TITLE: PROMPT NEUTRONS FROM THE SPONTANEOUS FISSION OF FERMUM-257

By acceptance of this article for publication, the publisher recognizes the Government's (license) rights in any copyright and the Government and its authorized representatives have unrestricted right to reproduce in whole or in part said article under any copyright secured by the publisher.

The Los Alamos Scientific Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Atomic Energy Commission.

By acceptance of this article for publication, the publisher recognizes the Government's (license) rights in any copyright and the Government and its authorized representatives have unrestricted right to reproduce in whole or in part said article under any copyright secured by the publisher.

The Los Alamos Scientific Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Atomic Energy Commission.

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

DISTRIBUTION LIMITED TO

MASTER
PROMPT NEUTRONS FROM THE SPONTANEOUS FISSION OF FERMIUM-257

J. P. Balagna, J. A. Farrell, G. P. Ford, A. Hemmendinger,
D. C. Hoffman, L. R. Veeser, and J. B. Wilhelmy
Los Alamos Scientific Laboratory, University of California
Los Alamos, New Mexico 87544

ABSTRACT

Prompt neutrons emitted following the spontaneous fission of ^{257}Fm were measured using a 75-cm diam. Gd loaded liquid scintillator (neutron detection efficiency = 66.5%). A chamber containing ^{257}Fm and ^{252}Cf sources, each facing a Si-surface-barrier detector, was placed in the center of the tank. The average number of neutrons emitted for ^{257}Fm spontaneous fission was found to be 3.77 ± 0.02 based on a value of $\overline{\nu} = 3.735 \pm 0.014$ for ^{252}Cf. The variance of the neutron multiplicity distribution is 2.49 ± 0.06 for ^{257}Fm compared with 1.56 ± 0.02 for ^{252}Cf. The variation of $\overline{\nu}$ as a function of single fragment kinetic energy was investigated. For ^{257}Fm, $\overline{\nu}$ is ≈ 1 for the highest 1% of the single fragment kinetic energies while for ^{252}Cf the value is 3. The high kinetic energy fragments from the fission of ^{257}Fm are principally from symmetric mass splits while in ^{252}Cf they are from asymmetric divisions. Low neutron emission from symmetric division in ^{257}Fm is consistent with the prediction of spherically stabilized fragments near the scission point due to the proximity of the ^{132}Sn doubly magic core.

*Worked performed under the auspices of the U. S. Atomic Energy Commission.
Introduction.

Previous studies of the kinetic energies of 257Fm spontaneous fission products indicated for the first time that a low energy fission process can have a high yield for symmetric mass division [1]. Subsequent studies of fragment kinetic energy measurements on 255Fm(n,f) [2] 257Fm(SF) [3] and 257Fm(n,f) [3], as well as radiochemical mass yield determinations for 255Fm(SF) [4] and 255Fm(n,f) [5] have substantiated that the low energy fission of these heavier Fm isotopes results in a higher yield of symmetric fission than has been observed in the low energy fission of other nuclei. These results have stimulated renewed interest in the problems associated with mass distributions in fission [6-8]. The accurate determination of the mass yields for symmetric division, however, requires knowing the number of neutrons evaporated as a function of fragment mass. Figure 1 (from ref. [1]) emphasizes this by showing two mass yield distributions calculated from the observed fragment kinetic energies following the spontaneous fission of 257Fm; the first distribution is calculated with the assumption that the average number of neutrons emitted per fragment has a constant value of 2, while the second assumes the average number of neutrons emitted per fragment has a mass dependence the same as that observed in the spontaneous fission of 252Cf. It is clear that the yield calculated for symmetric fission is dependent on the assumptions concerning the neutron multiplicities.

To elucidate this problem in the calculation of the symmetric fission yields we have measured the neutron multiplicities associated with the fission of 257Fm.

Experimental.

The 257Fm was produced by successive neutron capture in Cm targets irradiated in the high-flux isotope reactor (HFIR) and processed at the transuranium processing facility (TRU) at Oak Ridge National Laboratory. The 257Fm was further purified at Los Alamos by standard cation column procedures involving elution with ethanol-HCl and hot α-hydroxy-isobutyrate to separate the Fm from other actinides. The principle contaminant before separation was $\approx 10^6$ dis/min of 253Es. A solution of the purified source was evaporated on a 5-mil Pt disk. This source was positioned ≈ 3 mm from a 1-cm diam. by 30-μm deep Si-surface-barrier detector. A 252Cf source, prepared in a similar manner, was placed in the same position relative to a second surface barrier fission detector. The two sources, back-to-back, and their detectors were placed in a vacuum container in the center of a 75-cm diam. spherical Gd-loaded liquid scintillator tank having a 15-cm diam. cylindrical hole through the center.

The tank was divided optically into quadrants with each quadrant having two RCA-4522 photomultiplier tubes mounted on glass windows. The tank was filled with Nuclear Enterprise NE-323 liquid scintillator loaded with 0.5 wt.% gadolinium. The neutrons emitted in fission thermalized in the liquid and were captured by the gadolinium. The cascade gamma rays following neutron capture were detected by the photomultipliers after interaction with the scintillator liquid. The mean lifetime for the thermalization and capture of neutrons in the tank is about 10 μsec.

Detection in the solid state detectors of a fission fragment from either 252Cf or 257Fm opened a gate for 40 μsec following a 2 μsec delay to avoid counting the prompt fission gamma rays and the proton recoils resulting from the thermalization of the neutrons. During the open gate period the sums of the dynode signals from the four photomultipliers on each half of the tank were fed into a dual discriminator. The discriminator levels determined the efficiency of the tank, and their 150-nsec output pulse lengths determined the dead time. A pulser was used to open the 40-μsec gate every 100 sec so that background counting rates of the system could be measured.
An on-line PDP-8/L computer recorded the outputs of fast scalers, which gave the neutron multiplicities, and of analog-to-digital converters (ADC) which measured the linearly amplified signals of the fission fragment solid state detectors.

The apparatus was placed in a low background room having thick concrete walls. During the experiment the average background rate was 0.124 ± 0.0010 based on more than 125000 background gates. No more than three pulses were measured in any of the background gates and the frequency distribution of the various multiplicity events was consistent with a Poisson distribution. By having the 252Cf source present in the tank it was possible to monitor continuously the efficiency of the system. The overall neutron detection efficiency was determined to be (66.49 ± 0.28)% based on an average neutron multiplicity value of 3.753 ± 0.014 for the fission of 252Cf [9].

Results.

Experimental data were collected for more than five months. During that time 10532 257Fm and 98659 252Cf fission events were detected. The 257Fm fission detection rate varied from 5.5 SF/h at the start of the experiment to 1.8 SF/h at the conclusion. From a least squares fit to the observed decay rate we obtained a value of 99.3 ± 1.6 d for the half life of 257Fm, in good agreement with the recently published value of 100.5 ± 0.2 d [10]. Figure 2 presents the probability distribution of the observed multiplicity of neutrons from the fission of 257Fm and 252Cf. The probability of observing n events is

\[
P_d(n) = \sum_{k=0}^{n} \sum_{v=n-k}^{\infty} \binom{n}{k} \left(1 - e^{-\nu} \right)^n \left(1 - e^{-\nu} \right)^{n-k} p_b(k) p_f(v)
\]

[Eq. 1]

where \(e \) = efficiency for neutron detection

\(p_f(v) \) = probability that \(v \) neutrons are emitted in a fission event, and

\(p_b(k) \) = probability of measuring \(k \) background counts.

Through a matrix inversion of Eq. 1 it is possible to determine the quantity \(p_f(v) \), the multiplicity distribution of neutrons emitted in fission. Table I presents the observed and "unfolded" distributions for both 257Fm and 252Cf. The \(v \) value for 257Fm is found to be 3.769 ± 0.021 which is less than 1% higher than the value of 3.735 ± 0.014 [9] for 252Cf. The 2.49 ± 0.06 variance for 257Fm is much larger than the value of 1.57 ± 0.02 measured for 252Cf. In Table II we compare our current values of these quantities with those reported for 257Fm by Cheifetz et al. [11] and with various reported results on 252Cf [11-14].

A plot of our "unfolded" \(p_f(v) \) distributions is presented in Fig. 3. The 252Cf distribution is seen to be very nearly Gaussian. Although the 257Fm results show more scatter, they are also represented reasonably well by a Gaussian function.

A notable feature in the fission of 257Fm compared to 252Cf is the higher probability of emission of 0 or 1 neutron. In fact, the whole neutron multiplicity distribution is much flatter for 257Fm than for 252Cf, as evidenced in their relative variances. This implies a broad distribution in excitation energies for 257Fm fission products.

In this experiment only one fission fragment energy was recorded per fission. We have analyzed the variation of \(\nu \) and \(\sigma_U^2 \) as a function of single fragment energy. Figure 4 presents a histogram of the values of \(\nu \) and \(\sigma_U^2 \) for bins containing \(\approx 10^3 \) increments of the single fragment kinetic energies. The variances for both 257Fm and 252Cf are seen to remain reasonably constant over the kinetic energy range. The \(\nu \) data for 257Fm, however, show a dramatic decrease as the highest kinetic energy bins are selected while no such strong
effect is observed in the 252Cf data. These results are presented in a cumulative manner in Fig. 5. We see that when all of the data are included (the 100% point on the far right of the graph) the 257Fm and 252Cf have, within 1%, the same value of $\bar{\nu}$, but when only the higher kinetic energy intervals are selected the 257Fm ν results are substantially below the 252Cf data. At the highest kinetic energy interval the 257Fm multiplicity has decreased to less than 1 neutron per fission, whereas the 252Cf data have asymptotically approached about 3 neutrons per fission. The low value of $\bar{\nu}$ for the high kinetic energy 257Fm fission implies a very low fragment excitation energy for these events.

With only one fragment energy measured, definitive mass assignments are not possible. For 257Fm fission, however, some selection of the mass distribution can be made by selection of single fragment kinetic energies. Figure 6 shows a mass distribution obtained by restricting one fragment to be within the top 5.3% of the kinetic energy range. These data, which were taken from the 257Fm two-fragment kinetic energy mass determination measurements of ref [1], show a preference for symmetric division when one fragment has a high kinetic energy. Though not conclusive, the combination of the current neutron measurements with the previous mass determinations implies that the symmetric fission of 257Fm results in fragments having very little internal excitation energy.

Discussion and Conclusions.

We have repeated the 257Fm neutron multiplicity measurements done by Cheifetz et al. [11] using a more efficient detection system (66.5% vs 51.5%). Our results, with smaller statistical uncertainties, are consistent with their values ($\pm 2\sigma$). With our higher efficiency we have been able to "unfold" the observed multiplicity distribution and obtain the true neutron distribution. Perhaps the most interesting observation is the strong decrease in $\bar{\nu}$ with increasing single fragment kinetic energy. These events are correlated with symmetric fission of 257Fm. If we relate the neutron multiplicity to the post scission fragment excitation energy we have an estimate for the excitation energy for symmetric division. We present these data in Fig. 7, a graph containing the predictions of Schmitt and Mosel [7] for fragment excitation energy for symmetric [$Z_{f1} = Z_{f2} = Z/2, A/2$] and asymmetric [$Z_{f1} = 50, A_{f1} = 132; Z_{f2} = Z-50, A_{f2} = A-132$] division. Since the $\bar{\nu}$ value for any specific division is unknown, we can use only the measured $\bar{\nu}$ values for given mass or charge. For the fission of 252Cf the neutron multiplicities have been determined both as a function of fragment mass [15] and charge [16] and both results are presented in Fig. 7. For asymmetric fission the mass determination method (i.e. $A_{f1} = 132, A_{f2} = 120$) gives a substantially higher $\bar{\nu}$ than does the charge determination (i.e. $Z_{f1} = 48, Z_{f2} = 50$) method. For the symmetric fission the two 252Cf methods give essentially the same value. For 257Fm the symmetric mass division (as estimated from Fig. 5 for the highest kinetic energy events) has a $\bar{\nu}$ of ≈ 1. These results are in at least qualitative agreement with the Schmitt and Mosel predictions. The 257Fm symmetric fission is expected to result in two fragments which are spherically stabilized by the proximity of the 12Sn doubly magic core. Such fragments should be stiff toward distortion and have nearly spherical scission configurations. These circumstances should result in high kinetic energy release (due to large coulomb energy from the compact spherical fragments) and low internal fragment excitation energy.

More definitive experiments in which neutron multiplicities are measured in coincidence with both fragment kinetic energies would improve our understanding of the energy division in the spontaneous fission of 257Fm.
currently attempting such an experiment with a slightly stronger source (≈ 4 SF/min).
REFERENCES

TABLE I. EXPERIMENTALLY DETERMINED NEUTRON PROBABILITY DISTRIBUTIONS FOR THE FISSION OF ^{257}Fm AND ^{252}Cf.

<table>
<thead>
<tr>
<th>n or ν</th>
<th>^{257}Fm (10532 f)</th>
<th>^{252}Cf (98571 f)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$P_d(n)$</td>
<td>"Unfolded" $P_t(\nu)$</td>
</tr>
<tr>
<td>0</td>
<td>0.070 ± 0.003</td>
<td>0.022 ± 0.004</td>
</tr>
<tr>
<td>1</td>
<td>0.176 ± 0.004</td>
<td>0.078 ± 0.014</td>
</tr>
<tr>
<td>2</td>
<td>0.260 ± 0.005</td>
<td>0.077 ± 0.032</td>
</tr>
<tr>
<td>3</td>
<td>0.261 ± 0.005</td>
<td>0.259 ± 0.054</td>
</tr>
<tr>
<td>4</td>
<td>0.154 ± 0.004</td>
<td>0.211 ± 0.068</td>
</tr>
<tr>
<td>5</td>
<td>0.061 ± 0.003</td>
<td>0.259 ± 0.068</td>
</tr>
<tr>
<td>6</td>
<td>0.015 ± 0.002</td>
<td>0.039 ± 0.058</td>
</tr>
<tr>
<td>7</td>
<td>0.003 ± 0.001</td>
<td>0.058 ± 0.032</td>
</tr>
<tr>
<td>8</td>
<td>0.000 ± 0.0002</td>
<td>-0.005 ± 0.015</td>
</tr>
<tr>
<td>9</td>
<td>0.00001 ± 0.0001</td>
<td>0.002 ± 0.004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\bar{n}(\nu)$</th>
<th>σ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.636 ± 0.014</td>
<td>2.068 ± 0.027</td>
</tr>
<tr>
<td>3.769 ± 0.021</td>
<td>2.49 ± 0.06</td>
</tr>
<tr>
<td>2.607 ± 0.004</td>
<td>1.651 ± 0.007</td>
</tr>
<tr>
<td>(3.735 ± 0.014)</td>
<td>1.57 ± 0.02</td>
</tr>
</tbody>
</table>
TABLE II. SUMMARY OF NEUTRON EVAPORATION DATA
FOR 237Pm AND 252Cf.

<table>
<thead>
<tr>
<th></th>
<th>No. of fissions</th>
<th>\overline{v}_T</th>
<th>$\sigma^2_{v_T}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheifetz et al. [1]</td>
<td>1499</td>
<td>3.97 ± 0.13</td>
<td>2.92 ± 1.40</td>
</tr>
<tr>
<td>This experiment</td>
<td>10532</td>
<td>3.77 ± 0.02</td>
<td>2.49 ± 0.06</td>
</tr>
</tbody>
</table>

252Cf

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma^2_{v_T}$</td>
<td>1.87 ± 0.08</td>
<td>1.55 ± 0.04</td>
<td>1.46 ± 0.14</td>
<td>1.46 ± 0.14</td>
<td>1.57 ± 0.02</td>
</tr>
</tbody>
</table>
FIGURE CAPTIONS

Figure 1. Pre-neutron emission mass yield distributions for $^{257}\text{Fr}(\text{SF})$. The two sets of points correspond to different assumptions on the variation of $\nu(m)$ (from ref [1]).

Figure 2. The experimentally observed distributions, $P_d(n)$, of events in the fission of ^{252}Cf and ^{257}Fr.

Figure 3. The "unfolded" frequency distribution, $P_t(n)$, of neutrons associated with the spontaneous fission of ^{257}Fr and ^{252}Cf. The solid curves represent Gaussian functions having the same first and second moments as the "unfolded" distributions.

Figure 4. The average $\langle n \rangle$ and variance $\langle \sigma_n^2 \rangle$ of the neutron distributions for the fission of ^{257}Fr and ^{252}Cf as a function of single fragment kinetic energy. The data is presented in $\approx 10\%$ bins corresponding to the lowest kinetic energy fraction on the left to the highest on the right.

Figure 5. The variation of the average number of neutrons as a function of the cumulative fraction of single fragment kinetic energy. The value of the ordinate for abscissa value x is the average number of neutrons for those events with the top x percent of single fragment kinetic energies.

Figure 6. Mass distribution for $^{257}\text{Fr}(\text{SF})$ obtained when one fragment is restricted to kinetic energy greater than 117 MeV (the top 5.3% of the single fragment kinetic energy distribution).

Figure 7. The solid curves represent calculated excitation energies (E_x) and neutron emission multiplicities (ν) for asymmetric (A) and symmetric (S) fission of nuclei from $Z = 92$ to 114 (from Schmitt and Mosel [7]). The points correspond to experimental values for the fission of ^{252}Cf and ^{257}Fr. See text for additional details.
257Fn-6 SINGLE FRAGMENT KE (GREATER THAN 117 MEV) (5.3 PERCENT)