LOS ALAMOS
SCIENTIFIC LABORATORY
OF THE UNIVERSITY OF CALIFORNIA
LOS ALAMOS, NEW MEXICO

For Reference
Not to be taken from this room
Librarian Reserve

Contract W-7405-ENG.36 with the
U.S. Atomic Energy Commission
On the Interaction of a Shock with a Constriction

Report written by:
Otto Laporte

Work done by:
Otto Laporte

Physics
A detailed theoretical treatment of the passage of a shockwave along a channel possessing a constriction or area reduction at one point is given. The purpose is to furnish a theory of the diffraction of a shock by a flat plate which has upon it a regular array of perpendicular spikes or wedges. This type of diffraction has been studied experimentally by the shock tube laboratory of the University of Michigan and a report on this work is being issued at the present time.

The pressures, densities and temperatures encountered are calculated assuming a monatomic gas and ideal gas law. Two entirely different treatments have to be employed according as the Mach number at the constriction is less or greater than unity. Numerical results are presented for constriction ratios 2:1, 5:1, and \(\infty :1 \). Of interest to experimental investigators are quantitative predictions on the possibility of attaining greater shock strengths in this way and of, therefore, exceeding the inherent limitations of a shock tube.
I. INTRODUCTION

About a year ago, the shock tube laboratory of the Physics Department of the University of Michigan began the study of the reflection of shock waves by stacks of plates or prongs arranged upon a base plate so as to form a regular array. The ratio of plate thickness to the width of the interstices as well as the wedge angle of the plates was varied. A report containing many schlieren pictures and a few interferograms is being put out by the University of Michigan. In brief, the events

![Diagram of shock wave reflection](image)

Fig. 1

studied can be described as follows: As the shock strikes the tips of the wedges, a complicated interaction takes place which, however, after some time results in the formation of a reflected shock. However, a shock is transmitted down the interstices as well, is reflected at the end and upon emergence from the flaring ends forms a second shock following the first.

The quantitative account of this process can, therefore, be divided into two parts of which the second, the amalgamation of two shocks is, thanks to the work of von Neumann, Courant and Friedrichs, well understood. The first earlier part of the process, i.e., the formation of the two reflected shocks, the prediction of their strengths, of all pressures and densities outside as well as inside the interstices is a rather complex problem of fluid dynamics. This is the problem which is treated in the following pages.

This work was carried out during the author’s stay at Los Alamos in the summer of 1954. For generous and understanding help with the lengthy and often involved numerical work the author is glad to express his indebtedness to Max Goldstein and Josephine E. Powers.
II. DESCRIPTION OF EVENTS

If two planes are laid, one through the median lines of the wedges, the other through the median lines of the interstices, then the problem is reduced to the passage of a shock through a channel with a constriction, followed by reflection and ultimate emergence. Let us first consider the channel extended toward infinity in both directions.

The problem of a channel possessing a constriction through which a shock passes has received some attention, especially by F. Schultz-Grunow, and by Kahane, Warren, Griffith, and Marino. All of these authors consider only the case of such weak shocks that all waves, although of finite amplitude, may still be regarded as isentropic. It is intended to treat the problem for incident and reflected shocks of arbitrary strengths.

Let us consider what happens as the incident shock, defined by the pressure ratio

\[y_0 = \frac{p_1}{p_0} \quad (1) \]

passes through the constriction (Figs. 1 and 2).

\[2) \text{Forschung Ingenieur Wesen, Vol. 13, p. 125, 1942.} \]
\[3) \text{Ingenieur - Archiv., Vol. 16, p. 21, 1943.} \]
\[4) \text{Zeitschrift f. Angewandte Math. and Mech., Vol. 24, p. 264, 1944.} \]
\[5) \text{ibidem, Vol. 29, p. 257, 1949.} \]
As the photographs of the Michigan report show, after some time a reflected shock y_1 travels to the left while a transmitted shock y_t continues down the narrowed channel. But the interaction of the primary shock with the constriction will give rise to a more or less extended region of changing entropy, an interface region as it were. It is for this reason that in the above diagram the flow variables on the two sides of the cross-hatched interface region possess different
sound velocities (and, of course, also different densities and temperatures) c_3 and c_2 while the pressure p_2 and the flow velocity u_2 are continuous.

As for the transition from the flow field $(p_4 c_4 u_4)$ to the flow field $(p_3 c_3 u_3)$, it is assumed to be adiabatic which we believe to be correct as long as (a) the wedge angle is not too near to 90°, and (b) as long as the calculated Mach number u_3/c_3 is less than unity. Concerning (a) it is clear that if the transition from the wide to the narrow part of the channel is too abrupt, the entire flow in the narrow part will be turbulent. And concerning (b), it should be remembered that the flow from region $(p_4 c_4 u_4)$ to $(p_3 c_3 u_3)$ can at best be accelerated to sonic conditions, and that for production of supersonic flow in the narrow channel, a throat (Laval nozzle) would be necessary. But this we do not have with the present type of wedge system.

Assuming, for the present, a subsonic region at both sides of the constriction, we have a gradually lengthening region $p_3 c_3 u_3$ since the (cross-hatched) interface region moves with the fluid, and also a lengthening region $p_2 c_2 u_2$, since the speed of the transmitted shock is, of course, greater than u_2. When this shock of strength y_t strikes the end of the interstice, it is reflected as a shock of strength y'_t given by

$$y'_t = \frac{6y_t - 1}{y_t + 4}$$

which formula shows that the strength of a reflected shock can, for argon, never rise beyond 6. Before emerging from the model as a second plane...
shock, the reflected intersticial shock y_t' encounters two hurdles:
(1) it has to pass through the interface region, and (2) it has to
emerge past the wedge tips, into the wider region at very left of Fig. 2.

At the interaction of the shock with the interface, a slightly
modified shock is transmitted and at the same time a shock is reflected.
The slightly strengthened transmitted shock then passes through the di-
vergent part of the channel. This second process is more important
than the former one; it may be regarded as the converse of the process
the primary shock undergoes as it first meets the wedge tips.

What happens is that the emerging shock becomes, with the aid of
Huygens wavelets, and by Mach stem formation, a transmitted shock y_{II},
while at the same time a rarefaction is sent back into the interstices.
But also a more or less extended interface region (which owes its
existence to the temporary presence of curved shocks) is created which,
because of the almost vanishing fluid speed behind y_{II}, continues to
hover about the tips of the wedges.

Fig. 3 is an x-t plot of the interactions dealt with in this and
the next section.
Fig. 3 Position of Model in Flow
III. CALCULATION OF y_0, y_I FOR WEAK SHOCKS

The primary shock is defined by its pressure ratio

$$y_0 = \frac{p_1}{p_o}.$$ (1)

The fluid velocity and the sound speed behind y_0 are given by:

$$\frac{u_1}{c_o} = \frac{3}{\sqrt{5}} \frac{y_0 - 1}{\sqrt{4y_o + 1}}$$

$$\frac{c_A}{c_o} = \sqrt{\frac{y_o(y_o + 4)}{4y_o + 1}}$$

where c_o and p_o are the ambient quantities ahead of y_0. Some time after y_0 has been diffracted by the wedge tips, the reflected shock of as yet unknown pressure ratio y_I recedes, the pressure behind which is

$$p_h = y_I p_1 = y_0 y_I p_o.$$ (4)

The fluid and sound speeds u_4 and c_4 are given by

$$\frac{u_4}{c_o} = \frac{3}{\sqrt{5}} \frac{1}{\sqrt{4y_o + 1}} \left\{ y_0 - 1 - (y_I - 1) \frac{y_o(y_o + 4)}{4y + 1} \right\}$$

$$\frac{c_4}{c_o} = \sqrt{\frac{y_o(y_o + 4)}{4y_o + 1}} \sqrt{\frac{y_I(y_I + 4)}{4y_I + 1}}.$$ (5)

Densities, entropies, etc., can, of course, also be written down, but are not necessary just now.
Now the essential hypothesis of the adiabatic connection between the regions \((u_4c_4p_4)\) and \((u_3c_3p_3)\) is used. Let the area in the wider part of the duct be \(A_4\), that in the narrower part \(A_3\). Then the continuity equation together with the adiabatic law states that

\[
A_4u_4c_4^3 = A_3u_3c_3^3
\]

and the energy law

\[
u_4^2 + 3c_4^2 = u_3^2 + 3c_3^2.
\]

Introducing Mach numbers in regions 3 and 4 a single equation connecting \(M_3\) and \(M_4\) may be found, which is often convenient:

\[
\frac{(M_4^2 + 3)^2}{A_4M_4} = \frac{(M_3^2 + 3)^2}{A_3M_3}.
\]

For a given area ratio this or the previous pair of equations relate the variables \(M_3u_3c_3p_3\) to the flow variables in the sub-four region.

Across the interface \(i\), velocity and pressure are continuous

\[
u_2 = u_3, \quad p_2 = p_3
\]

and these latter quantities in turn are related to the ambient state \(p_0, c_0, u_0 = 0\) via the shock \(y_t\) with equations similar to (3).

Equations (4) to (8) make it possible to determine the shock strengths \(y_t\) and \(y_I\) for a given \(y_0\).

The following essential point was brought out by George Carrier with whom the author had several stimulating discussions. While equating the \(u\) and \(p\) according to (8), to require the same continuity of \(p\) would mean to over determine the situation. The \(p\) 's in the two

\[
\text{wedge thickness} \frac{A_4 - A_3}{A_3}.\]

7) Consequently one has for the ratio

\[
-11-\]
regions, ρ_2 and ρ_3, are not equal, a fact which proves the existence of the interface region.

Equations (4) and (8) can be interpreted graphically in a u, p plane, using a procedure generalizing the almost classical procedure for shock and rarefaction interaction. However, a direct numerical evaluation was carried out, using the facilities of the hand calculation group of T Division. The area ratio chosen was 2:1 which corresponds to the models that were investigated most thoroughly.
IV. NUMERICAL RESULTS FOR WEAK SHOCKS AND AREA RATIO 1:2

The following table gives the values of the flow variables in the various regions as functions of the independent variable y_0, the strength of the incident shock. The first five columns contain the variables for region 4 (see Fig. 2), i.e., the strength of the first reflected shock, the speeds and Mach number and the pressure in terms of ambient pressure p_o.

The next four columns display the same information for region 3. They show in particular that the local Mach numbers M_3 are always much greater than the corresponding M_4's and that somewhere between $y_0 = 6$ and $y_0 = 10$, Mach unity is reached. This all important fact is reflected by the behavior of M_4 which reaches a maximum for $M_3 = 1$.

As is well known to the aerodynamicist, this heralds the beginning of a condition known as "choking" of the duct. It is a proven fact that the steady flow in a duct with narrowing cross section is only able to reach supersonic Mach numbers if there is a throat, i.e., a non-monotonic change in cross section. Of course, it is problematic whether our problem still permits a steady state treatment, but the experiments would seem to indicate that it does.

In view of this circumstance it is proposed to employ the theory contained in Eqs. (3) to (8) and, therefore, the data in the foregoing

TABLE I.
FLOW VARIABLES FOR WEAK SHOCKS, PRIOR TO CHOKEING.

<table>
<thead>
<tr>
<th>y_o</th>
<th>$y_1=p_4/p_1$</th>
<th>u_4/c_o</th>
<th>c_4/c_o</th>
<th>$M_4=u_4/c_4$</th>
<th>$y_0 y_1=p_4/p_0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>1.59429</td>
<td>.37110</td>
<td>1.39749</td>
<td>.2655</td>
<td>4.7829</td>
</tr>
<tr>
<td>4.0</td>
<td>1.83212</td>
<td>.44544</td>
<td>1.55403</td>
<td>.2866</td>
<td>7.3288</td>
</tr>
<tr>
<td>5.0</td>
<td>2.03269</td>
<td>.49988</td>
<td>1.69643</td>
<td>.2946</td>
<td>10.1635</td>
</tr>
<tr>
<td>6.0</td>
<td>2.20200</td>
<td>.54391</td>
<td>1.82806</td>
<td>.2975</td>
<td>13.2120</td>
</tr>
<tr>
<td>10.0</td>
<td>2.66828</td>
<td>.67521</td>
<td>2.28140</td>
<td>.2960</td>
<td>26.6828</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y_o</th>
<th>u_3/c_o</th>
<th>c_3/c_o</th>
<th>$M_3=u_3/c_3$</th>
<th>p_3/p_o</th>
<th>ρ_3/ρ_o</th>
<th>$y_{t^}=p_{t^}/p_o$</th>
<th>$y_{t^}=p_{t^}/p_2$</th>
<th>p_2'/p_o</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>.88358</td>
<td>1.31858</td>
<td>.6701</td>
<td>2.0571</td>
<td>2.0202</td>
<td>1.016</td>
<td>3.57668</td>
<td>2.7004</td>
</tr>
<tr>
<td>4.0</td>
<td>1.14235</td>
<td>1.43044</td>
<td>.7986</td>
<td>2.3666</td>
<td>2.3036</td>
<td>1.027</td>
<td>4.84245</td>
<td>3.1727</td>
</tr>
<tr>
<td>5.0</td>
<td>1.35790</td>
<td>1.53184</td>
<td>.8865</td>
<td>2.6002</td>
<td>2.5151</td>
<td>1.034</td>
<td>6.10138</td>
<td>3.5251</td>
</tr>
<tr>
<td>6.0</td>
<td>1.54593</td>
<td>1.62597</td>
<td>.9508</td>
<td>2.7820</td>
<td>2.6790</td>
<td>1.038</td>
<td>7.35494</td>
<td>3.7983</td>
</tr>
<tr>
<td>10.0</td>
<td>2.14446</td>
<td>1.95547</td>
<td>1.0966</td>
<td>3.2283</td>
<td>3.0823</td>
<td>1.047</td>
<td>12.3447</td>
<td>4.4705</td>
</tr>
</tbody>
</table>
only as long as \(M_3 \leq 1 \) which will be as long as

\[y_0 \leq 7. \]

After that a different approach, to be presented in the next section, will have to be used.

Returning to the numerical table, it should be noticed that the interface region which travels with velocity \(u_3 \) does not represent a particularly violent change in density or temperature. In fact the column labelled \(\rho_3/\rho_2 \) shows the percentage change to 1.5% at \(y_0 = 3 \) rising to about 4% at \(y_0 = 7 \). Further the pressures to which the model is subjected at these comparatively weak incident shocks are worth noticing: the pressure \(p_4 \) behind the reflected tip shock rises from 4 to 13 times ambient values at \(y_0 = 6 \); the pressures \(p_2 \) behind the shock which runs down the interstices are but little higher than the \(p_1 \)'s, ranging as they do, from 3.58 at \(y_0 = 3 \) to 7.35 at \(y_0 = 6 \). But upon return from the end of the interstice there is a real pressure increase, as the last column for \(p_2 \) shows, namely from 9.65\(p_0 \) at \(y_0 = 3 \) to 27.93\(p_0 \) at \(y_0 = 6 \).
V. STRONGER INCIDENT SHOCK. CALCULATION FOR CHOKED FLOW

Assuming then \(M_3 = 1 \) as maximum Mach number near the entrance of the channel, the maximum Mach number in region 4 is obtained from Eq. (7):

\[
(M_4^2 + 3)^2 = 16 \frac{A_4}{A_3} M_4^4.
\] (9)

Assuming the area ratio equal to 2, one calculates for this limiting Mach number:

\(M_* = 0.298168 \), \hspace{0.5cm} (9')

while for a constriction to one fifth the value \(M_* = 0.11347 \) \((9'') \) is obtained.

This number we now regard as fixed for a given area ratio, no matter how strong the incident shock may be. Division of the two relations (5) by one another leads to another expression for this Mach number, which after some elementary changes can be written:

\[
M_* \sqrt{\frac{5}{3}} \frac{\sqrt{y_I(y_I + 4)} + y_I - 1}{\sqrt{4y_I + 1}} = \frac{y_o - 1}{\sqrt{y_o(y_o + 4)}}.
\] (10)

In this way \(y_I \) shows a functional dependence on \(y_o \) which is different from that expressed by the earlier system of formulae, but which will, of course, connect with the earlier value \(y_I \approx 2.3 \) near \(y_o \approx 7 \) where, for area ratio 2:1, the unchoked flow approaches sonic conditions in region 3.
Assuming then \(y_I \) to be this new function of \(y_o \), we reenter formulae (5) and calculate \(u_4 \) and \(c_4 \). Since \(M_3 = 1 \), formulae (6) will immediately give the values for the speeds in region 3:

\[
\frac{u_3}{c_o} = \frac{c_3}{c_o} = \frac{1}{2c_o} \sqrt{u_4^2 + 3c_4^2} = \frac{1}{2} \sqrt{\frac{M^2_3 + 3}{y_o(y_o + 4) - y_I(y_I + 4)}}.
\]

Also, using the adiabatic law:

\[
\frac{p_3}{p_o} = y_0^5 y_I \left(\frac{c_3}{c_4} \right)^5; \quad \frac{\rho_3}{\rho_o} = \frac{4y_o + 1}{y_o + 4} \quad \frac{4y_I + 1}{y_I + 4} \left(\frac{c_3}{c_4} \right)^3.
\]

(11)

and with (9)

\[
\frac{p_3}{p_o} = \left(\frac{1}{2} \sqrt{M^2_3 + 3} \right)^5 y_o^5 y_I; \quad \frac{3}{0} = \left(\frac{1}{2} \sqrt{M^2_3 + 3} \right)^3 \frac{4y_o + 1}{y_o + 4} \quad \frac{4y_I + 1}{y_I + 4}.
\]

To connect \(p_3 \) and \(u_3 \) with the ambient state \(p_o, u_o = 0 \) via a shock is generally not possible since region 3 is subject to the stringent condition of sonic flow. We are, therefore, forced to interpose a rarefaction wave whose high pressure head remains at the sonic region 3 and whose low pressure foot moves gradually into the interstice.

From this low pressure side the fluid emerges with pressure \(p_2 \) and velocity \(u_2 \), which two values will then be connectable to the zero region via a shock. To be sure, there is nothing to assure the continuity of \(P \) or \(c \), so that one has to interpose an interface as well. But using solely \(u \) and \(v \) one can, of course, disregard its existence for the nonce.

Figs. 4 and 5 illustrate those rather involved wave interactions and indicate the notation used for the variables of the various regions.
To work through a rarefaction, one remembers that the so-called Riemann invariant \(u + 3c \) is constant. Using the adiabatic law connecting \(c \) and \(p \), this gives rise to the following expression for the fluid velocity \(u_2 \) between the rarefaction and the transmitted shock:

\[
u_2 = u_3 + 3c_3 \left\{ 1 - \left(\frac{p_2}{p_3} \right)^{1/5} \right\}
\]

(12)

where \(p_3 \) and \(u_3 = c_3 \) are known. To determine \(p_2 \), region 2 is connected to region 0 via the transmitted shock \(y_t \):

\[
p_2 = y_t p_0
\]

(13)

\[
\frac{u_2}{c_0} = \frac{3}{\sqrt{5}} \frac{y_t - 1}{\sqrt{1 + 4y_t}}
\]

so that the equation for \(y_t \) becomes:

\[
\frac{3}{\sqrt{5}} \frac{y_t - 1}{\sqrt{1 + 4y_t}} = \frac{u_2}{c_0} \left\{ 1 - 3y_t^{1/5} \left(\frac{p_0}{p_3} \right)^{1/5} \right\}.
\]

(14)

It is possible to eliminate all variables referring to region 3 by means of (11) and (5) with the result:

\[
\frac{(y_t - 1)^2}{4y_t + 1} = \frac{20(M_*^2 + 3)}{9} \frac{y_o(y_o + 4)}{4y_o + 1} \frac{y_I(y_I + 4)}{4y_I + 1} \left\{ 1 - \frac{3}{4} \frac{2}{\sqrt{M_*^2 + 3}} \frac{y_t}{y_o y_I} \right\}^{1/5}.
\]

(15)

In this relation, one regards \(y_I \) as a known function of \(y_o \), on account, of having solved (10). Then the above is an equation for \(y_t \). The fluid
speed u_2 may then be obtained from the second formula (13) and also the two densities, namely the one between the transmitted shock and the interface

$$\frac{\rho_2}{\rho_0} = \frac{4y_t + 1}{y_t + 4}$$

and the density between the interface and the rarefaction:

$$\frac{\rho^*_2}{\rho_0} = \frac{4y_o + 1}{y_o + 4} \frac{4y_I + 1}{y_I + 4} \left(\frac{y_t}{y_o y_I}\right)^{3/5}$$

\hspace{1cm} (16')

-19-
FIG. 5
VI. NUMERICAL RESULTS FOR CHOKED FLOW AND
AREA RATIOS 2:1 AND 5:1

Tables 2 and 3 exhibit, for choked flow, the values of the hydro-
dynamic variables as functions of the incident shock strength \(y_o \).

Just as in Table 1, for the unchoked flow, a row of values, viz.,
for \(y_o = 10 \), was included in order to demonstrate a case where the
method in question no longer applies, so do Tables 2 and 3 begin for
\(y_o \) which are too low for choking. This can be seen in Table 2 for
\(y_o = 6 \), because \(p_3 \) is less than \(p_2 \), while for \(y_o = 7 \), the proper
pressure gradient is established, although the expansion fan is still
weak. Similarly for the area ratio 5:1, Table 3 shows that for \(y_o = 4 \)
the flow is as yet unchoked, but already for \(y_o = 6 \), \(p_3 > p_2 \) an up-
stream facing expansion fan arises. As the incident shock becomes
stronger, the two quantities of principal interest, namely \(y_I \) and \(y_t \),
behave in quite a different manner. It is seen that \(y_I \) increases but
slowly and approaches a finite value, while the transmitted shock
strength \(y_t \) continues to increase. The behavior of \(y_I \) is under-
standable when one remembers that the strength of a shock reflected from
a blank wall follows formula (2), according to which this quantity rises
only slowly with \(\theta \) as ultimate limit. As for pressures, the tables
show that the \(p_4 \) values, i.e., those in front of the model are
appreciable although naturally not as high as they would be for a blank
wall. Compared with \(p_4 \), the pressures \(p_3 \) and \(p_2 \) further down the
narrow channel are not especially remarkable until one comes to consider
<table>
<thead>
<tr>
<th>(y_0)</th>
<th>(y_1 = p_4 / p_1)</th>
<th>(y_0 y_1 = p_4 / p_0)</th>
<th>(\frac{u_2}{c_0} = \frac{c_3}{c_0})</th>
<th>(p_3 / p_0)</th>
<th>(\frac{f_3}{f_0})</th>
<th>(y_0 = p_2 / p_0)</th>
<th>(\frac{u_2}{c_0})</th>
<th>(\frac{p_2^*}{f_0})</th>
<th>(\frac{f_2}{f_0})</th>
<th>(\frac{p_2^*}{p_2})</th>
<th>(\frac{y_1 y_0}{p_2^*})</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2.34577</td>
<td>16.4204</td>
<td>1.71450</td>
<td>8.60894</td>
<td>2.92726</td>
<td>8.6089</td>
<td>1.81437</td>
<td>2.9273</td>
<td>2.8100</td>
<td>1.0417</td>
<td>3.9484</td>
</tr>
<tr>
<td>30</td>
<td>3.34077</td>
<td>100.223</td>
<td>3.33387</td>
<td>52.5209</td>
<td>4.72527</td>
<td>37.505</td>
<td>3.98540</td>
<td>3.8608</td>
<td>3.6386</td>
<td>1.0611</td>
<td>5.3977</td>
</tr>
<tr>
<td>40</td>
<td>3.44968</td>
<td>137.987</td>
<td>3.82877</td>
<td>72.3108</td>
<td>4.93257</td>
<td>50.096</td>
<td>4.61161</td>
<td>3.9576</td>
<td>3.7227</td>
<td>1.0631</td>
<td>5.5379</td>
</tr>
<tr>
<td>50</td>
<td>3.51808</td>
<td>175.904</td>
<td>4.26649</td>
<td>92.1807</td>
<td>5.06395</td>
<td>62.691</td>
<td>5.21627</td>
<td>4.0182</td>
<td>3.7751</td>
<td>1.0643</td>
<td>5.6251</td>
</tr>
</tbody>
</table>
TABLE 3
VARIABLES FOR CHOKED FLOW; AREA RATIO 5:1

<table>
<thead>
<tr>
<th>(y_o)</th>
<th>(y_o' = p_h' / p_o)</th>
<th>(y_o' = p_h' / p_o)</th>
<th>(\frac{u_3}{c_o} = \frac{c_3}{c_o})</th>
<th>(p_3' / p_o)</th>
<th>(f_3 / f_o)</th>
<th>(y_t' = p_2' / p_o)</th>
<th>(u_2' / c_o)</th>
<th>(f_2' / f_o)</th>
<th>(p_2' / p_2)</th>
<th>(y_t' = p_2' / p_2)</th>
<th>(y_t' = p_2' / p_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2.91796</td>
<td>17.508</td>
<td>1.69697</td>
<td>8.62047</td>
<td>2.99351</td>
<td>8.5410</td>
<td>1.70615</td>
<td>2.97693</td>
<td>2.80392</td>
<td>1.06170</td>
<td>4.0065</td>
</tr>
<tr>
<td>16</td>
<td>3.96905</td>
<td>63.505</td>
<td>2.63625</td>
<td>31.2685</td>
<td>4.49914</td>
<td>23.3403</td>
<td>3.08552</td>
<td>3.77509</td>
<td>3.45136</td>
<td>1.09380</td>
<td>5.0856</td>
</tr>
<tr>
<td>20</td>
<td>4.14471</td>
<td>82.894</td>
<td>2.92771</td>
<td>40.8154</td>
<td>4.76175</td>
<td>29.2900</td>
<td>3.49169</td>
<td>3.90216</td>
<td>3.54941</td>
<td>1.09938</td>
<td>5.2490</td>
</tr>
<tr>
<td>30</td>
<td>4.40298</td>
<td>132.09</td>
<td>3.55273</td>
<td>65.0382</td>
<td>5.15279</td>
<td>44.1850</td>
<td>4.34587</td>
<td>4.08606</td>
<td>3.68870</td>
<td>1.10772</td>
<td>5.4812</td>
</tr>
<tr>
<td>50</td>
<td>4.63261</td>
<td>231.63</td>
<td>4.55167</td>
<td>114.0502</td>
<td>5.50492</td>
<td>74.005</td>
<td>5.68323</td>
<td>4.24672</td>
<td>3.80770</td>
<td>1.11530</td>
<td>5.6795</td>
</tr>
</tbody>
</table>
p_2' the pressure behind the reflected interstitial shock. These values constitute a really significant increase. (Of course, for fairly large y_0's the pressures and temperatures attained are so high as to make the continued use of the ideal equation of state quite unjustifiable.) The interface region whose strength is given by the column labelled ρ_2^*/ρ_2 represents only an insignificant density change, varying between 4 and 12 percent; it will, therefore, be justified to neglect its influence upon the returning shock.

Of interest is the aforementioned fact that the transmitted shock is always stronger than the incident shock, and that the increase in strength becomes more significant as the constriction becomes more pronounced. That this would be so has often been conjectured by shock tube workers and it has been proposed as a means of overcoming the natural limitations of their instrument. However, the increase which an area reduction makes possible is by no means tremendous, being always less than 25 percent for the 2:1 and 50 percent for 5:1 case. About this more will be said in a later section.
VII. APPROXIMATE FORMULAE FOR INFINITE AREA CHANGE

The last mentioned result, namely the possibility of enhancing the shock strength by letting it travel into a constriction, the amount of the strengthening being 25 percent to 50 percent for area ratio 2 and 5, respectively, serves as an inducement to investigate the case when

$$\frac{A_4}{A_3} \gg 1,$$

that is to say when the ultimate channel is mere crack. Since now Eq. (9) gives

$$M* = 0 \quad (9')$$

Eq. (10) contains explicit solutions for the reflected shock

$$y_I = \frac{6y_o - 1}{y_o + 4} \quad (2')$$

which is the law for the reflection from a solid wall. Using this, \(y_I\) may be eliminated from the three formulae (11), to give:

$$\frac{u_3}{c_o} = \frac{c_3}{c_o} = \frac{1}{2} \left[\frac{3}{2} \right] \sqrt{\frac{(6y_o - 1)(2y_o + 3)}{4y_o + 1}}$$

$$p_3 = \left(\frac{\sqrt{3}}{2} \right)^5 \frac{6y_o - 1}{y_o + 4}; \quad \frac{\rho_3}{\rho_o} = \left(\frac{\sqrt{3}}{2} \right)^3 \frac{5y_o}{2y_o + 3} \frac{4y_o + 1}{y_o + 4}.$$

The equation, which determines \(y_t\), the strength of the transmitted shock, becomes:

$$\frac{(y_t - 1)^2}{4y_t + 1} = \frac{4}{3} \frac{(6y_o - 1)(2y_o + 3)}{4y_o + 1} \left\{ 1 - \frac{\sqrt{3}}{2} \left(\frac{y_o + 4}{y_o(6y_o - 1)} y_t \right) \right\}^{1/5} \left(\frac{y_o + 4}{y_o(6y_o - 1)} y_t \right)^{2/5} \quad (18)$$
After having obtained $y_t(y_0)$ the densities ρ_2 and ρ_2^* are calculated according to (16) and (16') with (2').

Table 4 contains the flow variables for this limiting case. In agreement with one's expectation the values of y_t run consistently higher than for $A_4/A_3 = 5$, but the increase is not very considerable.

Besides wishing to indicate the trend the flow variables show as A_4/A_5 is increased, the main reason for the inclusion of this case is the hope that it will ultimately account for a certain model which was studied in the University of Michigan report.¹ This model consisted of a stack of wedges possessing no straight sections at all, so that its cross section was of pure zigzag shape. ("V-Wedge Model," see page 10 of that report.)
<table>
<thead>
<tr>
<th>(y_0)</th>
<th>(y_1 = \frac{p_4}{p_1})</th>
<th>(y_0 y_1 = \frac{p_4}{p_0})</th>
<th>(\frac{u_3}{c_0} = \frac{c_3}{c_0})</th>
<th>(\frac{p_3}{p_0})</th>
<th>(\frac{p_3}{p_0})</th>
<th>(\frac{u_2}{c_0})</th>
<th>(\frac{p_2^*}{p_0})</th>
<th>(\frac{p_2^*}{p_0})</th>
<th>(\frac{y_4}{y_1} = \frac{p_1}{p_2})</th>
<th>(\frac{y_4}{y_1} = \frac{p_2}{p_0})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4.21489</td>
<td>42.143</td>
<td>2.28214</td>
<td>20.5295</td>
<td>4.13514</td>
<td>16.3400</td>
<td>2.5264</td>
<td>3.6059</td>
<td>3.2625</td>
<td>1.1053</td>
</tr>
<tr>
<td>16</td>
<td>4.75000</td>
<td>76.000</td>
<td>2.77033</td>
<td>37.0226</td>
<td>4.82500</td>
<td>26.5020</td>
<td>3.3075</td>
<td>3.9480</td>
<td>3.5282</td>
<td>1.1190</td>
</tr>
<tr>
<td>30</td>
<td>5.26471</td>
<td>157.94</td>
<td>3.73895</td>
<td>76.9394</td>
<td>5.50363</td>
<td>50.3175</td>
<td>4.6923</td>
<td>4.2657</td>
<td>3.7238</td>
<td>1.1455</td>
</tr>
<tr>
<td>50</td>
<td>5.53704</td>
<td>276.85</td>
<td>4.79404</td>
<td>134.865</td>
<td>5.86809</td>
<td>84.4023</td>
<td>6.0809</td>
<td>4.4295</td>
<td>3.8303</td>
<td>1.1564</td>
</tr>
</tbody>
</table>
VIII. THE CASE OF VERY STRONG INCIDENT SHOCKS AND
REMARKS ON THE PRODUCTION OF INTENSIFIED TRANSMITTED SHOCKS

In the limiting case of

\[y_0 \to \infty \]

Eq. (10) has the roots:

\[y_I = 3.8202 \quad \text{for} \quad A_4/A_3 = 2 \]
\[y_I = 5.0231 \quad \text{for} \quad A_4/A_3 = 5 \]
\[y_I = 6.0 \quad \text{for} \quad A_4/A_3 = \infty. \]

While \(u_3 \) and \(c_3 \) go to infinity as the square root of \(y_0 \),
\(\rho_3 \) approaches finite values which can immediately be calculated with
the above \(y_I \) values. The transmitted shock \(y_t \) will go to infinity
with \(y_0 \), the proportionality factor being of special interest. Putting

\[y_t = k y_0 + \ldots \tag{19} \]

where the dots indicate terms of lower order in \(y_0 \) than the first,
the following equation for \(k \) results:

\[k = \frac{20}{9} (M_*^2 + 3) \frac{y_I(y_I + 4)}{4y_I + 1} \left[1 + \frac{3}{2} \frac{4y_I + 1}{\sqrt{M_*^2 + 3}} \left(\frac{k}{y_I} \right)^{1/5} \right]^2. \tag{20} \]

Simultaneously with \(y_I \) the proper values of \(M_* \) as given by (9'),
(9'') and (9''') have to be used. The density \(\rho_2^* \) approaches the
finite value

\[\frac{\rho_2^*}{\rho_0} = 4 \frac{4y_I + 1}{y_I + 4} \left(\frac{k}{y_I} \right)^{3/5} \tag{21} \]

The numerical values are summarized in the following Table 5.
TABLE 5
ASYMPTOTIC VALUES OF FLOW VARIABLES FOR INFINITE INCIDENT SHOCK STRENGTHS AND VARIOUS AREA RATIOS

\[\frac{A_4}{A_3} \]

<table>
<thead>
<tr>
<th>(\frac{y_1}{y_0})</th>
<th>2</th>
<th>5</th>
<th>(\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{P_3}{P_0})</td>
<td>5.6512</td>
<td>6.1124</td>
<td>6.4953</td>
</tr>
<tr>
<td>(\frac{y_t}{y_o})</td>
<td>1.2602</td>
<td>1.4924</td>
<td>1.7061</td>
</tr>
<tr>
<td>(\frac{P_2^*}{P_0})</td>
<td>4.2808</td>
<td>4.5142</td>
<td>4.7023</td>
</tr>
<tr>
<td>(\frac{P_2}{P_0})</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>(\frac{P_2^*}{P_2})</td>
<td>1.0702</td>
<td>1.1285</td>
<td>1.1756</td>
</tr>
</tbody>
</table>

It can be seen from this table that the strengthening of a shock by a converging channel can never exceed about 70 percent. It appears at first quite disappointing until one remembers that what is calculated here is not the focusing effect of a wedge shaped region on a cylindrical shock but the value of the ultimate plane shock emerging from the vertex of the wedge shaped region. To obtain stronger enhancements one needs only to employ two or more constrictions in series, separated to be sure, by a suitable length of straight channel. For instance, in a shock tube of 50 cm height the use of two reductions to one fifth of the previous area would result in an amplification factor of 2.22 at a channel height of 2 cm or the use of four 2:1 reductions in a factor of 2.52 at channel height of 3.1 cm. By reducing the width of the tube as well, this result can even be bettered.
XI. CONCLUDING REMARKS

The tables of the previous sections take us, with the calculations of p_2', just past the moment when the transmitted shock is reflected from the end of the channel. No further calculations are presented at this time, although it would offer no great difficulty to carry them out, to obtain the strength y_{II} after emergence. It was thought to be of lesser interest here.

The amalgamation of y_I and y_{II} is being studied by the University of Michigan shock tube group9 and has been found to be in agreement with the theory which goes back to von Neumann.

Interferometric measurements of densities inside the narrowed channel have been carried out also. They have up to now not been too successful since the space limitations of the complicated wedge stack model have made fringe observations difficult. These measurements are currently being repeated with a larger model. For schlieren pictures of the flow reference is made to the University of Michigan report.
