra for seven isotopes generated in CCCC DLAYXS format using NJOY.31

VITAMIN-C32 is a 171-group library with 36 isotopes chosen for important temperature, σ_0, Legendre order, and weight function are similar to LIB-IV, except that a velocity exponential fusion peak has been attached in the 14 MeV range.
These libraries require several utility codes in order to knit them into a system with MINX and SPHINX. First, BINX is a code for converting back-and-forth between binary and BCD modes for transmission of ISOTXS, BRKOS, and DLAYXS files between laboratories. LINX is a code for adding new isotopes to an existing CCC cross-section library. Finally, CINX is a collapse code that can be used to generate a subset library tailored to a particular set of problems. As an example, CINX has been used to produce a 126-group subset of VITAMIN-C especially designed for LMFBR core and shield analysis. Figure 3 illustrates how these codes and libraries combine to form a complete system.

Fig. 3. Outline of CCC interface system for generating multi-group constants for fast reactor analysis.

CODE VALIDATION

The MINX/SPHINX system has been tested in a variety of ways. One ongoing project is a comparison of various processing codes being carried on by a committee of industrial and national laboratories (the DOE Code Evaluation Working Group). In order to minimize confusing complications, this group has analyzed a simple homogeneous composition typical of a large fast-breeder reactor core. The current results for some important parameters are given in Table 4. Larger differences exist between the fluxes and various cross sections. At the present time, for this type of problem, the chief causes of these differences seem to be: (1) group structure and weight function, (2) elastic removal treatment and (3) unresolved self-shielding. In any case, the numbers in Table 4 are less than the uncertainties associated with the basic evaluated data and with other design conservatisms. They imply that the MINX/SPHINX system is accurate for routine fast-reactor design.
Table 4. Comparison of Various Codes for a Buckled Homogeneous Fast Reactor Model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ANL</th>
<th>ARD</th>
<th>ORNL</th>
<th>LASL</th>
<th>LASL ETOX/IDX</th>
<th>GE</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{eff}</td>
<td>1.0040</td>
<td>0.10</td>
<td>0.31</td>
<td>0.19</td>
<td>0.13</td>
<td>0.17</td>
</tr>
<tr>
<td>C28/F49</td>
<td>0.1585</td>
<td>-0.06</td>
<td>-0.88</td>
<td>-0.26</td>
<td>-0.32</td>
<td>0.00</td>
</tr>
<tr>
<td>C28/F25</td>
<td>0.1447</td>
<td>-0.35</td>
<td>-0.76</td>
<td>-0.35</td>
<td>-0.48</td>
<td>0.28</td>
</tr>
<tr>
<td>F49/F25</td>
<td>0.9132</td>
<td>-0.33</td>
<td>0.12</td>
<td>-0.12</td>
<td>-0.23</td>
<td>0.22</td>
</tr>
<tr>
<td>F28/F25</td>
<td>0.0206</td>
<td>0.44</td>
<td>1.12</td>
<td>0.68</td>
<td>-0.44</td>
<td>4.27</td>
</tr>
<tr>
<td>F40/F25</td>
<td>0.1806</td>
<td>0.17</td>
<td>0.55</td>
<td>0.33</td>
<td>-0.44</td>
<td>1.55</td>
</tr>
<tr>
<td>F41/F25</td>
<td>1.294</td>
<td>0.29</td>
<td>0.36</td>
<td>0.33</td>
<td>-0.15</td>
<td>0.30</td>
</tr>
</tbody>
</table>

REFERENCES

6. EPRI-CELL and EPRI-CPM are parts of the proprietary Advanced Recycling Methods Package developed for the Electric Power Research Institute (EPRI) by Nuclear Associates International.

Ordinates Transport Code with Anisotropic Scattering," Union Carbide

National Laboratory Technical Memorandum No. 96 (1967).

25. B. M. Carmichael, D. A. Meneley, and D. R. Vondy, "Report of the Sub-
committee of Standard Interface Files," Los Alamos Scientific Labora-

26. K. D. Lathrop and F. W. Brinkley, "TWOTRAN-II: An Interfaced, Export-
able Version of the TWOTRAN Code for Two-Dimensional Transport," Los

Solving Multigroup Neutronics Problems Applying the Finite-Difference
Diffusion-Theory Approximation to Neutron Transport," Oak Ridge National
Laboratory report ORNL-TM-4259.

(1963).

29. G. I. Bell, "A Simple Treatment for Effective Resonance Absorption Cross

30. R. B. Kidman and R. E. MacFarlane, "LIB-IV, A Library of Group Constants
for Nuclear Reactor Calculations," Los Alamos Scientific Laboratory

31. R. E. MacFarlane and R. M. Boicourt, "NJOY: A Neutron and Photon Cross

32. C. R. Weisbin, R. W. Roussin, E. M. Oblow, D. E. Cullen, J. E. White,
and R. Q. Wright, "The Role of 'Standard' Fine-Group Cross Section
Libraries in Shielding Analysis," in Proceeding of the Fifth Interna-

33. R. E. MacFarlane and R. B. Kidman, "LINX and BINX: CCCU Utility Codes
for the MINX Multigroup Processing Code," Los Alamos Scientific Labora-

34. R. B. Kidman and R. E. MacFarlane, "LINX, Collapsed Interpretation of
Nuclear X-Sections," Los Alamos Scientific Laboratory report LA-6287-MS
(1976).

35. J. E. White, R. Q. Wright, L. R. Williams, and C. R. Weisbin, "Data
Testing of the 126/36 Neutron-Gamma ENDF/B-IV Coupled Library for LMFBR