CIC-14 REPORT COLLECTION
REPRODUCTION COPY

LAMS = 355

March 8, 1946
This document contains 65 pages

RADIOCHEMISTRY OF THE FISSION PRODUCTS

Compiled by
Lo. Winsberg

PUBLICLY RELEASABLE
Per Dr. Ruggs PSS-16 Date: 2-7-46
By Melvin Ballay CIC-14 Date: 2-20-46

Classification changed to UNCLASSIFIED
by authority of the U. S. Atomic Energy Commission
Per W. E. Cassell

By REPORT LIBRARY
10-10-57

UNCLASSIFIED

APPROVED FOR PUBLIC RELEASE
As is true in nearly all sections of the project we in the fission products groups at Chicago, Clinton, and Los Alamos have found the volume of reports so large that it is often very difficult to refer back to previous work. The purpose of this index is to provide ready access to any item in the large number of reports on the fission products.

This report is a continuation of the indexes published by C. D. Coryell in January, 1943, as CC-477 and by L. Winsberg in February, 1944, as CN-1505 and all the references therefrom are included here. The reports available in the document room at Los Alamos through the month of November, 1945, have been included in this index. We plan to bring this index completely up to date within the next several months.

A few things need to be mentioned:

1) For most of the reports issued before March, 1943, a letter follows the report number, e.g., CC-465-B. This letter refers to the section of the report which contains our work.

2) There are two parts to the report index. The first part is a listing of reports by the fission products groups and the second, entitled Other Reports, by groups not specifically assigned to a study of the fission products but which have on occasions done work of interest to fission product radiochemistry. All of these reports are included in the Subject Index.

3) The half-life, element, and mass assignments indicated for an activity are the latest values known and all work done on the activity is included under those values.

Criticiisms, suggestions, and corrections will be appreciated.

I wish to acknowledge with gratitude the cheerful assistance of Miss Anna Marie Horan and Miss Mary Wirz.

L. Winsberg
Chemistry of the Fission Products

A. Report Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Location</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-III, C-IV</td>
<td>Chicago</td>
<td>C. D. Coryell, N. Sugarman, D. Subinon</td>
</tr>
<tr>
<td>September 1943</td>
<td>May 1942- September 1943</td>
<td></td>
</tr>
<tr>
<td>C-V, C-VI</td>
<td>Clinton</td>
<td>C. D. Coryell, N. Elliott</td>
</tr>
<tr>
<td>January 1945- January 1946</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-4, Los Alamos</td>
<td>N. Sugarman</td>
<td></td>
</tr>
<tr>
<td>April 1945- February 1946</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Main Topics and Authors

<table>
<thead>
<tr>
<th>Report</th>
<th>Date</th>
<th>Main Topics and Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC-144</td>
<td>June</td>
<td>Possibility of preparing U(CO)₆ (N. Sugarman, N. Elliott, C. D. Coryell)</td>
</tr>
<tr>
<td>CC-175-D</td>
<td>July 3</td>
<td>Preliminary (C. D. Coryell, Section Chief)</td>
</tr>
<tr>
<td>CC-188-E</td>
<td>July 11</td>
<td>La fraction; 2 Ce isotopes; SbBr₃ loss (C. D. Coryell, Section Chief)</td>
</tr>
<tr>
<td>CC-196-E</td>
<td>July 18</td>
<td>Br, Sb, Te, I, Ce, La, Y</td>
</tr>
<tr>
<td>CC-200</td>
<td>July 15</td>
<td>I Fission chains and energies II Energy-range data for electrons III Energy-absorption data for quanta (C. D. Coryell)</td>
</tr>
<tr>
<td>CC-200-E</td>
<td>July 25</td>
<td>Absence of hard γ with Ba¹⁴⁰ Hard γ of La¹⁴⁰ decay (C. D. Coryell, Section Chief)</td>
</tr>
<tr>
<td>CC-219-E</td>
<td>Aug. 1</td>
<td>Fission Product sources (C. D. Coryell, Section Chief)</td>
</tr>
<tr>
<td>CC-227-E</td>
<td>Aug. 7</td>
<td>Direct separation of BaCl₂ Separations of Ba from La and Ce (C. D. Coryell, Section Chief)</td>
</tr>
<tr>
<td>CC-238-D</td>
<td>Aug. 15</td>
<td>Hard γ from 44h La¹⁴⁰ General chem. methods; Sr, Ba, La, etc (C. D. Coryell, Section Chief)</td>
</tr>
<tr>
<td>Report</td>
<td>Date</td>
<td>Main Topics and Authors</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>CC-258-D</td>
<td>Sept. 15</td>
<td>Fission yields Ba, Br Chem separations Ce, Y, La, Ar, Cs Apparatus for study recoils in He, prelim (C. D. Coryell, Section chief)</td>
</tr>
<tr>
<td>CA-287</td>
<td>Oct. 3</td>
<td>First trial, accumulation of radioactivity in cooling gases (C. D. Coryell, Section chief)</td>
</tr>
<tr>
<td>CC-298-D</td>
<td>Oct. 15</td>
<td>12d Ba; 44h La; 27y Cs; La; Y; Ce (C. D. Coryell, Section Chief)</td>
</tr>
<tr>
<td>CC-342-F</td>
<td>Nov 15</td>
<td>Elementary distribution Fission Activity (C. D. Coryell, et al) 5.3d Xe133; (N. Elliott) Gases from Graphite (W. Rubinson, E. L. Brady)</td>
</tr>
<tr>
<td>CC-389-B</td>
<td>Dec. 15</td>
<td>Tabulation chains; Elementary distribution fission activity; Identification of Pr; (N. R. Ballou) Radiations from Xe127; (N. Elliott) Quantitative study radioactivity from recoil in gases; (N. Sugarman)</td>
</tr>
<tr>
<td>CT-393-D</td>
<td>Dec 15</td>
<td>Gases from Graphite (W. Rubinson, E. L. Brady)</td>
</tr>
<tr>
<td>CC-418-B</td>
<td>Jan. 15</td>
<td>Accumulation of Radioactivity by Recoil (N. Sugarman) Application to the pile (N. Sugarman) Radiations from Zr and Cb (E. L. Brady, D. W. Engelman) Absence of Activity in In. (L. E. Glendenin)</td>
</tr>
<tr>
<td>CC-477</td>
<td>Jan. 31</td>
<td>Index of reports, Chemistry of the Fission Products (C. D. Coryell)</td>
</tr>
</tbody>
</table>
Composition of gases evolved from graphite on heating to 5000°C in the absence and presence of metal
(W. Rubinson, C. L. Coryell)

UX₁ and UX₂ absorption curves and the possibilities of their use for the determination of coating thicknesses
(C. D. Coryell, H. Gest, D. V. Engelkemeir)

1. The experimental ratio of capture to fission for the cyclotron together with preliminary measurements for the pile
 (D. V. Engelkemeir, E. L. Brady, H. Burgus)
2. The coprecipitation of Ba in the wet fluoride process as a function of Ba hold-back carrier concentration
 (N. E. Ballou, C. L. Coryell, H. Gest)
3. The radioactivity of certain pile products as a function of time (C. D. Coryell)

1. Decay of gross fission product β activity and energy after short bombardments
 (N. Elliott, N. Sugarman)
2. An attempt to establish yield of 27 in pile materials
 (W. Rubinson, C. D. Coryell)
3. Some considerations on counting arrangements for precision work
 (D. V. Engelkemeir, J. B. Dyal, C. L. Coryell)
4. Revised relative fission yield data
 (E. L. Brady, L. Creutz)
5. Contributions to the radiochemistry of the fission products
 (L. E. Glendenin, N. E. Ballou, E. L. Brady
 G. W. Campbell, T. B. Novey, W. H. Sullivan
 A. S. Neutron, N. R. Sleight, O. Johnson
 W. H. Burgus, C. D. Coryell)

1. Elementary breakdown of fission activity in the pile operation up to 170 days
 (C. D. Coryell, et al)
2. Heat generation of individual β and γ activities (L. Winsberg, F. Rubinson)
3. New fission product activities and explanation of old data
 (L. E. Glendenin, F. P. Steinberg,
 A. E. Ballo)
4. Theoretical Study of β-Absorption Curves and Determination of Energy Determination (T. B. Novey et al)
Reports and Main Topics and Authors

<table>
<thead>
<tr>
<th>Reports</th>
<th>Date</th>
<th>Main Topics and Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC-643</td>
<td>May 19</td>
<td>Time variation of percent distribution of fission activity in bombarded uranyl nitrate (E. L. Brady, C. D. Coryell)</td>
</tr>
<tr>
<td>CC-680</td>
<td>May 20</td>
<td>1. Experimental study of induced and fission recoil activity in air and the X-pile (N. Sugarman, J. D. Knight)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. New fission product activities and reevaluation of old data (L. E. Glendenin, B. P. Steinberg, N. E. Bellou, T. B. Novey, W. H. Burgus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. C14 Activity in cyclotron bombarded nitrate (V. Rubinson, A. Turkovich)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Co-separation of Ba in LaF$_3$ Precipitations (H. Gest, E. Abraham, N. E. Bellou, C. D. Coryell)</td>
</tr>
<tr>
<td>CN-692</td>
<td>May 29</td>
<td>Separation Processes Section</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I. E. Specific Decontamination in BiPO$_4$ Process (W. Rubinson, Supervisor)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elementary activities present at different stages in the wet fluorides process (F. Rubinson, Supervisor)</td>
</tr>
<tr>
<td>CN-722</td>
<td>June 21</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. 7.0d Uranium (E. L. Brady, W. Rubinson)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Energy of 9.3h Te (G. W. Campbell)</td>
</tr>
<tr>
<td>CC-724</td>
<td>June 21</td>
<td>The beta and gamma radiations from the chain 77h Te -> 2.4h I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T. B. Novey, W. H. Sullivan, C. D. Coryell, A. S. Newton, N. R. Sleight, O. Johnson)</td>
</tr>
<tr>
<td>CC-763</td>
<td>May 15</td>
<td>Capture and fission in metal, nitrate, and oxide; Monitoring of columns and masses at the St. Louis cyclotron to provide for higher product yield</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Most effective moderation of very fast neutrons by uranium metal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Fast-neutron multiplication in uranium metal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Competition by other fast neutron processes when nitrate is close to the target</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Competition of slow neutron reactions</td>
</tr>
</tbody>
</table>

APPROVED FOR PUBLIC RELEASE
<table>
<thead>
<tr>
<th>Reports</th>
<th>Date</th>
<th>Main Topics and Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH-774</td>
<td>July 15</td>
<td>Concentration of by-products in cooling water and river water from V. pile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(G. L. Coryell, J. Howe, E. O. Wollen)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Tolerance concentration of radioactive products in water</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Pile constsants assumed for operation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Radioactivity induced in water by neutrons including recoil from the Al piles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Radiactive contamination of the water from fission recoil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Radiactive contamination of water resulting from metal dissolved at points of coating failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Corrosion products</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. Summary of activity after 8 hour holdup</td>
</tr>
<tr>
<td>CC-793</td>
<td>July 19</td>
<td>Determination of absolute fission yields</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(E. V. Engelkemier, T. B. Novey, D. Schover)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Thorium fission - Study of chemical procedures in quantitative isolation of fission activities for Th</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(N. Sugarman, M. F. Ravely, L. E. Gleenin, H. Finklestein)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Improved method for determination of UX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(L. Winsberg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. The electrostatic β-ray spectrograph</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(H. Abraham)</td>
</tr>
<tr>
<td>CC-829</td>
<td>July 29</td>
<td>Activity and β and γ energy dissipation of the long-lived fission products</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(J. A. Lutts, E. L. Brady)</td>
</tr>
<tr>
<td>GN-850</td>
<td>Aug. 12</td>
<td>Decontamination of specific elements in the BiF₅₀ process</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(H. E. Evans, G. R. Leader, J. P. Tordella, D. N. Hume)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. The oxidation of ferrous ion by nitric acid at 75°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(E. H. Burgus, G. R. Leader)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Decontamination of BiF₅₀ process mother liquor with varying amounts of BaSO₄ and ZrO(H₂PO₄)₂ (J. F. Tordella)</td>
</tr>
<tr>
<td>CC-851</td>
<td>Aug. 7</td>
<td>Elementary breakdown of the fission activity in irradiated nitrate up to 250 days cooling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(C. D. Coryell, et al)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. An investigation of the methods used to determine β counting geometry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(D. V. Engelkemier, W. Rubinson, N. Elliott)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. The thorium isotope method for analysis for U-238 detailed procedure (L. Winsberg)</td>
</tr>
</tbody>
</table>

APPROVED FOR PUBLIC RELEASE
<table>
<thead>
<tr>
<th>Reports</th>
<th>Date</th>
<th>Main Topics and Authors</th>
</tr>
</thead>
</table>
| CC-851 (cont'd) | 1943 | 4. Studies on the oxidation of Ce for separation from other rare earths by iodate precipitation (N. E. Ballou)
5. Zr iodate isolation of Ce activity without carrier (N. E. Ballou)
6. Tests on separating La and Y by ammonium formate (N. E. Ballou) |
| MUC-CDC #76 | Sept 7 | Estimated gamma curies in a 30 day X slug (C. D. Coryell) |
| CC-920 | Sept. 15| 1. Determination of pile fission yields (T. B. Novey, D. V. Engelkemeir, L. E. Brady)
2. Decay of gross fission product γ activity and energy after short cyclotron bombardments (N. Elliott, S. Katoff, J. D. Knight, N. Sugarman)
3. Thorium fission work (N. E. Ballou, T. H. Burgus, J. B. Dial, L. E. Glendenin, A. Finklestein, M. Ravelly, B. Schloss, N. Sugarman)
4. Rare earth chemistry and separation procedures (N. E. Ballou)
5. New fission activities and re-evaluation of old data (L. E. Glendenin, L. E. Brady)
6. Yield of $7.0d U^{237}$ from cyclotron neutron bombardment (T. L. Brady)
7. Preliminary search for positron emitters among fission products (D. V. Engelkemeir, L. E. Glendenin, N. Sugarman) |
| CN-933 | Sept. 11| 1. Specific decontamination factors (T. H. Davies, et al)
2. Scavenger studies on γ decontamination (T. H. Davies, et al)
3. Ru co-separation (T. H. Davies, et al)
4. Zr and Cs hold-back in the presence of HF (T. H. Davies, et al)
5. The solubility of bismuth phosphate (C. R. Dillard, H. B. Evans, G. R. Leader, L. Safranski, D. Revinson, R. Bane)
6. Volatilization of Ru, I, and Te accompanying metal dissolving (C. R. Dillard, D. N. Hame, G. R. Leader)
7. Oxidation of $\theta_4 M Fe^{2+}$ solution by HNO$_3$ (D. E. Burgus, G. R. Leader)
8. Attched electrophoresis studies on γFe$_2$O$_3$ suspensions (R. Gist, B. Schloss) |
<table>
<thead>
<tr>
<th>Reports</th>
<th>Date</th>
<th>Main Topics and Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT-959</td>
<td>Sept. 27</td>
<td>Report on Columbia Sealing Circuit (R. Schloss, S. Robinson)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I. Sealing circuit troubles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>II. The circuit action</td>
</tr>
<tr>
<td></td>
<td></td>
<td>III. Experimental</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IV. Discussion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V. Circuit modifications</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VI. Summary</td>
</tr>
<tr>
<td>Addendum I to CT-959</td>
<td>Nov. 16</td>
<td>(R. Schloss, S. Robinson)</td>
</tr>
<tr>
<td>CC-971</td>
<td>Sept. 15</td>
<td>Procedures for the determination of the fission elements in UNM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Editors: C. R. Coryell, W. Robinson, D. M. Huns, T. H. Davies)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cesium, barium, berilium and strontium, cerium, lanthanum, yttrium and praseodymium, zirconium and columbium, molybdenum, ruthenium and 43, silver, tellurium, iodine, bromine, uranium x (L. E. Glendenin, W. H. Burgus, D. W. Engelkemeir, N. E. Ballou, E. L. Brady, J. B. Dyal, T. E. Novey, G. W. Campbell, L. Winsberg)</td>
</tr>
<tr>
<td>Addendum I to CC-971</td>
<td>Oct 20</td>
<td>Procedure for analysis of Zr and Cb in UNM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(E. P. Steinberg)</td>
</tr>
<tr>
<td>MUC-CDC #80</td>
<td>Sept. 20</td>
<td>Information on slow neutron fission products</td>
</tr>
<tr>
<td>CC-998</td>
<td>Oct. 11</td>
<td>1. Fast method for rough analysis of BiPO process solutions - preliminary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R. Robinson, L. Winsberg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. New method for the separation of zirconium and columbium from bombarded uranyl nitrate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(E. P. Steinberg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. P-9 studies - distribution of products in an oxide-water system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(C. R. Diller, H. Finkelstein, A. Turkevich)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Decay of gross fission product activity and energy after short cyclotron bombardment (cont'd) progress report</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(S. Katcoff, R. Finkle, N. Sugarman)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Radioactivity in graphite at Argonne</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(B. Abrahim, A. Turkevich, W. Robinson, L. Winsberg, E. P. Steinberg)</td>
</tr>
<tr>
<td>Reports</td>
<td>Date</td>
<td>Main Topics and Authors</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>--</td>
</tr>
</tbody>
</table>
| CC-1049 | Oct. 11 | 1. Capture to fission ratio for oil material
 (D. S. Engelkemeir, T. M. Kovev,
 D. Schover)
 II. Bismuth phosphate process studies
 (G. R. Leader, J. T. Lassiter, E. Mann,
 J. Tordella, C. Stanley, H. B. Evans) |
| CC-1042 | Nov. 11 | Rates of energy generation and curies activity of long-lived radioclements
 from a 1000 V. pile as a function of
 days of pile operations and days
 cooling
 (E. L. Brady, L. Winsberg, L. Creutz,
 V. Rubinson) |
| CC-1043 | Nov. 10 | Fast methods for analysis of rare earths
 and UX
 (L. Winsberg, E. P. Steinberg,
 J. A. Seiler, V. Rubinson)
 1. Isolation of Ge
 2. Le-Y and UX |
| CN-1044 | Nov. 10 | I. Weights of fission products in pile material
 (T. P. Kohman, A. Turkevich)
 II. Bismuth phosphate method for extraction
 and decontamination of Pu
 (G. R. Leader, E. Mann, R. R. Evans,
 C. Stanley, V. Rubinson) |
| CC-1050 | Nov. 9 | 1. Tracer studies and the preparation of carrier-free tracers
 (T. H. Davies, D. N. Hume, L. E.
 Glendenin)
 2. New information of fission products
 (L. E. Glendenin)
 3. An investigation of the UX29 radiation
 emitted by uranium foils
 (N. Elliott) |
| CC-1051 | Nov. 8 | 4. Determination of fission elements in process solutions
 (D. N. Hume, N. E. Pullou)
 5. Scavenging experiments and process
 decontamination
 (T. H. Davies, W. H. Burgus, H. Geist) |
<table>
<thead>
<tr>
<th>Reports</th>
<th>Date</th>
<th>Main Topics and Authors</th>
</tr>
</thead>
</table>
| CN-1055 | Nov. 8 | 1. The effects of pile radiation upon various substances
 (G. Jenks, R. A. Day)
 2. By-product concentration studies
 (G. Jenks, R. A. Day, J. W. Boyle)
 3. The effect of ° activities on the separation Processes
 (L. T. McClinton) |
| CC-1109 | Dec 11 | 1. Effects of radiation on glass and masonite
 (R. A. Day, G. Jenks)
 2. Status of water tube experiments
 (G. Jenks, J. W. Boyle)
 3. Concentration of by-products
 (R. A. Day, L. T. McClinton) |
| CC-1112 | Dec 11 | 1. Growth, decay and energetics of the long-lived Zr-CF chains
 (L. S. Goldring, C. D. Coryell)
 2. Tracer chemistry and the preparation of carrier-free tracers
 (L. E. Glendenin, H. Gest, D. N. Hume, N. E. Bellou)
 3. New data on the fission products
 (L. E. Glendenin, C. D. Coryell)
 4. Pile and physical studies group; progress report
 (N. Elliott, J. D. Knight, T. B. Novey, D. Schover)
 5. Hot laboratory operations
 (H. A. Levy, L. G. Steng, E. L. Brady, W. D. Webb, C. D. Coryell) |
| CN-1113 | Dec. 11 | 6. Fission product analyses in process solutions
 (J. H. Burgus, T. H. Davies)
 7. Scavenging experiment and process decontamination
 (J. H. Burgus, H. Gest, R. H. Edwards)
 8. Literature references (C. D. Coryell) |
| CC-1128 | Dec. 11 | Decay of gross fission product °-activity and energy after short bombardments
 (S. Katcoff, B. Finkle, N. Elliott, J. D. Knight, N. Sugarman) |
| CN-1141 | Dec. 18 | 1. Capture to fission ratio for Argonne metal
 (C. W. Engalke, M. Friedman)
 2. Plutonium process studies
 (G. J. Lebey, H. B. Evans, E. Mapi, C. Stanley) |
<table>
<thead>
<tr>
<th>Reports and Date</th>
<th>Main Topics and Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC-1142 (A-1624)</td>
<td>Dec. 13</td>
</tr>
<tr>
<td></td>
<td>1. Revised fission yield of 65d Zr (E. P. Steinberg)</td>
</tr>
<tr>
<td></td>
<td>2. New methods of analysis -UX, La-Y, and Zr and Cb (J. Winsberg, J. A. Seiler, E. P. Steinberg)</td>
</tr>
<tr>
<td></td>
<td>3. Fast, rough analysis of UHH solutions (L. Winsberg, J. A. Seiler, E. P. Steinberg, W. Rubinson)</td>
</tr>
<tr>
<td></td>
<td>5. Sweeping out fission product from a homogeneous system (C. R. Dillard, A. Turkevich, H. Finkelstein, R. M. Adams)</td>
</tr>
<tr>
<td></td>
<td>6. Search for radioactivity in Ce140 arising from La140 in fission (N. Sugarman)</td>
</tr>
<tr>
<td>CC-1204 (A-1684)</td>
<td>Jan. 11</td>
</tr>
<tr>
<td></td>
<td>1. General radiochemistry; the system 12.5d Ba140 - 40h La140 (H. A. Levy, L. G. Stang)</td>
</tr>
<tr>
<td></td>
<td>2. Discussion of fission yield irregularities; the four ghost isotopes (C. D. Coryell)</td>
</tr>
<tr>
<td></td>
<td>3. The isotope U236 (C. D. Coryell)</td>
</tr>
<tr>
<td></td>
<td>4. Tracer preparation chemistry (N. E. Ballou, D. N. Hume)</td>
</tr>
<tr>
<td></td>
<td>5. Fission product analysis (N. E. Ballou)</td>
</tr>
<tr>
<td></td>
<td>6. New data on the fission products (C. D. Coryell, L. E. Glendenin)</td>
</tr>
<tr>
<td></td>
<td>77. Pile studies (J. D. Knight)</td>
</tr>
<tr>
<td></td>
<td>8. Physical studies and counting standardization (N. E. Elliott, E. Shapero, T. B. Novay)</td>
</tr>
<tr>
<td>CM-1205 (A-1695)</td>
<td>Jan 11</td>
</tr>
<tr>
<td></td>
<td>11. Fission product analysis in process solutions</td>
</tr>
<tr>
<td></td>
<td>13. Process decontamination (H. Gest, W. A. Burgess)</td>
</tr>
<tr>
<td></td>
<td>14. Reference list and author index (C. D. Coryell)</td>
</tr>
<tr>
<td>Reports</td>
<td>Date</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>CN-1214</td>
<td>Jan 8</td>
</tr>
<tr>
<td>(A-1696)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>CC-1215</td>
<td>Jan 8</td>
</tr>
<tr>
<td>(A-1805)</td>
<td></td>
</tr>
<tr>
<td>CC-1302</td>
<td>Feb 15</td>
</tr>
<tr>
<td>(A-2040)</td>
<td></td>
</tr>
<tr>
<td>CC-1304</td>
<td></td>
</tr>
<tr>
<td>M-CC-1306</td>
<td>Feb 24</td>
</tr>
<tr>
<td>(A-2296)</td>
<td></td>
</tr>
<tr>
<td>CC-1308</td>
<td>April 12</td>
</tr>
<tr>
<td>(A-2296)</td>
<td></td>
</tr>
<tr>
<td>CN-1309</td>
<td>April 17</td>
</tr>
<tr>
<td>(A-2281)</td>
<td></td>
</tr>
<tr>
<td>CC-1310</td>
<td>May 3</td>
</tr>
<tr>
<td>(A-2285)</td>
<td></td>
</tr>
<tr>
<td>CN-1311</td>
<td>June 6</td>
</tr>
<tr>
<td>(A-2478)</td>
<td></td>
</tr>
<tr>
<td>Reports</td>
<td>Date</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>CC-1331</td>
<td>1944</td>
</tr>
<tr>
<td></td>
<td>Feb. 7</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>CN-1332</td>
<td>Feb. 7</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>CN-1394</td>
<td>March 18</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-1395</td>
<td>Feb 15</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APPROVED FOR PUBLIC RELEASE
I. Poor plateaus with thin window GM tubes
II. Positive-suppressor grid voltages, in a scaling circuit
III. Effect of tube mismatch in scaling circuits
IV. A rapid method for checking the accuracy of a scaling circuit
V. Adaptation of Chicago scaler for fission counting
VI. Adaptation of Chicago scaler for Neher-Harper quenching circuit

Report for month ending April 3, 1944
(N. Sugarman, Section Chief)

Variation in ranges of fission recoil fragments of known mass numbers
(M. S. Freedman, R. P. Metcalf, N. Sugarman)

Cesium Procedure (R. P. Metcalf)

Silver Procedure (E. P. Steinberg)

Contributions to water problem
(T. E. Novey, J. D. Knight, D. S. Schover, N. Elliott)

1. Chemical identification of the 8 second activity found in vial irradiated oxygen compounds
2. Preliminary study of the aluminum n,\gamma recoil range determination by collection in cellophane and benzene

Factors effecting counting of gamma rays (R. P. Metcalf)

Addendum to CL-CDC #4 (N. Sugarman, Section Chief)

Plotting absorption curves-counting procedure, plotting the data (N. Sugarman, Section Chief)
<table>
<thead>
<tr>
<th>Reports</th>
<th>Date</th>
<th>Main Topic and Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUC-NS #200</td>
<td>July</td>
<td>Procedures for short-lived and low fission yield isotopes (Ge, As, Se, Rh, Pd, Sn, Sb, and Eu)</td>
</tr>
<tr>
<td>CN-1394</td>
<td>July</td>
<td>(L. Winsberg, J. A. Seiler)</td>
</tr>
<tr>
<td>MUC-NS #203</td>
<td>July 3</td>
<td>Cadmium procedure (R. P. Metcalf)</td>
</tr>
<tr>
<td>CN-1641 (A-2498)</td>
<td>July 7</td>
<td>Surface reactions of zirconium, barium and tellurium ions with lanthanum fluoride and manganese dioxide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(H. Gest, J. H. Burgus)</td>
</tr>
<tr>
<td>CC-1623 (A-2498)</td>
<td>May 10</td>
<td>Report for month ending June 10, 1944</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(N. Sugarman, Section Chief)</td>
</tr>
<tr>
<td>CC-1767 (A-2472)</td>
<td>June 12</td>
<td>Report for month ending June 10, 1944</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(N. Sugarman, Section Chief)</td>
</tr>
<tr>
<td>CC-1805 (A-2633)</td>
<td>July 14</td>
<td>Investigation of chains with gaseous members</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(C. R. Dillard, R. M. Adams, H. Finklestein, A. Turkevich)</td>
</tr>
<tr>
<td>CK-1806 (A-2634)</td>
<td>June 30</td>
<td>Ranges of U and Pu fission recoil fragments of known mass numbers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R. Finkle, E. Hoagland, S. Katcoff, N. Sugarman)</td>
</tr>
<tr>
<td>CN-1839 (A-2496)</td>
<td>July 10</td>
<td>Fission product distribution in an adsorption extraction decontamination cycle with an ion exchanger</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(J. A. Swarthout, D. N. Hume, et al)</td>
</tr>
<tr>
<td>CN-S-1843 X (A-2688)</td>
<td>August 6</td>
<td>Scavenger studies with particular reference to by-product precipitates for the removal of rare earth activities</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T. H. Davies, J. A. Swarthout, et al)</td>
</tr>
<tr>
<td>CN-1850 X-G (A-2690)</td>
<td>July 30</td>
<td>The solubility of BiPO₄ in HNO₃</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(G. R. Leader, Neville, E. Fapp, H. B. Evans)</td>
</tr>
<tr>
<td>CN-1873 3-X</td>
<td>1945</td>
<td>Studies in ion exchange adsorption: equilibria with Pu (IV), fission, and other cations</td>
</tr>
<tr>
<td>CN-2-1878 X (A-2691)</td>
<td>August 1</td>
<td>Basic fission product solution chemistry: hydrolysis and complex ion formation in solutions of zirconium, columbium, and uranium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Ketelle, G. E. Boyce, T. H. Davies)</td>
</tr>
<tr>
<td>Reports</td>
<td>Date</td>
<td>Main Topics and Authors</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>CN-1911 (A-2899)</td>
<td>July 12</td>
<td>Report for month ending July 8, 1944 (N. Sugarman, Section Chief)</td>
</tr>
<tr>
<td>CN-1917 (A-2805)</td>
<td>July 12</td>
<td>The ratio of capture to fission in "X" metal (D. W. Engelkemeir, M. Freedman)</td>
</tr>
<tr>
<td>CCN-1919 (NUC-NS/312)</td>
<td>March 8</td>
<td>Variation of the amount of backscattering as a function of thickness of backscatterer for (\rho ') 's of several different maximum energies Also variation of saturation amount of backscattering with the atomic number of the backscatterer (D. W. Engelkemeir)</td>
</tr>
<tr>
<td>CN-1959 (A-2836)</td>
<td>August 1</td>
<td>Determination of yields of 49 fission products (B. Finkle, E. Hoagland, S. Katcoff, N. Sugarman)</td>
</tr>
<tr>
<td>CC-1959 (A-2837)</td>
<td>August 1</td>
<td>Presence of a (\gamma) in the 12.5d Ba140 (D. W. Engelkemeir)</td>
</tr>
<tr>
<td>CC-1993 R-C</td>
<td>Jan. 20</td>
<td>Radiochemistry of the fission products, progress report (N. Sugarman, Section Chief)</td>
</tr>
<tr>
<td>CN-1998 CC-R (A-2858)</td>
<td>August 12</td>
<td>Report for month ending August 12, 1944 (N. Sugarman, Section Chief)</td>
</tr>
<tr>
<td>CC-2000 R (A-2859)</td>
<td>August 12</td>
<td>Long-lived europium fission isotopes (E. Winsberg)</td>
</tr>
<tr>
<td>CC-2009 G-X (A-2870)</td>
<td>August 29</td>
<td>Preparation of carrier free Zr-Gb tracer (J. A. Marinsky, N. Ballou)</td>
</tr>
<tr>
<td>CC-2014 R-X</td>
<td>Sept. 4</td>
<td>An improved preparation of carrier-free columbium tracer with manganese dioxide for remote control operations (J. M. Siegel, W. P. Bigler, D. F. Fume)</td>
</tr>
<tr>
<td>NUC-NS #230</td>
<td>Sept 12</td>
<td>Standard (\rho) and (\gamma) absorption curves of the longer lived isotopes (R. P. Kastl, W. Robinson, J. Seiler, E. P. Steinberg, L. Winsberg)</td>
</tr>
<tr>
<td>CN-2027 SX (A-2878)</td>
<td>Sept 14</td>
<td>Nernstographs for the solubility of BiPO\textsubscript{4} in HNO\textsubscript{3}, HNO\textsubscript{3}-H\textsubscript{3}PO\textsubscript{4} and HNO\textsubscript{3}-BiI\textsubscript{4} sol\textsubscript{ns} (C. R. Leader, J. A. Swartout)</td>
</tr>
<tr>
<td>CC-2076 R</td>
<td>Aug 25</td>
<td>Range of (\beta) fission recoils as a function of mass number (B. Finkle, E. Hoagland, S. Katcoff, N. Sugarman)</td>
</tr>
<tr>
<td>Date</td>
<td>Document Code</td>
<td>Title</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>1944</td>
<td>CC-2126 CC-R</td>
<td>Report for week ending September 9, 1944</td>
</tr>
<tr>
<td>1944</td>
<td>CC-2176 R</td>
<td>Direct calorimetric study of fission product decay in active slugs</td>
</tr>
<tr>
<td>1944</td>
<td>CC-2187 XR</td>
<td>An investigation of the absorption cross section of Xe135 for pile neutrons</td>
</tr>
<tr>
<td>1945</td>
<td>CC-2195 S-X</td>
<td>Solubility of Pf\textsubscript{6} and uranyl phosphate in UNH solutions</td>
</tr>
<tr>
<td>1945</td>
<td>CC-2196 X</td>
<td>Preparation of radioactive barium-lanthanum</td>
</tr>
<tr>
<td>1945</td>
<td>CL-CDC No 5</td>
<td>Standard procedures for the radiochemical assay of barium in the 706-C process</td>
</tr>
<tr>
<td>1945</td>
<td>CC-2218 X</td>
<td>The interchange of radioactive iodine with carrier; a procedure for the quantitative separation of radioactive iodine from fission material</td>
</tr>
<tr>
<td>1944</td>
<td>CC-2219 R-X</td>
<td>Fission yield and decay characteristics of the chain 6.7h I\textsubscript{135} 9.2h Xe135</td>
</tr>
<tr>
<td>1945</td>
<td>CC-2220 G-X</td>
<td>The reaction of lead and barium sulfates with carbon tetrachloride</td>
</tr>
<tr>
<td>1945</td>
<td>CC-2310 R-C</td>
<td>Radiochemistry of the fission products</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. Search for long-lived triple fission products</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Sulfur (R. P. Metcalf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Chlorine (J. A. Seiler)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Calcium (E. P. Steinberg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Scandium (L. Winsberg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Iron (R. P. Metcalf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B. Radiochemistry of the fission products</td>
</tr>
</tbody>
</table>
REPORTS

Main Topics and Authors

1. Germanium and Arsenic
 a. Short-lived Ge and As Fission activities
 (E. P. Steinberg, D. W. Engelkemeir)
 b. Absence of long-lived Ge in fission
 (L. Winsberg)
 c. Absence of long-lived As in fission
 (L. Winsberg)

2. Selenium: Absence in fission of Se isotopes with half-lives greater than 30 minutes
 (L. Winsberg)

3. Bromine: half-life and Q energy of Br\(^{84}\)
 (S. Katcoff)

4. Krypton
 a. Half-lives of some short-lived Kr activities
 (C. R. Dillard, R. M. Adams, H. Finkelstein, A. Turkevich)
 b. Long-lived Kr (E. J. Hoagland, N. Sugarman)

5. Strontium and Yttrium
 a. Sr\(^{91}\) and Y\(^{91}\): Half-lives, radiations, and decay relationships
 (S. Katcoff, B. Finkle, N. Sugarman)
 b. Fission yield of 20m Y
 (C. R. Dillard, R. M. Adams, H. Finkelstein, A. Turkevich)
 c. Fission yield and radiations of 3.5h Y\(^{92}\)
 (E. J. Hoagland, S. Katcoff)

6. Zirconium and Columbium
 a. Energies of radiation of 17h Zr\(^{(97)}\)
 and 76m Cb\(^{(75)}\)
 (S. Katcoff, B. Finkle)
 b. Parentage and radiations of 90h Cb\(^{(95)}\)
 (E. P. Steinberg)

7. Molybdenum; Q energy of 67h Mo\(^{99}\)
 (S. Katcoff)

8. Ruthenium; Fission yields of 42d Ru\(^{103}\)
 and 1.0y Ru\(^{106}\)
 (E. P. Steinberg)

9. Rhodium; Absence of long-lived Rh in fission
 (J. A. Seiler, L. Winsberg)

10. Palladium and Silver
 a. Pd and Ag isotopes (13h Pd\(^{107}\), 109, 21h Pd\(^{112}\), 9.2h Ag\(^{112}\) in fission
 (J. A. Seiler)
 b. Absence of long-lived Pd isotopes in fission
 (J. A. Seiler)
Main Topics and Authors

<table>
<thead>
<tr>
<th>Number</th>
<th>Topic</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.</td>
<td>Cadmium and Indium (R. P. Metcalf)</td>
<td>a. 43Cd, 115In energy and fission yield</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. 2,33Cd, 115In, $^{4.5}$h In yield</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Cd and In; half-lives, radiations and fission yield</td>
</tr>
<tr>
<td>12.</td>
<td>Tin; Sn isotopes (80m, 82h, 10d) in fission</td>
<td>(J. A. Seiler)</td>
</tr>
<tr>
<td>13.</td>
<td>Antimony; absence of long-lived Sb in fission</td>
<td>(J. A. Seiler)</td>
</tr>
<tr>
<td>14.</td>
<td>Tellurium; fission yield of 30Te 131</td>
<td>(S. Katcoff)</td>
</tr>
<tr>
<td>15.</td>
<td>Iodine; fission yield, half-life, and radiations of Xe 135</td>
<td>(S. Katcoff, C. R. Dillard, H. Finkelstein, B. Finkle, J. A. Seiler, N. Sugarman)</td>
</tr>
<tr>
<td>16.</td>
<td>Xenon</td>
<td>a. Half-lives of some short-lived Xe activities</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(C. R. Dillard, R. M. Adams, H. Finkelstein, A. Turkevich)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Half-life and radiations of Xe 133</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Half-life and β radiations of Xe 135</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d. Independent yield of 9.2h Xe 136 in fission</td>
</tr>
<tr>
<td>17.</td>
<td>Cesium</td>
<td>a. Search for Cs 135 from I 135</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Search for Cs 135 from Xe 135</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c. Identification of Mass Number of 25y Cs as 137</td>
</tr>
<tr>
<td>19.</td>
<td>Lanthanum</td>
<td>a. Independent yield of 40h La 140 in fission</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Radiations of 3.5h La 141</td>
</tr>
<tr>
<td>Reports</td>
<td>Date</td>
<td>Main Topics and Authors</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>CC-2310</td>
<td>Nov 15</td>
<td>20. Cerium and praseodymium
a. Search for 140d Ce(140) in fission (J. A. Seiler, L. Winsberg)
b. Half-life of long-lived Ce(144) (W. H. Burgus)
c. Identification of the (\gamma) emitter in the long-lived Ce chain as 17m Pr(144) (J. Seiler, L. Winsberg)
d. Radiations of 4.5h Pr(145) (S. Katcoff)</td>
</tr>
<tr>
<td>CC-2379-R</td>
<td>Nov 15</td>
<td>Report of month ending Nov 15, 1944 (N. Sugarman, Section Chief)</td>
</tr>
<tr>
<td>CC-2486 R</td>
<td>Dec 15</td>
<td>Radiochemistry and process studies, Progress report (N. Sugarman, Section Chief)</td>
</tr>
<tr>
<td>CC-2570 R-X</td>
<td>Feb 1</td>
<td>The development of standard procedures for the radiochemical assay of barium in the 706 C process (C. M. Nelson, W. F. Boldridge, D. N. Hume)</td>
</tr>
<tr>
<td>CC-2580 R-X</td>
<td>Feb 1</td>
<td>Tracer supply (D. N. Hume)</td>
</tr>
<tr>
<td>CN-2581 AN-X</td>
<td>Feb 1</td>
<td>Fission product analysis training program (D. N. Hume)</td>
</tr>
<tr>
<td>CC-2605 R-X</td>
<td>Feb 28</td>
<td>Some activities from tritium bombardment in neutron irradiated lithium salts (J. D. Knight, T. B. Novy, C. V. Cannon, A. Turkevich)</td>
</tr>
<tr>
<td>CC-2658 R-C</td>
<td>Feb 16</td>
<td>Summation study
A comparison of gross fission product decay with decay of the sum of the separated fission products (W. Rubinson, R. P. Metcalf, J. Seiler, E. P. Steinberg, L. Winsberg)</td>
</tr>
<tr>
<td>CC-2739 R-C</td>
<td>Feb 23</td>
<td>Radiochemistry of the fission products, Progress report (N. Sugarman, Section Chief)</td>
</tr>
<tr>
<td>REPORTS</td>
<td>Date</td>
<td>Main Topics and Authors</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>CW-2773 C</td>
<td>March 15</td>
<td>Calorimetric determination of product-power ratio and of fission energy (D. W. Engelkemeier, J. S. Freedman, D. L. Hill, H. L. Anderson)</td>
</tr>
<tr>
<td>CC-2775 R-C</td>
<td>March 24</td>
<td>Preliminary spectrometer examination of 90Oo Cs (J. B. Levinger)</td>
</tr>
<tr>
<td>CP-2782 G-C</td>
<td>Feb 15</td>
<td>Thermal neutron cross-section of 9.2h Xel35 (N. S. Freedman, R. M. Adams, A. Turkevich, N. Sugarman)</td>
</tr>
<tr>
<td>CN-2799 G-C</td>
<td>March 29</td>
<td>Progress report Radiochemistry of the fission products (N. Sugarman, Section Chief)</td>
</tr>
<tr>
<td>MUC-WB #340 (AM-1655)</td>
<td>April 20</td>
<td>Methods of radiochemical analysis (Mo, Ru, Cd, Sb, I, Cs, La-Ir, and Sm) (L. Winsberg, editor)</td>
</tr>
<tr>
<td>CC-W-2010 (A-67C)</td>
<td>June 7</td>
<td>(CL-DNH-3) Tables of half thicknesses, ranges and energies for fission product activities (D. N. Black)</td>
</tr>
<tr>
<td>CN-2815 An-X</td>
<td>June 30</td>
<td>A manual of the radiochemical determination of fission product activities (D. N. Hume, N. E. Ballou, L. E. Glendenin)</td>
</tr>
<tr>
<td>CP-2825 G-X</td>
<td>June 4</td>
<td>A correlation of methods for the determination of absolute neutron flux (T. B. Novey)</td>
</tr>
<tr>
<td>CC-2826 R-X</td>
<td>June 1</td>
<td>The radiochemical determination of total antimony tracer activity and differential antimony (III) and antimony (V) activities (W. F. Boldridge, D. N. Hume)</td>
</tr>
<tr>
<td>CC-2828 R-X</td>
<td>June 226</td>
<td>The preparation of carrier free ruthenium tracer and some observations on the chemistry of plutonium (D. N. Hume)</td>
</tr>
<tr>
<td>CC-2829 R-X</td>
<td>June 1</td>
<td>The separation and identification of Nd and element 61 fission activities by specific elution from amberlite resin (J. A. Marinsky, L. E. Glendenin)</td>
</tr>
<tr>
<td>CC-2835 R-X</td>
<td>June 16</td>
<td>Zn and Ga activities in uranium fission (J. M. Siegel, L. E. Glendenin)</td>
</tr>
</tbody>
</table>

APPROVED FOR PUBLIC RELEASE
<table>
<thead>
<tr>
<th>Report</th>
<th>Date</th>
<th>Main Topics and Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC-2836 R-X</td>
<td>June 30</td>
<td>Special procedures for the isolation of Zn and Ge fission activities (J. M. Siegel, L. E. Glendenin)</td>
</tr>
<tr>
<td>CC-2845 R-X</td>
<td>June 30</td>
<td>A study of the separation of cerium by iodate precipitation and the improved radiochemical determination of cerium and rare earth activities (W. F. Boldridge, D. N. Hume)</td>
</tr>
<tr>
<td>CC-2891 R-C</td>
<td>April 10</td>
<td>Cross-sections and radiations of some Kr isotopes produced by neutron bombardment of Kr (E. Hoagland, N. Sugarman)</td>
</tr>
<tr>
<td>CN-2898 G-C</td>
<td>April 1</td>
<td>The solubility of LaPO₄ in HNO₃ solutions (A. Goldstein, E. Motts, N. Rubinson, K. Taylor)</td>
</tr>
<tr>
<td>CC-2908 R-C</td>
<td>April 7</td>
<td>The thermal neutron absorption cross-section of 86m Ba¹³⁹ (S. Katcoff)</td>
</tr>
<tr>
<td>CN-2929 G-C</td>
<td>April 27</td>
<td>Progress reports Radiochemistry of the fission products (N. Sugarman, Section Chief)</td>
</tr>
<tr>
<td>CC-2966 R-C</td>
<td>April 15</td>
<td>The presence of 47h Sm in fission (L. Winsberg)</td>
</tr>
<tr>
<td>CC-2998 R-C</td>
<td>June 1</td>
<td>A gas-sweeping apparatus for the large scale collection of fission products on a charged wire (S. Reynor)</td>
</tr>
<tr>
<td>CC-3007 R-C</td>
<td>April 15</td>
<td>Independent yield of 9.2h Xe¹³⁵ (E. Hoagland, N. Sugarman)</td>
</tr>
<tr>
<td>CP-3050 T-C</td>
<td>March 1</td>
<td>Preliminary experiments on the feasibility of using solid dielectrics as ionizing media in ionization chambers (B. Schloss)</td>
</tr>
<tr>
<td>CC-3069 R-C</td>
<td>April 15</td>
<td>The thermal neutron absorption cross section of 55d Sr²⁹ (S. Katcoff)</td>
</tr>
<tr>
<td>CC-3106 R-C</td>
<td>August 1</td>
<td>The adsorption of xenon on charcoals at room temperature (R. A. Lea, T. F. Young)</td>
</tr>
</tbody>
</table>
Report | Date | Main Topics and Authors
---|---|---
CC-3146 R-C | Sept 4 | Sweeping of fission gases from solutions of U and plutonium (R. M. Adams, H. Finklestein, W. Rubinson)
CC-3148 R-C | June 1 | A new decay chain produced by \(n, \gamma \) on Ba: \(\text{Ba}^{131}\rightarrow \text{Ca}^{131}\rightarrow \text{Xe}^{131} \) (S. Katcoff). Further studies on the radiations from \(\text{Ba}^{131} \) and \(\text{Ca}^{131} \) (R. Finkle)
CP-3166-G. C. | June 15 | Upper limit to absorption cross section of U238 (H. Finkelstein, A. Turkevich)
CL-CDC #8 | July 16 | Fission product chains and fission yields (L. E. Glendenin, J. M. Siegel, C. D. Coryell)
MonP-5 | August 1 | Removal of noble gases from solutions with carrier gases (R. Livingston, E. Shapiro, N. Elliott)
MonN-13 | Sept 1 | Development of a method for the determination of Np activity in process solution (J. E. Hudgins, J. E. Sattizahn, F. R. Bruce, M. W. Carlson)
LA-282 | May 25 | Radioactivity measurements at the 100-ton trial (H. L. Anderson and Group)
LA-282A | June 22 | 100-ton test: Radiation above the crater after 41 days (H. L. Anderson, H. Haskett, J. Twombly)
LA-290 | June 28 | 100-ton test: Radiochemistry (N. Sugarman and Group)

Monthly and Semi-monthly Progress Reports of the Chemistry Division of the Clinton Laboratories
<table>
<thead>
<tr>
<th>Report</th>
<th>Date</th>
<th>Report</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CN-1414</td>
<td>March 31</td>
<td>M-CN-2194</td>
<td>October 15</td>
</tr>
<tr>
<td>M-CN-1424</td>
<td>April 15</td>
<td>OSN-1281m</td>
<td>December 27</td>
</tr>
<tr>
<td>M-CN-1434</td>
<td>April 30</td>
<td></td>
<td>1945</td>
</tr>
<tr>
<td>M-CN-1614</td>
<td>May 15</td>
<td>CN-2586</td>
<td>Feb 15</td>
</tr>
<tr>
<td>M-CN-1624</td>
<td>May 31</td>
<td>CN-2596</td>
<td>March 15</td>
</tr>
<tr>
<td>M-CN-1634</td>
<td>June 15</td>
<td>CN-2809X</td>
<td>April 15</td>
</tr>
<tr>
<td>M-CN-1654</td>
<td>June 30</td>
<td>CN-2819X</td>
<td>May 15</td>
</tr>
<tr>
<td>M-CN-1844</td>
<td>July 15</td>
<td>CN-2839X</td>
<td>June 15</td>
</tr>
<tr>
<td>M-CN-1854</td>
<td>July 31</td>
<td>MonN-2 (AM-1635)</td>
<td>July 15</td>
</tr>
<tr>
<td>M-CN-1884</td>
<td>August 15</td>
<td>MonN-6 (AM-1642)</td>
<td>August 15</td>
</tr>
<tr>
<td>M-CN-2016</td>
<td>August 31</td>
<td>MonN-15</td>
<td>September 16</td>
</tr>
</tbody>
</table>

Other Reports

<table>
<thead>
<tr>
<th>Report</th>
<th>Date</th>
<th>Main Topics and Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM-73 (MS 87)</td>
<td>1942</td>
<td>The loss of energy by fission fragments at high temperatures (C. J. Kynch)</td>
</tr>
<tr>
<td>CC-295</td>
<td>Sept 18</td>
<td>Survey of long-lived fission products (B. L. Goldschmidt, I. Perlman)</td>
</tr>
</tbody>
</table>
| CL-697, Chapter III | 1943 | Project Handbook
C. Spontaneous nuclear reactions
D. Uranium fission products (A. Turkevich, Editor) |
<p>| CC-765 | June 30 | Chemical methods for the separation of the fission products (W. H. Sullivan) |
| CC-826 | July 12 | Report on gamma rays of certain fission products (A. C. S. Mitchell, I. J. Brown) |
| CP-844 | Aug 7 | Preliminary report activity of thorium (J. Levinger, H. Wilkinson) |</p>
<table>
<thead>
<tr>
<th>Report</th>
<th>Date</th>
<th>Main Topics and Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC-11 (CC)</td>
<td>Aug 14</td>
<td>Search for long-lived fission elements (B. L. Goldschmidt, F. Morgan)</td>
</tr>
<tr>
<td>EM-691 (BR-447)</td>
<td>Sept 26</td>
<td>The range of the fission fragments of U235 in uranium oxide and in gold (R. B. Kinsky, E. A. Nahum)</td>
</tr>
<tr>
<td>CP-1156 (A-1671)</td>
<td>1944 Jan 4</td>
<td>Preparation of primary γ-ray standards (J. H. Roberts)</td>
</tr>
<tr>
<td>CH-1460 (A-2050)</td>
<td>Feb 15</td>
<td>Metabolism of fission products A. Preparation of radioactive materials</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Preparation of Pr, Ba, Cs, And Cb (J. Hamilton)</td>
</tr>
<tr>
<td>LA-64</td>
<td>Feb 29</td>
<td>Stopping power of various substances for fission fragments (C. Wiegand, E. Segre)</td>
</tr>
<tr>
<td>CN-1540 (A-2206)</td>
<td>March 27</td>
<td>Discovery of Element 95 (and/or 96) (H. W. Crandall, J. W. Goftman, W. H. Reas)</td>
</tr>
<tr>
<td>BM-429 (MC-58)</td>
<td>April</td>
<td>Branching ratios of barium 139 and 140 produced in neutron fission of uranium (N. E. Grummitt, J. Gueron, G. Wilkinson, L. Yaffe)</td>
</tr>
<tr>
<td>CN-1615 (A-2293)</td>
<td>May 15</td>
<td>Activities in the off gas from the metal solution step (W. R. Kanne, G. M. Branch)</td>
</tr>
<tr>
<td>M-CC-1776 (A-2605)</td>
<td>July 10</td>
<td>Radiations associated with the 330 day Ru → 30second Ru decay chain (N. R. Sleight)</td>
</tr>
<tr>
<td>CN-1840 (A-2669)</td>
<td>June 26</td>
<td>Comparison of fission products of plutonium and uranium arising from slow neutron irradiation (J. E. Brolly)</td>
</tr>
<tr>
<td>Report</td>
<td>Date</td>
<td>Main Topics and Authors</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>CN-1860</td>
<td>July 6, 1944</td>
<td>Abstracts of analytical methods appearing in the classified reports (H. C. Andrews)</td>
</tr>
<tr>
<td>CP-1903</td>
<td>July 6</td>
<td>Forty-three day ^{115}Cd (L. Seren, D. N. Engle, S. W. Sturm)</td>
</tr>
<tr>
<td>Addendum to CP-1903</td>
<td>July 29</td>
<td>Presence of $0.5\text{ MeV }\gamma$ in ^{115}Cd (L. Seren, H. N. Friedlander, S. H. Turkel)</td>
</tr>
<tr>
<td>CP-1954</td>
<td>July 29</td>
<td>Report for month ending July 29, 1944 Physics Research (E. P. Wigner)</td>
</tr>
<tr>
<td>CN-2044 GX</td>
<td>October 3</td>
<td>The power-product and capture-fission ratios in χ-metal (L. Perlman)</td>
</tr>
<tr>
<td>CP-2090</td>
<td>Aug 28</td>
<td>Physics Research report for month ending August 28, 1944 (E. P. Wigner)</td>
</tr>
<tr>
<td>M-CN-2096 R</td>
<td>August 30</td>
<td>Guide to project information (J. Howe, Goldsmith, E. Mapp, Froula, Cortelyou, Quill, Mulliken)</td>
</tr>
<tr>
<td>CP-2122 G</td>
<td>August 5</td>
<td>Positive ion emission from fission element oxides (L. G. Lewis, W. M. Garrison, D. King, R. J. Hayden)</td>
</tr>
<tr>
<td>CP-2160 G</td>
<td>Sept 23</td>
<td>Report for month ending Sept 23, 1944 physics (E. P. Wigner)</td>
</tr>
<tr>
<td>CP-2192 XG</td>
<td>Nov 8</td>
<td>Pile poisoning due to short lived fission products (Borst, Jones, Nordheim, Slotin, Soodak)</td>
</tr>
<tr>
<td>M-CF-2203 G</td>
<td>Nov 30</td>
<td>Monthly report for the period ending Nov 30, 1944 Physics Section (A. H. Snell, L. W. Nordheim, E. O. Wollan, Section Chiefs)</td>
</tr>
<tr>
<td>LAO-142</td>
<td>Oct 7</td>
<td>Energy of the hard gamma rays of La140 (M. Deutsch)</td>
</tr>
<tr>
<td>CP-2283 H</td>
<td>Oct 23</td>
<td>Beta-ray spectra of some fission activities (V. Nedel)</td>
</tr>
<tr>
<td>Report</td>
<td>Date</td>
<td>Main Topics and Authors</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>CC-2299 R</td>
<td>Oct 24</td>
<td>Fast neutron induced activities in Cb (V. A. Nedzel, Brown, E. Meiners)</td>
</tr>
<tr>
<td>CP-2301 G</td>
<td>Oct 28</td>
<td>Report for the month ending Oct 28, 1944 Argonne Laboratory (E. Fermi, Laboratory Director)</td>
</tr>
<tr>
<td>CK-2318 P</td>
<td>Nov 4</td>
<td>An investigation of the delayed neutron decay curves resulting from uranium and plutonium fission (C. Redman, D. Saxon)</td>
</tr>
<tr>
<td>CC-2345</td>
<td>Dec 1</td>
<td>Cb isotopes from Zr and Mo (L. Jacobson, R. Overstreet)</td>
</tr>
<tr>
<td>CP-2376 G</td>
<td>Nov 21</td>
<td>Slow neutron activation cross-sections (L. Seren, H. N. Friedlander, S. H. Turkel)</td>
</tr>
<tr>
<td>CC-2409</td>
<td>Oct 28</td>
<td>Activities of Cs and Xe (M. Camao)</td>
</tr>
<tr>
<td>A-670</td>
<td>Dec 1</td>
<td>Some chemical problems associated with the operation of homogeneous breeder and converter piles (H. S. Brown, Asst Division Director)</td>
</tr>
<tr>
<td>CP-2468 G-C</td>
<td>Dec 15</td>
<td>Fission product poisoning in a pile (Katherine Way)</td>
</tr>
<tr>
<td>CP-2569 G-X</td>
<td>Feb 15</td>
<td>Magnetic lens beta ray spectrometer (R. Wilkinson, W. Rall)</td>
</tr>
<tr>
<td>CN-2583 S-X</td>
<td>Feb 15</td>
<td>An alternate procedure for the separation of lead from barium based on ion exchange adsorption. The lead-barium, lead-lanthanum equilibrium in amberlite IR-I (J. Schubert)</td>
</tr>
<tr>
<td>CP-2590 G-X</td>
<td>Feb 15</td>
<td>The beta and gamma energies of several radioactive isotopes (R. Wilkinson, W. Rall)</td>
</tr>
<tr>
<td>Report</td>
<td>Date</td>
<td>Main Topics and Authors</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>CC-2626 R</td>
<td>Jan 3 1945</td>
<td>Transference and adsorption on glass of carrier free zirconium (H. W. Dodgen, G. K. Rollefson)</td>
</tr>
<tr>
<td>BM-1120 (MS-128)</td>
<td>March 29</td>
<td>Isotopic abundances of fission product xenon and some relative branching chain ratios for U235 fission (H. G. Thode, R. L. Graham)</td>
</tr>
<tr>
<td>LA-253</td>
<td>April 7</td>
<td>Short-period delayed gammas from fission of 25 (J. A. Hofmann, P. B. Moon)</td>
</tr>
<tr>
<td>BM-1149 (MX-129)</td>
<td>April 10</td>
<td>A further mass spectrometer investigation of fission product xenon and fission product krypton (H. G. Thode, R. L. Graham)</td>
</tr>
<tr>
<td>CF-796 C</td>
<td>March 15</td>
<td>Report for month ending March 15, 1945 (A. J. Dempster, Division Director)</td>
</tr>
<tr>
<td>BM-1248 (MC-127)</td>
<td>May 1</td>
<td>Interim report on the krypton and xenon arising from fission (W. J. Arrol, K. F. Chackett, S. Epstein)</td>
</tr>
<tr>
<td>CP-2805 G-X</td>
<td>May 5</td>
<td>Dependence of xenon capture cross section on neutron temperature (E. O. Wollen, L. A. Pardue)</td>
</tr>
<tr>
<td>CN-2827 S-X</td>
<td>June 1</td>
<td>The separation and purification of carrier-free fission products, including individual rare earths, by specific elution from amberlite resin (Tompkins, Khym, Parker, Weiss, Cohn, Ballantine, Roes, Vannemen)</td>
</tr>
<tr>
<td>CN-2833 G-X</td>
<td>June 16</td>
<td>Development of Szilard-Chalmers methods for preparing carrier-free tracers: Studies on U238 (Stanley, A. Adamson, Leslie)</td>
</tr>
<tr>
<td>CF-2926</td>
<td>April 15</td>
<td>Report for month ending April 15, 1945 (A. J. Dempster, Division Director)</td>
</tr>
<tr>
<td>Report</td>
<td>Date</td>
<td>Main Topics and Authors</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>CP-2927 G-C</td>
<td>April 27</td>
<td>A mass spectrophotograph for the analysis of fission product mixtures (L. G. Lewis, R. J. Hayden)</td>
</tr>
<tr>
<td>CP-2928 G-C</td>
<td>April 27</td>
<td>Direct mass assignments of 55 day strontium and 57 day yttrium (L. G. Lewis, K. J. Hayden)</td>
</tr>
<tr>
<td>CP-2934 G-C</td>
<td>April 25</td>
<td>Report for period ending April 25, 1945 Argonne Laboratory (W. H. Zinn, Asst Laboratory Director)</td>
</tr>
<tr>
<td>CP-3028 G-C</td>
<td>May</td>
<td>Report for month of May, 1945 Physics Division (A. J. Dempster, Division Director)</td>
</tr>
<tr>
<td>CC-3032 R-C</td>
<td>June 13</td>
<td>Summary and correlation of data on the rate of decay of fission products (E. P. Wigner, K. Way)</td>
</tr>
<tr>
<td>CP-3070 G-C</td>
<td>June</td>
<td>Report for month of June, 1945 Physics Division (A. J. Dempster, Division Director)</td>
</tr>
<tr>
<td>CP-3094 G-C</td>
<td>July 30</td>
<td>Delayed neutrons from fission of 25 (D. J. Hughes, J. Dabbs, A. Cahn)</td>
</tr>
<tr>
<td>CP-3102 G</td>
<td>June 30</td>
<td>Betas and gamma ray spectra (I. C. Miller, L. F. Curtis)</td>
</tr>
<tr>
<td>CP-3147 G-C</td>
<td>Sept 19</td>
<td>Delayed neutrons from fission of 23 (A. Cahn, Jr., J. W. T. Dabbs, Jr., D. J. Hughes)</td>
</tr>
<tr>
<td>CP-3221 G-C</td>
<td>September</td>
<td>Report for month of September, 1945 (Physics and Metallurgy Division (A. J. Dempster, Division Director)</td>
</tr>
<tr>
<td>MonC-10</td>
<td>Sept 1</td>
<td>Preparation of carrier-free 10.2d Ca131 (B. J. Finkle, W. E. Cohn)</td>
</tr>
<tr>
<td>MonC-11</td>
<td>Sept 1</td>
<td>Preparation of carrier-free 13.8d Pr143 (B. J. Finkle, W. E. Cohn)</td>
</tr>
<tr>
<td>LA-427</td>
<td>Oct 17</td>
<td>Range of 25 fission fragments in phototrophic emulsion (H. T. Richards, T/1 Lyda Speck)</td>
</tr>
</tbody>
</table>

APPROVED FOR PUBLIC RELEASE
<table>
<thead>
<tr>
<th>Report</th>
<th>Date</th>
<th>Main Topics and Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP-3225 G-C</td>
<td>Oct 22</td>
<td>Mass spectrophotographic identification of active isotopes contained in three fission product mixtures (L. C. Lewis, R. J. Hayden)</td>
</tr>
<tr>
<td>CN-3328 G-C</td>
<td>Nov 2</td>
<td>Techniques for the preparation of thin films of radioactive material (D. L. Hufford, D. F. Scott)</td>
</tr>
</tbody>
</table>
Subject Index

Reports are referred to by number (and section) and page (e.g., CC-208-E, 2).

Symbols:
- F - Figure, e.g., figure #2 - F2
- T - Table

A Activity
- Curie's activity of long-lived fission products, CC-329, 1; CC-1042, 1-14; CL-697, III D,7, 3-5, 13-31
- In cooling gas, CC-165-B, 13-19; CC-630, 4-8
- Induced, CC-1112, 22
- Recoil products
 - Apparatus, CC-258-D, 6; CA-287; CC-389-B, 15-19
 - Correlation with pile, CC-418-B, 6-8
 - Effect of filtering He stream, CC-218-B, 3-5
 - Electroscope study, CA-287; CC-389-B, 15-17
 - Study by Geiger counter, CC-389-B, 15-19
 - Study by ionization chamber, CC-389-B, 17
- In ether extract or irradiated UNH, CC-1112, 13-14
- In pile water, CH-774, 2-5
- Induced in solid residues from Columbia River water, CC-1308, 2-8
- July 16 nuclear explosion, determination of nuclear efficiency, LA-356, 2-45
- One Hundred Ton Trail, LA-282, 2-10; LA-282A, 2-3; LA-290, 2-22
- Preparation of thin films of radioactive material, CN-3328, 2-46
- Rate of decay of fission products, CC-3032, 2-28, F1-5
- Short bombardments, gross decay, M-CN-1634, 11

Adsorption Process for Separating Fission Products, CN-1899, 1-15; CN-1873, 2-118; CN-2563, 2-23, F1-10; CN-2583, 2-8; CC-2720, 2-27; CN-2827, 2-35, F1-30; CC-2829, 2-20

Alpha Particles
- Activity in BiPO₄ process, CN-692, 41-45
- Counting, M-CN-1602, 2-18
- Counting rate of 49-capture to fission ratio det'nm., CC-465-B, 9
- CN-528, 2-8; CN-1141, 5-8

Aluminum²⁶, Recoil Range from (n, γ) on Al²⁷, CC-1631, 2, 5-7

Analytical Procedures, CC-765, 2-31; CC-971, 1-36, Addendum I; CL-CDC #4, 1-50; MUC-NS #190, 1-8; MUC-NS #200, 1-15; CL-697 III D, 7, 1-27; MUC-WR #340, 1-17; CN-1312, 2-135; CN-2829, 2-74; Adsorption process for separating rare earths, CC-2720, 2-27; CN-2827, 2-35; CC-2829, 2-20

BiPO₄ process solutions, CC-988, 3; CL-CDC #4, 1-50; CN-1312, 2-135; CN-2815, 2-74

One Hundred Ton Test: Radiochemistry, LA-290, 2-22
Antimony, CC-1204, 22-26; CC-2826, 2-20
93h, CC-529, 46-50
Fission yield in U235, CC-2379, 5-6; CC-2485, 4
Thermal fission yield in Pu239 and U235, CN-2799, 2

4.2h, CC-196-8, 1
Analytical procedures, CC-1683, 4; MUC-NS #200, 10-11; CN-1850, 10-11;
CL-697, III D, 7, 17; MUC-NC #340, 9; CC-2826, 15-20
Determination of Hg group activities in process solutions, CN-1312, 49-54
Ether extraction of SbC13, CC-1546, 4
Available information on fission isotopes, C-200, T3; MUC-CDC #50, III, IV;
CL-697, III D, 1-2; 1-14; CL-CDC #8, 1-10
γ and γ activity in pile products, CC-342-F, 4-5; CC-829, 1
BiF4 process, distribution in product containing fractions, CC-1309, 2-5
Long-lived Sb, absence in fission, CC-1683, 2; M-CN-1844, 13; CC-2310, 155
Loss in HBr distillation, CC-188-B, 2
Summation study, CC-1394, 3
Szilard-Chalmers reaction for preparing tracers, CC-2809, 10, 17; CC-2819,
14, 23-24; CN-1639, 11; MonN-2, 17
Weigh in pile material, CC-1044, 4-8; CL-669, III, D, 4, 1-2
Yield of SbH3, CC-238-D, 3

Argon, activity in pile air stream, CC-465-B, 19; CC-1112, 22

Arsenic
40h, CC-2126, 3-4; CC-2310, 31-46; CC-2379, 5
Fission yield in U235, CC-2310, 31-46
Fission yield in U238, CC-2379, 5-6; CC-2485, 4
Thermal fission yield in Pu239, CN-2799, 2
90nm, CC-2126, 3-4; CL-2310, 31-46; CC-2379, 5
Analytical procedures, CC-1546, 4; MUC-NS #200, 1-3; CL-297, III D, 7, 2
Available information on fission isotopes, CL-CDC #8, 1-10
Long-lived As, absence in fission, CC-1767, 8; CC-2310, 48

Barium
12d, CC-2799, 9; CC-3148, 2-17
85m, chains of gaseous ancestry, CN-1998, 12-15; CC-2126, 6-7; CC-2310,
167-169; CC-3146, 1-20
Fission yields, Ba-1429, 1-14
In U235, CC-258-D, 2; CC-920, 4-8; CC-1331, 10-16
In Pu239, CN-1911, 6; CN-1953, 1-8
Half-life, CC-2310, 198-200
Range of fission recoils, CC-1546, 6; CC-1559, 1-5; CC-1683, 7; CC-1767, 2;
CK-1806, 1-14
Thermal neutron absorption cross-section, CN-2799, 8-9; CC-2908, 2-8
Th fission, CC-920, 24-27
12.6d, 1-14; β energy, CC-2920, 1; CC-465-B, 11-13; CP-2590, 9, 11-13
Calibration of cyclotron counting apparatus, CC-920, 11-13
Capture to fission ratio detection, CC-1465-B, 8-10; CN-528, 2-6, 8; CN-989, 3-5;
CC-1141, 5-8; CN-1917, 1-4

APPROVED FOR PUBLIC RELEASE.
Fission yield in U235, CC-258-D, 2; BM-429, 1-14; CC-529, 28-30; CC-793, 6-16; CC-920, 4-8; CC-1331, 4-9
Fission yield in U238, BM-429, 1-14; CC-2379, 5-6; CC-2485, 4
Fission yield in Pu239, CN-1911, 6; CN-1958, 1-8

Absolute slow and fast yields, CN-2929, 2

Flux measurement CP-2825, 3-4

Gamma energy, CC-208-E, 1; CC-238-D, 3; CC-298-D, 2; CC-1959, 1-8; CC-2263, 2-3, 8; CP-2590, 9, 11-13; CSN-1281m, 7-8

Homogeneous slurry pile, CC-1142, 21-22

July 16th nuclear explosion, determination of nuclear efficiency, La-336, 2-45

100-ton Test, LA-290, 2-22

Range of fission recoils, CK-1806, 1-14; CN-1998, 7; CC-2076, 1-17

Standard absorption curves, MUC-NS #230, 4, F17-18, 20a

System 12.5d Ba140+→40La1400, CC-1204, 9-11; CC-1331, 43-44

Th fission, CC-920, 21-27

18m11L, half-life, CN-2799, 4

Variation of fission yield with chain member, CN-2929, 3-4

Activity on pile graphite, CC-988, 13

Adsorption process, CN-1839, 1-15; CN-2563, 2-23, F1-10; CN-2583, 2-8; CN-2827, 2-35; F1-30

Analytical procedures, CC-227-E, 1; CC-238-D, 2; CC-971, 4-8; CC-1142, 15-16; CL-CDC #4, 13-17; CN-1312, 4-15; M-CN-1141, 14; M-CN-1142, 16; MUC-NS #190, 1-2; M-CN-1143, 20; CN-1850, 12-14; CL-CDC #5, 2-15; CC-2570, 2-21; CL-697, III D, 7, 21; CN-2615, 19-26; CP-2825, 4-6

Analysis in process solutions, CC-988, 3; CL-CDC #4, 13-17; CN-1312, 4-15; MUC-NS #190, 1-2; CL-CDC #5, 2-15; CC-2570, 2-21; CL-697, III D, 7, 21; CN-2615, 19-26; CP-2825, 4-6

Extraction of Ba and Sr by partial precipitation of Pb(NO\textsubscript{3})\textsubscript{2}, M-CN-2184, 12

Separation from Sr, CC-238-D, 2

Separation of Ba(NO\textsubscript{3})\textsubscript{2} from La, CC-227-E, 2; CC-238-D, 2

Separation of Le(OH)\textsubscript{3} from Ba, CC-227-E, 2

Available information on fission isotopes, C-200, T3; MUC-CIC #60, III, IV; CL-697, III D, 1-2; 1-14; CL-CDC #3, 1-10

BaHPO\textsubscript{4} crystals, Density and X-ray analysis, CN-1998, 8-9

Transformation at 500\textdegree C, CN-2126, 10

\(\beta\) and \(\gamma\) activity in pile products, CC-342-F, 1-6; CC-389-B, 4, 6-10

Energy generation curves, CC-579, 10; CC-829, 1, F1-6, T1; CC-1042, 1-2, 10-27; CL-697, III D, 6, 1-31

BiPO\textsubscript{4} process

Carrying by BiPO\textsubscript{4} and LeF\textsubscript{3}, CN-1051, 18

Decontamination, CN-577, 7-7; CN-592, 41-45; CN-850, 12, 14; CN-933, 5-7; CN-1123, 39; CN-1309, 1-27; CN-1311, 1-16; CN-1332, 3-6; CN-51843, 15-20

Chains of gaseous ancestry, CC-465-B, 14-18

Coseparation with LeF\textsubscript{3}, CC-227-E, 2; CC-238-D, 2; CF-528, 9-13; CC-680, 32-39; CN-1641, 11, F1-VII

Loss of Be in \(\text{Fe}^{3+},\text{Cu}^{2+}\) soluble, MC-230-D, 2

Pu fission, M-CN-1654, 10

Preparation of active La, M-CN-1614, 28; M-CN-1624, 24; M-CN-1634, 10; M-CN-1654, 11; M-CN-1814, 13-14; M-CN-1894, 16; 16; M-CN-1884, 11; M-CN-2016, APPROVED FOR PUBLIC RELEASE 13-15, F1-11; CSN-1281m, 7-8
Reaction of Pb and Be sulfates with CCl₄. CC-2220, 2-4
Summation study, CC-342-F, 4-6; CC-399-B, 4, 6-10; CC-465-B, 4-8, 11-13;
CC-579, 3-9; CC-643, 1, FL-3; CC-851, 5-13; CC-1394, 3; CN-191, 9-11;
CC-2658, 2-24
Th fission, CC-793, 17-20
Tracer preparation, CC-1050, 3-5; CC-2563, 2-23, FL-10; CC-2827, 2-35, FL-30
Weight in pile material, CC-104, 4-8; CL-697 III D, 1, 1-2
Met fluoride process, decontamination, CC-528, 9-13; CN-722, 1-3

Beta Activity
Accumulation in He pile, CC-418-B, 6-8
Activities induced in solid residues from Columbia River Water, CC-1308, 2-8
Adsorption process, CN-1839, 1-15
BiPO₃ process, decontamination, CC-576, 1-7; CC-692, 41-45; CN-933, 5-10;
CN-989, 10-14; CC-1044, 11-17; CC-1309, 1-27; CC-1311, 1-16
Chains of gaseous ancestry, CC-1394, 1-4; CC-1805, 1-16
Energy generation curves, CC-579, 10; CC-829, 1, FL, 5; CC-1042, 1-33;
CL-697, III D, 6, 3-5, 18-31
In air-cooled pile, CC-465-B, 18-19
In homogeneous slurry pile, CC-988, 8-9; CC-1142, 20
Pu fission, M-CN-1654, 10
Short bombardments, beta decay, CC-529, 5-14
Summation study, CC-342-F, 3; CC-389-E, 4-5; CC-465-B, 4-6, 11-13; CC-579, 3-5, 7;
CC-643, 1; CC-851, 5-8; FL; CC-1394, 3; CC-1693, 4; CC-1767; 3; CN-1911, 9-11;
CC-1993, 6-7; CC-2126, 13-14; CC-2379, 11; CC-2658, 2-23
Th fission products, CP-844, 1-11
Water from pile, induced activities, CC-1306, 1-7

Beta-Particles, M-CN-1602, 19-36
Counting geometry, CC-851, 14-27
Energy dissipation in active slugs, CC-2176, 1-13
Factors affecting counting of γ-rays, MUC-NS #187, 1-3
Half-thickness, ranges and energies of fission products, CCN-2010, 1-5
Magnetic lens spectrometer, CP-2569, 2-20; CP-2590, 2-26; CP-3102, 2-14;
FL-12
Plotting absorption curves, MUC-NS #199, 1-2
Preparation of standards, CP-1156, 1-5
Range-energy relations, C-200, 3-4; CC-579, 16-19
Relation between range and mass absorption coefficient, CP-2984, 2
Scattering and adsorption, CC-529, 17-27; CC-351, 14-27; UC-1112, 24; CC-1244
13-36; CC-1689; 7; CCN-1919, 1-7
Standard absorption curves of longer-lived isotopes, MUC-NS #230, 1-6, FL-26

Beta-ray Spectrometers, CC-793, 23-27; CC-1546, 2, CP-2263, 1-10; CC-2569, 2-20;
Comparison with absorption method, CC-2310, 8-9
Measurements, CP-2160, 12-15; CC-2283, 2-3, 14-16; CP-2569, 2-20; CP-2590, 2-26;
CC-2775, 1-10; CP-3102, 2-14, FL-12

Bismuth Phosphate
Attempted electrophoresis studies, CN-933, 27
Bismuth and phosphate equilibria, CN-1205, 26-51

APPROVED FOR PUBLIC RELEASE
Bismuth Phosphate (cont'd)

Crystal studies, CN-1044, 9-10; CN-1214, 3-8; CN-1332, 16; CC-1394, 2
CC-1546, 4-5; CC-1683, 2-3; CC-2379, 12-15

Process, CN-692, 41-15; CN-850, 1-14; CN-933, 3-27; CN-989, 6-14;
CN-1044, 9-18; CN-1051, 13-21; CN-1113, 29-42; CN-1114, 9-23;
CN-1205, 44-66; CN-1214, 3-13; CN-1307, 1-12; CN-1309, 1-27; CN-1311, 1-16;
CN-1332, 3-17; M-CN-1414, 13; M-CN-1424, 13-14; CN-5-1843, 1-28; CN-1998,
8-11; CN-2126, 9-13; CC-2379, 12-15; CC-2485, 7-8

Analysis of process solutions, CC-988, 3; CL-CDC #4, 1-50; MUC-NS #190, 1-8;
CN-1312, 2-135; CN-2815, 2-74

Solubility, CN-933, 11-22; CN-989, 6-9; CN-1044, 9-10; CN-1141, 18-19;
CN-1414, 14; M-CN-1424, 13-14; M-CN-1434, 19; CN-1546, 4-5;
CC-1683, 2-3; CC-1767, 4-10; CN-1863, 1-40; CN-2027, 1-16; CN-2126, 11-13;
CN-2195, 1-28; CC-2379, 12-15; CC-2485, 8

Surface area measurement, M-CN-1424, 13-14

Bremsstrahlung

Contribution to fission activity, CC-851, 5-6
Lead absorption data, CC-529, 21; MUC-NS #187, 1-3

Bromine

34Br exchange studies, MonN-2, 7
34Br exchange and valence studies, CN-2319, 12; MonN-6, 9; MonN-2, 7;
MonN-15, 12

Fission yield in U235, CC-258-D, 2; CC-1331, 10-18, 22
Fission yield in Pu239, CN-1958, 1-8
Half-life, CC-196-T, 1; C-200, T1; CC-1331, 14, 17
Dependent yield along chain, MonN-15, 12-13

33Ar, fission yield, CC-258-D, 2; CC-1331, 10-18, 22
Half-life and beta energy, CC-196-E, 1; C-200, T1; CC-1394, 3;
CC-2310, 52-54

56Co, CC-1967, 2-7
Analytical procedure, CC-238-E, 3; CC-971, 32-33; CN-1850, 18;
CL-697, III D, 7, 4
Available information on fission isotopes, C-200-T1; MUC-CDC, #80, II, III;
CL-697, III D, 1-2, 1-14; CL-CDC #8, 1-10

Thorium fission, CC-920, 24-27, 35-42
Weight in pile material, CN-1044, 4-8; CL-697, III D, 1-2

Cadmium, CC-1204, 22-26

238U, CN-2126, 3; CC-2379, 4; CC-2310, 131-139
Fission yield in U235, CC-2310, 131-139; CN-2799, 2
Fission yield in Pu239, CN-2799, 2

43K, CC-1544, 13; CN-1903, 1-11; CN-1911, 3; CC-2310, 126-130
Fission yield in U235, CN-1911, 3; CC-2310, 126-130
Fission yield in Pu239, CN-1958, 1-8
Gamma energy, addendum to CC-1903, 1

Standard beta absorption curve, MUC-NS #230, 4, F10

28Si, CC-2126, 3; CC-2379, 4; CC-2310, 140-144
Fission yield in U235, CC-2310, 140-144

Analytical procedures, MUC-NS #233, 1-2; CL-497, III D, 7, 14; MUC-WR #340, 8;
CN-1312, 49-54, 121-122; CC-2420, 123-134
Available information on fission isotopes, C-200, T2; CL-697, III D, 1-2, 1-14; CL-CDC #3, 1-10

Cadmium cont'd

Calcium, Absence of Triple Fission Products, CC-1767, 6-7; CC-2310, 24-25

Capture, Monitoring of St. Louis Cyclotron, CN-771, 1-23

Capture to Fission Ratio, CC-465-B, 8-10; CN-528, 2-8; CN-989, 3-5; CN-1141, 5-8; CN-1911, 4; CN-1917, 1-4; CN-1998, 5; CN-2044, 1-10; CF-2773, 2-15

Carbon in Cyclotron Bombarded UNH, CO-680, 30-31

Carbon Monoxide and Dioxide from Heated Graphite, CT-482-F, 1-3

Carbonyl, Cr(CO)6, Mo(CO)6, W(CO)6, CC-144

Possibility of preparation of U(CO)6, CC-144

Ceric Phosphate, CN-1113, 38-39; CN-1998, 8-10

Cerium, CC-579, 15

140d140g, Absence in fission, CC-1142, 27; CSN-1281m, 7; CC-2185, 2-3; CC-2310, 209

28d141, CC-188-R, 1-2; CC-465-B, 24

Chains of gaseous ancestry, CC-1805, 1-16; CC-3146, 1-20

Daughter of short-lived La, CC-529, 57-59

Energy of radiations, CC-680, 13, 16-21

Energy generation curves, CC-1042, 1-2, 12-13, 30-32; CL-697, III D, 1-31

Fission yield in U235, CC-529, 2; CN-2929, 5

Fission yield in Pu239, CN-1911, 6; CN-1958, 1-8; CN-2799, 2

Fission yield, variation with chain member, CN-2929, 3-4

From n and d irradiation, CC-465-B, 25; CC-529, 66-69

Mass assignment by spectograph, CP-3295, 6-15

100-ton test, LA-290, 2-22

Range of fission recoils, CN-1998, 7; CC-2076, 1-17

Standard absorption curbes, NUC-NS #230, 4, F21-22

Stable, Absorption cross-section, CC-2739, 5

33h143, CC-196-B, 2; CC-298-D, 5

Chains of gaseous ancestry, CC-465-B, 14-18; CN-2799, 7; CC-3146, 1-20

Energy of radiations, CC-298-D, 5; CC-680, 13, 16-21

Fission yield in U235, CC-1331, 1-16, 21-22; CN-2799, 2

Fission yield in Pu239, CN-1958, 1-8; CN-2799, 2

From d and n irradiation, CC-465-B, 25; CC-529, 66-69

La parent, CC-529, 57-59; CC-2809, 8

Th fission, CC-920, 24-27

275d144, CC-188-E, 1-2; CC-465-B, 24

Beta energy from 1800 spectrometer, CP-2160, 12-15; CC-2283, 2-3, 8-10

Chains of gaseous ancestry, CC-1805, 1-16; CC-3146, 1-20

Energy generation curves, CC-1042, 1-2, 12-13, 30-32; CL-697, III D, 1-31

Fission yield in U235, CC-2799, 2

Fission yield in Pu239, CN-1911, 6; CN-1958, 1-8; CN-2799, 2

Gamma energy, CC-1683, 2; CN-2126, 2; CC-2310, 213-233; CC-2485, 2

Half-life, CC-2310, 210-212
Cerium. 275d144 (cont'd)
July 16th nuclear explosion, determination of nuclear efficiency, LA-356, 2-45
Mass assignment by spectrograph, CP-3221, 3; CP-3295, 6-15
100-Ton test, LA-290, 2-22
Range of fission recoils, CN-1998, 7; CC-2076, 1-17
Standard absorption curves, MUC-NS #230, 4, F21-22
1.8h145, CC-465-B, 22-23; CC-529, 59-65
Chains of gaseous ancestry, CN-2799, 7
15m146, CN-2929, 6
Absorption in MnO2, M-CN-1424, 13; M-CN-1434, 18
Absorption process, CN-1839, 1-15; CC-2720, 2-27; CN-2827, 2-35, F1-30; CC-2829, 6-11
Analytical procedures, CC-253-D, 4; CC-971, 9-13; CC-1043, 4-6; CC-1142, 16-17
CL-CDC #4, 32-39; CL-1312, 65-91; M-CN-1404, 12; MUC-NS #190, 7; CN-1850, 23-26; CL-697, II D, 7, 23-25; CC-2815, 52-55; CC-2815, 2-12
Analysis in process solutions, CN-1267, 44-45; CL-134, 32-33; CN-1312, 65-91; MUC-NS #190, 7; CC-2815, 52-55; CC-2815, 2-12
Separation from other rare earths, iodate precipitation, CC-851, 32-35; CC-920, 29; CC-1050, 7-8; CC-2845, 2-12
Available information on fission isotopes, C-200, T3; MUC-CDC #80, III, IV; CL-697, III D, 1-2; 1-14; CL-CDC #8, 1-10
and + activity in pile products, CC-342-F, 4-6; CC-389-B, 4, 6-10
Energy generation curves, CC-579, 10; CC-829, 1, F1-6, II; CC-1042, 1, 12-13, 30-32; CL-697, III D, 6, 1-31
BiPO4 process, decontamination, CN-576, 4-7; CN-692, 1-4; CN-850, 4-7; CN-933, 5-7; CN-1141, 21; CN-1309, 1-27; CN-1311, 1-16; CN-1332, 6-15, 17; CN-S-1843, 1-28
Ceric-cerous ion exchange, CC-1331, 38-42
Density of cericous phosphate, CN-2126, 11
Ghost parent of -55d Fr, CC-1204, 13, 15
Long-lived activities, f energies, CC-188-B, 1-2
Masses 141, 143, 144, and 147 detected by mass spectrograph, CP-3028, 4; CF-3070, 4
Fr daughter of fairly long-lived Ce, CC-1112, 17
Pr fission, M-CN-1654, 10
Solubility of CeF3 in HNO3 solutions, M-CN-1414, 13
Summation study, CC-342-F, 4-6; CC-389-B, 4, 6-10; CC-465-B, 4-8, 11-13; CC-579, 3-9; CC-643, 1, F1-3; CC-851, 5-13; CC-1394, 3; CN-1911, 9-11; CN-2126, 13-14; CC-2379, 11; CC-2658, 2-24
Tracer preparation, CC-851, 35-36; CC-1204, 19
-α-β γ by Ce method, CC-1050, 6
Valence state, CN-2809, 8; CN-2819, 12
Weight in pile material, CN-1014, 4-8; CL-697, III D, 1-2
Wet fluoride process, decontamination, CN-722, 1-3
Cesium

131Cs, CN-2799, 9; CC-3148, 2-17
Tracer preparation, MonC-10, 2-6
Long-lived, CC-2219, 12-13
From 133Cs, search CC-2310, 193-194
From 135Cs, search, CC-2310, 93; CC-2485, 3
^{35}S, energy, CC-298-D, 2, 4; CC-529, 52-54; CC-2379, 9
Fission yield in U238, CC-2379, 5-6; CC-2485, 4
Fission yield in Pu239, CN-1958, 1-8
Gamma energy, CC-2379, 9
Half-life, CC-298-D, 2, FL; CC-529, 52-54; CN-1911, 2
Mass assignment, CC-2219, 12-14; CC-2310, 196-197; CC-2485, 3
Mass spectograph, CP-3295, 8
Standard absorption curves, MUC-NS #230, 4, FL-16
33Cl, CN-2799, 3
Gamma energy, CC-2219, 13

Adaptation process, CN-1839, 1-15; CN-2827, 2-35, FL-30
Analytical procedures, CC-238-D, 2, 5; CC-529, 52-54; CC-2971, 2-3;
CN-1312, 60-64; a-CN-1404, 12; MUC-NS #183, 1-3; CN-1850, 27-39;
a-CN-1854, 15; CL-697, III D, 20; MUC-VM #340, 11-13; CN-2815, 41-44
Analysis in process solutions, CN-1312, 60-64; a-CN-1404, 12;
CN-2815, 41-44
Cs silicotungstate, CC-238-D, 2, 6
Fast procedure free of Hg, CC-2739, 2; CN-2929, 7
Available information on fission isotopes, C-200, T3; MUC-CDC #50, TII, IV;
CL-697, III D, 1-2, 1-4; CL-CDC #8, 1-10
Chains of gaseous ancestry, CC-465-B, 14-18
Energy generation curves, CL-697, III D, 6, 1-31
Production of Cs isotopes by neutron activation, CC-2409, 1-12
Pu fission, a-CN-1654, 10
Summation study, CC-465-B, 4-6, 8; CC-579, 3-9; CC-643, 1; CC-351, 5-13;
CC-1394, 3; CN-1911, 9-11; CN-2126, 13-14; CC-2379, 11; CN-2658, 2-24
Tracer preperation, CN-2827, 2-35, FL-30
Weight in pile material, CN-1044, 4-8; CL-697, III D, 4, 1-2

Chlorine

33Cl, CC-2605, 3-4, 10-11
Absence of triple fission products, CC-1767, 6-7; CC-2310, 22-23

Circuits, CT-959, 1-39; Addendum I to CT-959, 1; CF-1395, 2-10
Coincidence losses, CP-2582, 2-5
Columbia scaling, CT-959, 1-39; Addendum I to CT-959, 1
Fission chamber and circuit, CC-793, 6-9
Fission circuit, CP-1395, 8
Schloss-Robinson, Chicago, and Columbia scaling circuits, CC-3-135, 2-10

Columbium

90Cm, Parentage, CC-1204, 13, 15; CN-1998, 2; CN-2126, 2; CC-2310, 95-101
Radiations, CC-418-B, 11-12; CC-1397, 5; CC-2775, 1-10; CC-2310, 95-101
Spectroscopic Examination, CC-2775, 1-10
^{35}S, energy, CC-418-B, 11-12; CC-2826, 1-10; CP-1854, 17-18;
CC-2283, 2-3, 6-3; CP-2595, 4-6
Chains of gaseous ancestry, CC-1805, 1-16
Coincidence counting, CC-1828, 14; CN-1911, 7-9
Growth, decay, and energetics, CC-1112, 4-86

APPROVED FOR PUBLIC RELEASE
Homogeneous slurry pile, CR-1142, 21-22

Mass assignments by spectrograph, CR-2397, 1-17

Scattering, CCN-1919, 4-8

Spectrometer measurements, CR-1954, 17-18; CC-2283, 2-3, 6-8;
 CP-2590, 6, 8

Standard absorption curves, MUC-NS #230, 4, F5-6

75m Cs, CC-258-D, 5; CC-2310, 90-94

Absence of fission isotopes, with half-lives between 75m and 35d,
 CC-1946, 5; CN-1998, 2

Adsorption process, CN-1839, 1-15; CN-2827, 1-35, F1-30

Analytical procedures, CC-418-B, 9; CC-971, 18-21; Addendum I to 971, 1-4;
 CC-988, 4-7; CC-1142, 13-14; CI-CDC #4, 21-23; CN-1312, 26-31;
 M-CN-1414, 15; CN-1850, 34-36; CN-1998, 5; CN-2126, 6; CL-697, III D, 7,
 7-8; CN-2815, 31-33

Analysis in process solutions, CC-988, 3; CN-1113, 30-31; CL-CDC #4, 21-23;
 CN-1312, 26-31; CN-2815, 31-33

Available information on fission isotopes, C-200, Tl; MUC-CDC #80, II, III;

Available information on fission isotopes, C-200, Tl; MUC-CDC #80, II, III;
 CL-697, III D, 1-2, 1-14; CL-CDC #6, 1-10

13 and 17 activities in pile products, CC-342-F, 4-5; CC-389-B, 4, 6-10

Energy generation curves, CC-579, 10; CC-829, 1, F1-6, T1; CC-1042, 1-2,
 9, 25-26; CL-697, III D, 6-13

BiPO₄ process, decontamination, CN-576, 4-7; CN-692, 11-15; CN-933, 5-10;
 CN-1141, 14-18; CN-1309, 1-27; CN-1311, 1-16; CN-1843, 15-20

BiPO₄ scavenging, CN-1113, 32-34;

Carrying by LF₃, CN-1141, 14-18; CN-1312, 74-81

C₆H₅O scavenger, CN-1111, 21

MnO₂ scavenger, CN-1051, 19-21; CN-1113, 32-34; CN-1205, 61-62

Cooperation with LF₃, CN-1141, 14-18; CN-1312, 74-81

Fast neutron induced activities, CC-2299, 1-2

Gamma energy, CC-418-B, 11-13

Growth from Zr, CC-418-B, 11-13

Hydrolysis and complexation formation, CN-S-1878, 1-14

Mass assignments, CC-1112, 4-8c

Pu fission, M-CN-1654, 10

Summation study, CC-342-F, 4-5; CC-389-B, 4, 6-10; CC-465-B, 4-8, 11-13;
 CC-579, 3-9; CC-643, 1, F1-3; CC-851, 5-13; CC-1394, 3; CN-1911, 9-11;
 CN-2126, 13-14; CC-2379, 11; CC-2658, 2-24

Tracer preparation, CC-1112, 10-11; CN-1141, 22-23; CC-2009, 1-5; CN-2827,
 2-35, F1-30

Extraction with chloroform and cupferron, M-CN-1654, 11; M-CN-1884, 12

Manganese dioxide for remote control, CC-2014, 1-13

Unsuccessful attempts, CC-1050, 7

Unsuccessful from amberlite resin absorbent, CC-1112, 11

Weight in pile material, CN-1044, 4-8; CL-697, III D, 4, 1-2

Wet fluoride process, decontamination, CN-722, 1-3

Copper for testing β-ray spectrograph, CC-793, 24

Copper isotopes, CC-920, 51-52

Fission chamber and circuit, CC-793, 6-9

High efficiency γ counter, CC-1883, 9

Low absorption counter, CC-763, 3-3; CC-2299, 1-10

New soldering technique, M-CN-1464, 8-9

Plateaus, poor plateaus with γ rays and X-rays, CP-1395, 3-4

APPROVED FOR PUBLIC RELEASE
Counters (plateaus, cont'd)

Improvement by outgassing, CC-2379, 10
Solid dielectrics as ionizing media, CP-3050, 2-18

Counting, CC-529, 17-27; CC-1204, 28-36; m-CN-1424, 15-16; m-CC-1602, 1-40;
CC-1683, 6-7; MUC-NS #199, 1-2; MUC-NS #30, 1-3; CN-2615, 4-18

Coincidence counting, CC-826, 1-8; CC-1911, 7-8
Coincidence errors, CC-529, 22
Coincidence losses in GM counting circuits, CP-2582, 2-5

Counting of γ-rays, MUC-NS /107, 1-3

Geometry, CC-793, 12, 14-16; CC-851, 14-27; CC-1204, 28-36; CP-2825, 8-10
High efficiency θ-counter, CC-1683, 8-9

Precision counting with GM counters, CC-1683, 8-9

Preparation of standards, CP-1156, 1-5; CP-2825, 8-10

Preparation of thin films, CN-3328, 2-46

Scattering of γ-rays, CC-529, 17-23; CC-1204, 28-36; CCN-1919, 1-7

Scattering of γ-rays, CC-529, 17-23

Standard methods of obtaining and plotting absorption curves; MUC-NS #199,
1-2; MUC-NS #230, 1-3

Cross-sections for neutrons, CP-2376, 1-25; CC-2435, 3; 5-6; CC-2739, 4-5

Stable nuclei, CP-2376, 1-25

Unstable nuclei, CC-2435, 3; 5-6; CC-2739, 4-5
Stable nuclei, CC-2435, 3; 5-6; CC-2739, 4-5
Unstable nuclei, CC-2435, 3; 5-6; CC-2739, 4-5

Fission poisoning due to short-lived fission products, CP-2192, 1-17

55 Sr, CC-3059, 2-12

9.2h Xe-135, CC-193, 2-3; M-CN-224, 17-18; CC-2435, 3; 5-6;
CP-2600, 2-10; CP-2620, 2-7; CP-2825, 5-12
Dependence on neutron temperature, CP-2805, 2-9

D Decontamination

BiF₄ process, CN-576, 1-7; CN-692, 41-45; CN-850, 1-14; CN-933, 5-10;
CN-989, 10-11, 9-18; CN-1051, 14-21; CN-1103, 32-39; CN-1114, 9-21;
CN-1205, 61-64; CN-1214, 9-10; CN-1309, 1-27; CN-1332, 3-9b; CN-1839,
1-15; CN-S-1843, 1-28; CN-1311, 1-16
(Also under individual elements.)

Wet fluoride, CN-722, 1-3

Dosage, CN-528, 14-17; CC-2680, 7-8; CH-774, 2-5

2.5h Dysprosium-165, γ-ray spectrum by means of thin magnetic lens spectrometer,
CP-3102, 14

E Electrophoresis Studies on BiF₄ Suspensions, CN-933, 27

Ether Extract, Radioactivity in, CC-1112, 13-14

Ether Extraction, Apparatus, CC-1204, 31-35

Europium, CC-579, 70-73

2γ-55, CC-2000, 1-9; CC-2310, 31-34

Fission yield in U-235, CC-2310, 29-34

Mass assignment by spectrograph, CP-3221, 2; CP-3295, 12-13
Ferrum (cont'd)
15.6d (156) CC-1331, 26-29; CN-1911, 3; CC-2000, 1-9; CC-2310, 231-244
Fission yield in U235, CN-1911, 3; CC-2310, 231-244; CN-2799, 2
Fission yield in U238, CC-2379, 5-6; CC-2485, 4
Fission yield in Pu239, CN-1958, 1-8; CN-2799, 2
Standard absorption curves, MUC-NS #230, 4; F-24-25
15.6d (156) and 60m (158), CN-2126, 4; CC-2310, 231-244
Fission yields in Pu239, CN-2126, 4; CC-2310, 231-244
Gamma energies of 15.6d Eu, CC-2485, 4
Adsonption process, CN-2827, 2-35, Fl-30; CC-2829, 6-11
Analytical procedure, MUC-NS #200, 12-15; CL-697 III D, 7-26
Follows Y in Le-Y separation, 4-CN-2184, 10
Available information on fission isotopes, MUC-CDC #80 IV; CL-697,
III D, 1-2, 1-4; CL-CDC #8, 1-10
Weight in pile material, CN-1044, 4-8; CL-697, III D, 4, 1-2

Fission Methods of Determining Range and Energy
C-200, 3; CC-529, 24-27; CC-579, 16-19; CC-763, 6-10

Fission
Capture to fission ratio, CC-465-B, 8-10; CC-528, 2-8; CN-989, 3-5;
CC-1144, 5-8; CN-1911, 4; CN-1917, 1-4; CC-1998, 5; CC-2044, 1-10
Counting circuit, CC-793, 6-9; CP-1395, 8
Energy of fission, CC-1394, 2; CK-1806, 11; CF-2773, 2-15
Monitoring at St. Louis cyclotron, CC-771, 1-23

Fission Products (for more information look under individual element)
Adsorption process, CN-1839, 1-15; CN-1873, 2-118; CN-2827, 2-35; Fl-30
Analytical procedure, CC-765, 2-31; CC-971, 1-36; CL-CDC #4, 1-50;
MUC-NS #200, 1-15; CN-1312, 2-135; CN-1850, 1-127; CL-697, III D, 7-27;
MUC-WR #340, 1-17; CN-2815, 2-74
Available information on fission isotopes, C-200, T1-3; MUC-CDC #80, 1,
T1, TIV; CL-697, III D, 1-2, 1-4; CL-CDC #8, 1-10
Behavior of minor fission elements in pyridine extraction of Rh,
M-CN-1854, 15
SPO4 process, decontamination, CN-576, 1-7; CN-692, 41-45; CN-850, 1-14;
CN-933, 5-10; CN-989, 10-14; CN-1046, 9-18; CN-1051, 14-21; CN-1113,
32-39; CN-1141, 9-21; CN-1205, 61-64; CN-1214, 9-10; CN-1309, 1-27;
CN-1311, 1-16; CN-1332, 3-9b
Effect of radiation, CN-1307, 1-12
Fission products of greatest process significance, CN-2815, 71-72
Chains of gaseous ancestry, CC-465-B, 14-18; CC-1142, 23-26; CC-1331, 35-37;
CC-1394, 3-4; CC-1546, 2; CC-1767, 10; CC-1805, 1-16; CN-1998, 12-15;
CN-2126, 6-7; CN-2799, 7; CC-3146, 1-20
Large scale collection of fission products, CC-2998, 2-15
Chart of isotopes, CL-697, III C, 3-2, 51
Concentration of fission products by precipititation of uranium peroxide,
CC-1394, 4
Countercurrent extraction column, CN-1055, 2-3
Delayed neutrons, CK-2518, 1-12; CP-3094, 1-30; CP-3147, 1-8
Energy generation curves, CC-576, 10; CC-829, 1; FL-6, T1; CC-1042, 1-33;
CL-697, III D, 6, 3-5, 18-31; CL-11/2, 12-7

APPROVED FOR PUBLIC RELEASE
Fission Products (cont'd)

Factors affecting the determination of activities and energies,
CN-1998, 4
Fission chains with short-lived members, CN-2126, 5
Fission yields, CC-1394, 3; CN-1958, 1-8; CN-1998, 2-3; CN-2126, 2-4, 8-9;
CC-2379, 2-10; CC-2485, 2-6; CL-697, III D1.1, 5-8; CN-2799, 2;
CN-2929, 2
Gross decay curves, long irradiations, CL-697, III D1.6, 1-31
Short irradiations, CC-529, 5-14; CC-920, 9-23; CC-988, 10;
CC-1128, 3-7, FL-13; M-CN-1634, 11
Gross half-life in pile products, CC-342-F, 2
Homogeneous slurry pile CC-988, 8-9; CC-1142, 18-22
Jentschke type experiment, CN-1810, 1-5
July 16th nuclear explosion, determination of nuclear efficiency,
La-356, 2-45
Mass assignment by spectrograph, CP-2122, 1-2; CP-2927, 1-17; CP-3221, 3-4;
CP-3295, 2-15
100-ton trial, LA-292, 2-10; LA-292A, 2-3; LA-290, 2-22
Pile poisoning, CP-2192, 1-17; CP-2468, 2-23
At fission products, M-CN-1654, 10; CN-1840, 1-5; M-CN-1844, 13; CN-1911, 6
Positron emitters, absence in fission CC-920, 51-53; CC-2283, 14
Preparation of thin films, CN-3328, 2-46
Radiochemistry of the fission products (Ge to Zn), CC-2310, 31-244
Ranges of fission recoils, CK-1806, 1-14; CC-2076, 1-17
Rate of decay, CC-3032, 2-28, FI-5
Remote-control concentration apparatus, CC-1112, 24-26
Short period delayed gammas from fission of U235, LA-253, 2-15
Slow neutron activation cross-section, CC-2376, 1-26
Spectrometers, 180°, CP-2160, 12-15; CP-2263, 1-10; CC-2283, 2-3, 14-16
Thin magnetic lens, CP-2569, 2-20; CP-2590, 2-16; CP-31-2, 2-14, FL-12
Standard absorption curves for longer-lived fission products,
MUC-NS #230, 1-6, FL-26
Summation study, CC-342-F, 2-6; CC-399-8, 4-10; CC-465-B, 3-14;
CC-579, 3-9; CC-643, 1, FI-3; CC-851, 5-13; CC-1394, 3; CC-1683, 4;
CC-1767, 3; CN-1911, 9-11; CC-1993, 6-8; CN-2126, 13-14; CC-2379, 11;
CC-2658, 1-24
Table of isotopes, CL-697, III C3.1, 2-50
Tables of half-thickness, ranges and energies, CCN-2010, 1-5
Th fission CC-793, 17-21; CP-864, 1-11; CC-920, 24-27
Treser preparation, CN-2827, 2-35, FL-30
Various fission products, CC-529, 31-73; CC-680, 9-29; CC-920, 35-50;
CC-2310, 31-244
U fission products, CN-1840, 1-5
Weights of fission products in pile material, CN-1044, 4-8; CL-697, III D1.4,
1-2

Fission Recoils (also under individual element)
Activity in air, CC-680, 4-8
In graphite, CC-988, 11-12
In pile, CC-680, 4-8
Loss of energy at high temperatures, EM-73, 1-8

APPROVED FOR PUBLIC RELEASE
Fission Recoils (cont'd)

Ranges, CC-1546, 6; CC-1559, 1-5; CC-1683, 7; CC-1767, 2; CK-1806, 1-14; CN-1996, 7
As a function of mass number, CC-2076, 1-17
Factors affecting fission yield determination, CC-1767, 2
In photographic emulsion, LA-427, 2-7
In uranium oxide and gold, BM-691, 1-5
Stopping power of various substances, LA-64, 2-13

Fission Yields (also under individual element)
Factors affecting yield determination, CN-2126, 5
By the recoil method, CC-1767, 2
U235, CC-2310, 10; CL-697, III D, 1, 5-8; CL-CD, 18, 1-10
Absolute yields, 12.5d Be140, CC-793, 6-16; CC-1331, 4-9
7777Te137, CC-793, 6-16
Relative yields, CC-527, 28-30; CC-920, 4-8; CC-1331, 10-22;
CN-2799, 2
Variation with chain member, CN-2929, 3-4; MonN-15, 12-B
U238, relative yields, BM-429, 1-14; CC-2379, 5-6; CC-2485, 4
U239, Absolute slow and fast yields, CN-2929, 2
Relative slow yields, CN-18140, 1-5; CN-19110, 6; CN-1958, 1-8;
CN-2126, 8-9; CN-2799, 2

18Fluorine from n-Irradiated Li Salts containing Oxygen,
CC-2605, 2-3
Germanium
12h77 and 2.1h78, CN-2126, 3-4; CC-2379, 5; CC-2310, 31-46
Fission yields, CC-2310, 31-46
Absence of long-lived Ge in fission, CN-1911, 3; CC-2310, 47
Analytical procedure, MUC-NS #200, 1-3; CL-697, III D.7, 22
Available information on fission isotopes, CL-CDC #9, 1-10

Gold Foils
Flux measurements, CP-2825, 6-7
Preparation and handling, CP-2825, 10-11

Graphite
Effect of radiation, M-CN-1844, 15
Fission recoil, induced, and surface activities, CC-988, 11-13
Gases from graphite in presence and absence of U, CC+344-F, 8-9;
CT-393-D.1; CT-482-F, 1-3

Growth Curves, General, CC-1204, 7-8

Hot Laboratory, CC-1112, 23-26; CC-1204, 37-39

Hydrogen
Capture by hydrogen in UNH, CN-771, 12-13
Gases from graphite, CT-482-F, 1-3

I Illinium
2-3y149, M-C-11, 5-6; CC-630, 22-25; CC-2310, 227-230; CN-2809, 9;
CC-2629, 2-20
Chain relations, MonN-2,7
Fission yield, CC-2829, 2-20
Mass assignment by spectrograph, CP-3221, 3; CP-3295, 6-12
Scattering of \(\gamma \)s, CCW-1919, 5,7
47h149, CN-2839, 10; MonN-2,7; MonN-15, 13
Fission yield, MonN-15, 13
From (n,\(\gamma \)), CN-2809, 9
Mass assignment by spectrograph, CP-3295, 10-13
Adsorption column, CN-2809, 9; CN-2827, 2-35; SL-30; CC-2829, 2-30;
MonN-2, 7
Analytical procedure (cf Adsorption column above)
La group and Y, CN-2815, 56-61
Available information on fission, CL-697, III D.0-1-2, 1-14;
CL-CDC #9, 1-10
Long-lived rare earth at mass 149 identified by spectrograph,
CP-3295, 10-13
Weight in pile material, CN-1044, 4-8; CL-697, III D.4, 1-2

Indium
4.5h115 and 1.95h117, CN-2126, 3; CC-2379, 4; CC-2310, 131-144
Analytical procedure, CL-697, III D.7, 15; CN-1312, 123
Available information on fission isotopes, MUC-CDC #90, T III;
CL-697, III D. 1-2, 1-14; CL-CDC #9, 1-10
Iodine

$^{131}_{31}$, Activity as a function of time, CN-528, 14, 17
Fission yield in ^{235}U, CC-529, 28-30; CC-1331, 10-20, 22;
CN-2126, 8-9; CN-2799, 2
Fission yield in ^{239}Pu, CN-1911, 6; CN-1958, 1-8; CN-2126, 8-9;
CN-2799, 2
Homogeneous slurry pile, CC-1142, 21-22
Lead absorption data, CC-529, 21-22
Ranges of fission recoils, CN-1998, 7; CC-2076, 1-17
Standard absorption curves, MUC-NS #230, 4, Fl3-14
2.4h 132I, Capture to fission determination, CN-528, 5-6
Chain 77h Te \rightarrow 2.4h I, CC-763, 1-21; CC-826, 1-8
Chemical states, Mon-6, 8
Fission yield, CC-529, 28-30
Homogeneous slurry pile, CC-1142, 21-22

$^{33}_{13}$, Fission yield in ^{235}U, CC-1331, 10-20, 22; CN-2126, 8-9
Fission yield in ^{239}Pu, CN-1958, 1-8; CN-2126, 8-9

$^{22}_{11}$ Homogeneous slurry pile, CC-1142, 21-22
Standard absorption curve, MUC-NS #230, 4, Fl4
54m 134I, Fission yield in ^{235}U, CC-1334, 4; CC-1546, 5
Fission yield in ^{239}Pu, CN-1958, 1-8

$^{133}_{71}$, CC-2219, 1-14; CC-2310, 157-166; CC-2379, 7-8
135S from 135I, search, CC-2310, 193-194
Chains of gaseous aneignty, CC-1142, 25-26
Fission yield in ^{235}U, CC-1331, 10-22; CN-2126, 8-9;
CSN-1281m, 9; CC-2219, 1-14; CC-2310, 157-166; CC-2379, 7-8;
CN-2799, 2
Fission yield in ^{239}Pu, CN-1958, 1-8; CN-2126, 8-9; CN-2799, 2
Homogeneous slurry pile, CC-1142, 21-22

$^{176}_{23}$, CP-1967, 2-9
Adsorption process, CC-1339, 1-15
Analytical procedures, CC-238-D, 3; CC0971, 30-31; CN-1312, 55-59;
CN-1850, 43-44; CL-697, III D, 7, 19; MUC-WR #940, 10;
CC-2218, 1-7; CN-2815, 45-47
Available information on fission isotopes, C-200, Te; MUC-CDC #30;
TII, IV; CL-697, III D, 1-2, 1-14; CL-CDC #8, 1-10
Behavior in other procedures, M-CN-1854, 14-15; M-CN-1884, 10
β and γ-activity in pile products, CC-342-F, 4-6; CC-389-B, 4-10
Energy generation curves, CC-829, 1; FL-6, T1; CC-1042, 1-2, 4, 16-17;
CL-697, III D, 6, 1-31

BiP$_4$ process, CN-1311, 1-16
Chains of gaseous aneignty, CC-465-B, 14-18
Chemical state of fission I, CN-2819, 12
Exchange studies, CC-2218, 1-7; CN-2819, 9-10
No long-lived I found in fission, CN-1998, 2
Periods and energetics; preliminary, CC-196-E, 2
Summation study, CC-342-F, 4-6; CC-389-B, 4-10; CC-465-B, 4-8, 11-13;
CC-579, 6; CC-643, FL-3; CC-1394, 3
Tracker preparation, M-CN-1854, 16
Volatilization during metal dissolving, CN-933, 23-24; CN-1615, 2-19
Veight in pile material, CN-1044, 4-8; CL-697, III D, 4, 1-2

Iron, Search for triple fission products, CC-1767, 6-7; CC-2310, 28-30

Isotopes, Chart, CL-697, III D, 7, 4-10
Table, CL-697, III D, 7, 4-10

APPROVED FOR PUBLIC RELEASE
Krypton

^{34}Kr, ^{34}Kr, and ^{46}Kr, from $\text{Kr}(n, \gamma)$, cross-sections and radiations.

- ^{34}Kr, ^{34}Kr, growth and decay of X-ray, MonN-2, 7
- $^{2.5}\text{Kr}$, ^{34}Kr, ^{34}Kr, ^{34}Kr, CC-2310, 63-69, CC-2799, 2
 - Fission yield in U235, CC-2310, 63-69
 - From $\text{Kr}(n, \gamma)$, cross-sections and radiations, CC-2891, 2-15
 - Mass assignment, CC-2799, 5

^{74}Kr, Cross-sections of unstable nuclei, CC-2485, 5-6
- From $\text{Kr}(n, \gamma)$, cross-sections and radiations, CC-2891, 2-15
- ^{34}Kr, Cross-sections of unstable nuclei, CC-2485, 5-6

^{155}Kr and $^{9.3}\text{Kr}$. Half-lives, CC-2310, 55-62
- $^{3.0}\text{Kr}$ and $^{2.0}\text{Kr}$. Half lives, CC-2310, 55-62, CC-2799, 6
- CN-2799, 7
 - Is (anomalous of 20mN), half-life, CC-2799, 7

Available information on fission isotopes, C-200, T1, MC-CDC #3 Ti, III
- CL-697, III D, 1-2, 1-14, CL-CDC 28, 1-10

Chains of gaseous anecy, CC-465-8, 14-18, CC-1142, 23-26;
- CC-2126, 5-7, CC-2310, 55-62, CC-2799, 6
- CN-2799, 7

Effect of viscosity on sweeping active gases from solution, CN-2929, 6
- Gas-sweeping apparatus for large scale collection of fission products on a charged wire, CC-2929, 2-15

Mass spectrographic analysis of fission Kr, BM-1210, 1-3, BM-1149, 1-8, BM-1249, 1-25

Removal from solution with carrier gases, MonF-5, 2-15, CC-3146, 1-20
- Weight in pile material, CN-1044, 4-8, CL-697, III D, 1-2

Lanthanum

^{40}La, β energy, CC-238-D, 3, CC-298-D, 2, CP-318, 1-9, CP-2590, 11, 1-17
- Calibration of cyclotron apparatus for γ measurements, CC-920, 11-15
 - Ce140 from La140, search, CC-1142, 27; CSN-1281m, 7, CC-2485, 2-3;
 - CC-2310, 209

Chains of gaseous anecy, CC-1805, 1-16
- From cyclotron irradiation, CC-529, 55-56
 - γ energy, CC-208-L, 2, CC-298-S, 3, CC-298-D, 2, CP-318, 1-9;
 LMS-1.w, 1-6, M-C-2203, 4; CP-2590, 11, 1-17;
 CN-2819, 13, CP-3102, 10, F6

Independent yield, CN-1999, 17.5; CN-2116, 5, CC-2310, 201-205
- Magnetic lens spectrometer, i-C-2203, 4; CA-2590, 11, 1-17;
 - C-3102, 10, F9

Mass assignment by spectrograph, CA-3028, 4, CP-3295, 2-6, 13-14
- Standard absorption curves, WUC-437, 230, 4, TM-226

System 12.5d Be14, 4.0h La14, CC-1204, 9-11, CC-1331, 43-44
- Th fission, CC-920, 24-27

$^{5.5}\text{La}$, CC-298-D, 3
- Neactiations, CC-2310, 206-208

Th fission, CC-920, 24-27

^{202}La, parent of $^{33} \text{Ce}$, CN-2809, 8
- ^{74}La, not parent of ^{33}Ce, CN-2809, 8

^{135}La, adsorption process, CA-2871, 15, CA-2933, 2-3, CC-2720, 2-27;
 - CC-2207, 2-35, M1-7, E-2229, 6-11

APPROVED FOR PUBLIC RELEASE
Lanthanum (cont'd)

Analytical procedures, CC-258-D, 4; CC-971, 14-17; CC-1043, 7;
CC-1142, 10-12, 17; CN-1312, 65-91; M-CN-1404, 12; CL-SDC #4, 32-41;
NC-US #190, 7-8; CN-1850, 48-50; CC-2570, 2-21; CL-697, III E.7,
22-25; CC-2720, 2-27; CN-2915, 56-61; CN-2827, 2-35, fl-30;
CN-2815, 12-13

Ammonium formate to separate La from Y, CC-851, 36-37
Analysis in process solutions, CN-1312, 65-91; CL-SDC #4, 32-41;
NC-US #190, 7-8; CN-2815, 56-61; CC-2845, 12-13

Fractionation of La group rare earth activities, CC-465-B, 19-21
Iodate separation of Ce from other rare earths, CC-851, 32-35
Rapid La-Y separation by K₂CO₃, CC-1204, 20-21; M-CN-WR #340, 14;
CN-2929, 8-9

Rapid Pr-Nd separation, CC-920, 30-34
Separation of La(OH)₃ from Ba, CC-227-E, 2

Unsuccessful methods of separating La from Pr, CC-1683, 4

Available information on fission isotopes, C-200, T3; M-CN-WR #80,
TII, IV; CL-697, III D.1-2, 1-14; CL-SDC #8, 1-10

Activity in pile products, CC-342-F, 4-6; CC-389-B, 4-10

Energy generation curves, CC-579, 10; CC-829, 1. Fl-6, T1; CC-1042,
1-2, II, 28-29; CL-697, III D.6, 1-31

BiP₀₄ process, decontamination, CN-576, 6-7; CN-692, 41-45; CN-933, 5-10;
CN-1141, 21; CN-1309, 1-27; CN-1311, 1-16; CN-S-1843, 1-28

Carrying of Zr and Nb activities on LaF₃ and La₂(CO₃)₃, M-CN-1414, 15

Cerous-ceric exchange, effect of La, CC-1331, 40-41

Chains of gaseous ancestry, CC-455-B, 14-18

Insoluble carbonates, M-CN-2, 8

la phosphate, density, CN-1998, 8-9

Formula, CN-2126, 10-11
Solubility, CN-2126, 10-11; CC-2379, 15; CC-2635, 8; CN-2998, 2-15

X-ray analysis, CN-1998, 8-9

Lead absorption data, CC-529, 21-22

Fr-189, M-CN-1654, 10

Preparation of active La, M-CN-1424, 16; M-CN-1614, 26; M-CN-1624, 24;
M-CN-1634, 10; M-CN-1654, 11; M-CN-1844, 13-14; M-CN-1854, 15-16;
M-CN-1884, 11; M-CN-2194, 14-15; CN-2196, 2-15, Fl-11; CSN-1281, 7-8

Summation study, CC-342-F, 4-6; CC-389-B, 4-10; CC-465-B, 4-8, 11-13;
CC-579, 2-9; CC-643, 1, Fl-3; CC-851, 5-13; CC-1394, 3; CN-1911, 9-11;
CN-2126, 2, 13-14; CC-2379, 11; CC-2658, 2-24

Tracer preparation, M-CN-2016, 11-12; CN-2827, 2-35, Fl-30

La-Pr-Y, CC-1050, 6, 8

Weight in pile material, CN-1944, 4-8; CL-697, III D.4, 1-2

Eut fluoride process, decontamination, CN-722, 1-3

Lanthanum Fluoride

Co-separation of La with LaF₃, CC-227-E, 2; CN-528, 9-13; CC-680, 32-39

Co-separation of Zr and Nb with LaF₃, CC-1312, 74-81; M-CN-1414, 15
La, fluoride, and hydroxide equilibria, CN-1205, 46-57, 56-60

Solubility in HNO₃, CN-1205, 46-47, 56-60; CN-1214, 11-13

Surface reactions of Zr, Ba, and Te with LaF₃, CN-1641, 1-13
Lauritsen Electroscope, CC-529, 17, 24-25
Lead
Lead Carbonate. Constitution, MonN-6, 11

Lithium, Activities from Tritium bombardment in Neutron Irradiated Li Salts, CC-2605, 1-11

Magnetic Lens Spectrometer, C3-2569, 2-20; CP-2590, 2-26; CP-3102, 2-14, F1-12

Mass Spectrograph, CP-2122, 1-2; CP-2927, 2-17
Mass assignments of fission products, CP-3221, 3-4; CP-3295, 2-15
Ce isotopes, CP-3070, 4
Rare earths, CP-3028, 4; CP-3070, 4
55d Sr99, CF-2796, 19-20; CP-2928, 2-9
57d Y91, CF-2926, 16-17; CP-2928, 2-9

Massicium (53), CC-579, 11, 14-15
5.9h99, half-life, CN-2639, 10
α6d, absence of 60d. CC-529, 44
Analytical procedure, CC-971, 24-26; CN-1312, 49-54; CN-1850, 52;
CL-697, III D, 7, 10
Attempt to identify long-lived activity, CC-1050, 9
Available information on fission isotopes, C-200, TI; MUC-CDC #80, TI, III;
CL-697, III D, 1-2, 1-14; CL-CDC #8, 1-10
Th fission, CC-2920, 24-27
Weight in pile material, CN-1044, 4-8; CL-697, III D, 4, 1-2

Methane from Graphite, CT-482-F, 1-3

Molybdenum
67m99, β energy, CN-2126, 5; CC-2310, 102-105
Chains of gaseous ancestry, CC-3145, 1-20
Fission yield in U235, CN-2799, 2
Fission yield in U236, CC-2379, 5-6; CC-2435, 4
Fission yield in Pu239, CN-1958, 1-8; CN-2799, 2
Absolute slow and fast yields, CN-2929, 2
γ ray spectrum by means of thin magnetic lens spectrometer,
CP-3102, 14
July 16th nuclear explosion, determination of nuclear efficiency,
La-356, 2-45
Absence in fission of long-lived Mo isotopes, M-CN-1844, 13;
CC-2310, 102-105
Analytical procedures, CC-971, 22-23; CN-1850, 56-57; CL-697, III D, 7, 9;
MUC-CDC #80, 2-4; CN-1512, 43-54
Analysis in process solutions, CN-1312, 43-48
Available information on fission isotopes, C-200, TI; MUC-CDC #80, TI, III;
CL-697, III D, 1-2, 1-14; CL-CDC #8, 1-10
BiF4 process, decontamination, CN-1309, 5; CN-1311, 1-16
Cb isotopes from Mo, CC-2345, 1-17

APPROVED FOR PUBLIC RELEASE
Molybdenum (cont'd)

Energy generation curves, CC-579, 10; CC-829, 1, Fl-6, T1
Pu fission, M-CN-1844, 13; CN-1953, 1-8; CN-2799, 2; CN-2929, 2
Summation study, CC-342-3, 4-6; CC-465-B, 4-8; CN-113; CC-643, 1, Fl-3
Th fission, CC-920, 24-27
Weight in pile material, CN-1044, 4-8; CL-697, III D, 4, 1-2

Neodymium

\[^{147}\text{Nd} \]
M-CN-1654, 9-10; M-CN-2184, 11; CN-2809, 9; CC-2829, 2-20;
CN-2929, 5
Identification by adsorption column, CN-2809, 9; CC-2829, 2-20
Mass assignment by spectrograph, CP-3221, 3; CP-3295, 6-12
from fission yield, MonN-15, 13
\[^{149}\text{Nd} \]
1.8h, from \(\alpha \) decay, CN-2809, 9; MonN-6, 9
Identification by adsorption column, MonN-6, 9
Adsorption process, CC-2720, 2-27; CN-2809, 9; CN-2827, 2-35, Fl-30;
CC-2829, 2-20
Analytical procedures, CC-2720, 2-27; CN-2815, 56-61; CN-2827, 2-35, Fl-30;
CC-2829, 2-20
Pr-Nd separation, CC-920, 30-34
Separation by \(K_2\text{CO}_3 \), CN-2929, 8-9
Available information on fission isotopes, MUC-CDC #80, TII; CL-697, III D,
1-2, 1-14; CL-CDC #9; 1-10
BiPo process, contamination, CN-6921, 4k-45; CN-1141, 21
Isotope enrichment by adsorption columns as measured by mass spectrometer.
CX-3070, 4
Short-lived Nd daughter of long-lived Pr, absence, CC-465-B, 21
Weight in pile material, CN-1044, 4-8; CL-697, III D, 4, 1-2

Neptunium, MUC-CDC #80, TIV; CL-697, III D, 2, 10
2.2x10^13\text{y}, production in piles, CC-1767, 9
2.6x10^13\text{y}, conversion electrons per disintegration, CC-5993, 5
Analytical procedures, CN-1550, 58; MonN-13, 2-19
Capture to fission ratio, CN-528, 7-8
Contamination in 1lh Y fraction, CC-529, 39-40
\(\gamma \) dosage, CN-528, 14-15
Homogeneous slurry pile, CC-1142, 18-19
Summation study, CC-465-B, 4-7; CC-643, 1, Fl-2
Weight in pile material, CN-1044, 4-8; CL-697, III D, 4, 1-2

Neutrons
Activities from tritium bombardment in neutron irradiated Li salts,
CC-2605, 1-11
Activation cross-sections, CP-3376, 1-25
Delayed neutrons from fission of U\(^{235}\), CP-3376, 1-8
From fission of U\(^{235}\), CC-1967, 2-9; CK-2310, 1-12; CP-3094, 1-30
From fission Pu\(^{239}\), CK-2318, 1-12
Determination of absolute neutron flux, CP-2825, 2-16
Induced radioactivity
In air, CC-465-B, 18-19
In water, CH-774, 23-1; CC-1306, 2-7
Monitoring at St. Louis cyclotron, CC-774, 1-23
Yield of U\(^{237}\), CC-529, 15-30

APPROVED FOR PUBLIC RELEASE
Nitric Acid. Oxidation of Ferrous Ion, CN-850, 10-13

Nitrogen
89Kr, in air from pile, CC-465-B, 18

In water, M-CN-1624, 23; CC-1631, 2-4, 8-10

Capture by nitrogen in UNH, CN-771, 12-13

Cl4 from N14 in UNH, CC-680, 30-31

From urea in water, CC-1306, 1-7

Gases from graphite, CT-482-F, 1-3

Nuclear Efficiency

July 16th nuclear explosion, LA-356, 2-45

100-ton test, LA-282, 2-10; LA-282A, 2-3; LA-290, 2-22

Oxalic Acid

Activity in pile bombarded water, CC-1306, 1-7; M-CN-1414, 16

Activity in pile bombarded water, CC-1306, 1-7;

Oxygen

31Ar, in air from pile, CC-465-B, 18-19

Capture by oxygen in UNH, CN-771, 12-13

Gases from graphite, CT-482-F, 1-3

File bombarded water, CC-1306, 1-7

P (Homogeneous Slurry File), CC-988, 8-9; CC-1142, 18-22

Palladium, CC-1204, 22-26

13.4h109, CN-1911, 2-3; CC-2310, 110-124; CC-2379, 3

Fission yield in U235, CN-1911, 2-3; CC-2310, 110-124; CC-2799, 2

Fission yield in Pu239, CN-2799, 2

Absolute slow and fast yields, CN-2929, 2

21h12, CN-1911, 2-3; CC-2310, 110-124; CC-2379, 3

Fission yield in U235, CN-1911, 2-3; CC-2310, 110-124; CC-2799, 2

Fission yield in Pu239, CN-2799, 2

Analytical procedures, MUC-NSS #200, 7; CL-697, III D, 7, 12; CN-1312, 49-54,

120-121

Available information on fission isotopes, MUC-CDC #80, III I; CL-697, III D,

1-2, 1-14; CL-CDC #8, 1-10

Chemistry of gas and peroxide formation induced by radiation in water

solutions, CN-2009, 15; CN-2019, 20-21; CN-2839, 17-18; MonN-2, 16

Fast neutron fission, C-200, 72

Long-lived Pd isotopes, absence in fission, CC-1767, 8; M-CN-1344, 13;

CC-2310, 125

Very short-lived Pd daughter of 57m Rh, search for, CC-680, 13

Weight in pile material, CN-104, 4-8; CL-697, III D, 4, 1-2

Phosphorus

14.3d32o, apparent k activity, M-CN-1424, 16

As a source for determining counting geometry, CC-851, 14-27

P33, attempted preparation from tritium bombardment in neutron irradiated
Li salts, CC-2605, 5-6

Photoelectrons, CC-529, 19
Pile Poisoning by Fission Products, CP-2192, 1-17; CP-2468, 2-23
9.2h Xe-135, cross-section, CC-1993, 2-3; M-CN-2194, 17-18; CC-2379, 7-9;
CC-2485, 5-6; CP-2600, 2-10; CP-2620, 2-7; CP-2782, 2-5
Dependence on neutron temperature, CP-2805, 2-9
Short-lived fission products, CP-2192, 1-17

Pile Studies, CC-1201, 27
Breeder and converters, A-670, 1-13
Physico-chemical problems associated with homogeneous piles,
A-670, 1-13; MonN-2, 8; MonN-15, 13-15

Plutonium (refer also to Bismuth Phosphate Process)
Abstract of analytical methods, CN-1850, 65-67
Adsorption process, CN-1873, 2-113; CN-2827, 2-35; FI-30
Calorimetric determination of product-power ratio and fission energy,
CP-2773, 2-15
Capture to fission ratio, CN-465-B, 8-10; CN-528, 2-8; CN-1141, 5-8;
CN-1911, 4; CN-1917, 1-4
Chains of gaseous ancestry, CC-3146, 1-20
Delayed neutron, CK-2318, 1-12
Energy of fission from recoil ranges, CK-1806, 11
Fission products, M-CN-1594, 10; CN-1840, 1-5; M-CN-1844, 13; CN-1911, 6
Fission yields, CN-1958, 1-8
Absolute slow and fast yields, CN-2929, 2
Relative slow yields, CN-2799, 2
Homogeneous slurry pile, CC-1142, 18-19
Jantschke type experiment, CN-1810, 1-5
July 16th nuclear explosion, determination of nuclear efficiency,
LA-356, 2-45
Monitoring at St. Louis cyclotron, CN-771, 1-23
100-ton test, LA-290, 2-22
Preparation of thin films, CN-3328, 2-46
Ranges of fission recoils, CK-1806, 1-14
Weight in pile material, CN-1044, 4-8; CL-697, III D, 4, 1-2

Pneumatic Transfer Tube at the Pile, CC-1112, 21-22

Positron Emitters, Absence in Fission, CC-920, 51-53; CC-2283, 14

Promethium
135Pm, CC-298-D, 3; CC-529, 70-73; CC-465-B, 23-24
Absence of \(\gamma \), M-CN-1844, 13
Chains of gaseous ancestry, CC-1805, 1-16
Energy, CC-630, 13, 16, 20
Fission yield in Pu-239, CN-1958, 1-8
Fractionation into two activities, CC-465-B, 20-21
Mass assignment by spectrophotograph, CP-3295, 6-15
Standard 3 absorption curve, MUC-NS-229, 4; Fl9, 23
Tracer preparation, MNC-11, 2-9
\(\gamma \)-rays, CC-465-B, 24
Chains of gaseous ancestry, CC-1805, 1-16
Identified as \(\gamma \) emitter in 1\(\gamma \) chain, CC-2310, 213-223; CC-2485, 2
Mass assignment by spectrophotograph, CP-2485, 6-15
Spectrum by means of 1\(\gamma \) spectrometer, CP-2160, 12-15; CC-2283, 2-3, 8-10
Preseodymium (cont.)
4.5h 145, CC-298-D, 3; CC-529, 59-65
Radiations, CC-2310, 224-226
25m (1.6), CN-2799, 4; CN-2929, 6
55d; ghost Ce parent of 55d Pr, CC-1204, 13, 15
Adsorption process, CC-2720, 2-27; CN-2827, 2-35, F1-30; CC-2829, 6-11
Analytical procedures, CC-389-B, 11-13; CC-920, 30-34; CC-971, 14-17;
CL-697, III D, 7, 23-25; CN-1312, 65-91; M-CN-1404, 12; CL-CDC #4, 32-41;
MUC-NS #190, 7-8; CC-2720, 2-27; CN-2815, 56-61; CN-2927, 2-35, F1-30;
CC-2829, 6-11
Separation by K2CO3, MUC-Wh #340, 14; CN-2929, 5-9
Unsuccessful methods of separating La from Pr, CC-1683, 4
Available information on fission isotopes, MUC-CDC #80, TII, IV;
CL-CN- #8, 1-10
BiPO4 process, decontamination, CN-576, 4-7; CN-692, 41-45; CN-1309, 1-27
Ce in fission chains, CC-579, 15
Chains of gaseous ancestry, CC-465-B, 14-18
Daughter of fairly long-lived Ce, CC-1112, 17
Energy generation curves, CC-829, 1, Fl-6, T1; CC-1042, 1-2, 13, 32;
CC-697, III D, 6, 1-31
Pu fission, M-CN-1654, 10
Summation study, CC-389-B, 4-10; CC-465-B, 4-8, 11-13; CC-579, 3-5, 71
CC-643, 1, Fl-3; CC-2658, 2-24
Tracer preparation, CN-2827, 2-35, Fl-30
La-Pr-Y, CC-1050, 6
"Trans-terciar" activities, CC-680, 22-25
Weight in pile material, CN-1044, 4-8; CC-697, III D, 4, 1-2
Wet fluoride process, decontamination, CN-722, 1-3

Project Handbook
Information on fission products, CL-697, III C-D

Proactinium
Abstract of analytical methods, CN-1850, 70
Isolation of fission activities in Th fission, interference by, CC-793, 17-21

Radiation Chemistry
Effect of radiation on BiPO4 process, CN-1307, 1-12
Effect on glass and masonite, CC-1109, 2-5; CC-1204, 40
Effect on water and aqueous solutions, CC-1310, 1-11; M-CN-1404, 11;
M-CN-1624, 23; CN-2809, 15; CN-2819, 20-21; CN-2839, 17-18; XonN-2, 16
Irradiation of Fe(NO3)2 solution and graphite, CC-1204, 10
Reduction of dichromate ion by radiation, M-CN-1624, 26; M-CN-1634, 12;
M-CN-1654, 12; M-CN-1844, 15; M-CN-1854, 17

Radium
Analytical procedure, CP-2825, 7-10
Determination of geometry, CP-2825, 7-10
Preparation of reference standards, CP-2825, 7-10
Variation of 2 scattering as function of thickness of backscatterer,
CCN-1919, 2-17
Isolation of isotopes in Th studies, 793-973, 17-21

APPROVED FOR PUBLIC RELEASE
Rare Earths (also under individual elements)

Activities on W corrosion experimental pipe. M-CN-1624, 23
Activity in ether extract of irradiated UNH. CC-1112, 13-14
Activity on pile graphite. CC-988, 13
Adsorption process. CC-2720, 2-27; CN-2827, 2-35; FI-30; CC-2829, 2-20;
Analytical procedures. CC-920, 28-34; CC-971, 9-17; CC-1043, 4-7;
CC-1142, 8-12, 16-17; CL-CDC #L, 32-41; MUC-NS #190, 7-8; CL-697.
III D.7, 23-25; CN-1312, 65-96; M-CN-1414, 15; CC-2720, 2-27;
CN-2815, 48-61; CN-2827, 2-35; FI-30; CC-2829, 2-20; CC-2845, 2-13
Analysis in process solutions. CC-988, 3; CN-1051, 13; CL-CDC #45,
32-41; MUC-NS #190, 7-8; CN-1312, 65-96; M-CN-1414, 15; CN-2815,
48-61
Y-LA-Pr-Nd separations by K2CO3. MUC-NS #340, 14; CN-2929, 8-9
BiPO4 process, decontamination. CN-1309, 1-27; CN-1311, 1-16; CN-S-1843.
1-28
Carrying by BiPO4 and LaF3. CN-1051, 18
Mass assignment by spectrograph. CP-3028, 4; CF-3070, 4; CF-3221, 3-4;
CP-3295, 2-15
Summary of rare earth fusion problems. CC-529, 70-73
Th fusion, rare earth separations. CC-793, 19-20

"Trans-cerium" activities (most of the unknown activities in these
references were later identified and are listed under the
appropriate element). MC-11, 5-6; CC-580, 22-25; M-CN-1424, 12;
M-CN-1634, 9; M-CN-1655, 9-10; M-CN-2034, 13; M-CN-2126, 2;
M-CN-2184, 11

Necol Products
In cooling gas. CC-165-B, 18-19
Amount in He pile. CC-418-B, 6-8
Apparatus. CC-258-D, 6; CA-287; CC-389-B, 15-19
Decay curves gas and solids. CC-389-B, 15-19
In water from AC pipes. CH-774, 2-5

Rhodium. CC-680, 9-15; CC-1493, 1-63
57m103, CC-579, 11-13a; CC-1204, 13-15; CN-2596, 10-11
36.5h105, fission yield in Pu239. CN-2799, 2
Th fusion. CC-920, 24-27
30a106, CC-579, 11-13a; CC-920, 43, 47
Energy generation curves. CC-1042, 1-2, 6; 20-21; CL-697, III D.6. 1-31
Radiations of 1.0y Ru106. 30a Ru106 chain. M-CC-1776, 1-3
24m107, M-CN-2184, 11
9h. M-CN-2034, 13
Analytical procedures. MUC-NS #200, 6; CL-697, III D.7, 11; CN-1312,
49-54, 100-111; CN-1850, 72
Analysis in process solutions. CN-1312, 100-111
Behavior of 1 tracer. M-CN-1384, 10
Carrying of Ru activity by Ru carrier. CC-1767, 4
Extraction with pyridine. M-CN-1654, 9; M-CN-1854, 15
Separation of Ru from Te. M-CN-1404, 12; M-CN-1414, 14; CC-1546, 3;
M-CN-1614, 23; M-CN-1624, 22; M-CN-1634, 7-8
Available information on fission isotopes. MUC-CDC #80, TI. III;
CL-697, III D.1-2; 1-11; CL-CDC #8, 1-10
BiPO4 process. CN-1309, 2; CN-1312, 1-16

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE
Rhodium (cont'd)
Fast neutron fission, C-200, T2
Long-lived Rh absence in fission, CC-1683, 2; CC-1767, 8,
Pu fission, M-CN-1654, 10; CN-2799, 2
Weight in pile material, CN-1044, 4-8; CL-697, III D, 4, 1-2

Rubidium

17.5m88, cross-section, CC-2739, 4-5
Analytical procedures, CC-238-D, 2; CN-1850, 73; CC-2739, 2; CN-2929, 7
Available information on fission isotopes, C-200, T1; MUC-CD#80,
TI, II; CL-697, III D, 1-2, 1-14; CL-CDC #9, 1-10
Chains of gaseous ancestry, CC-465-B, 14-18
Weight in pile material, CN-1044, 4-8; CL-697, III L, 4, 1-2

Rubidium

Activity on pile graphite, CC-988, 13
Adsorption process, CN-1839, 1-5; MonN-6, 12
Analytical procedures, CC-971, 21-26; CL-CDC #4, 24-28; CL-697, III D, 7, 10;
MUC-WR #34, 5-7; CN-1312, 32-36; CL-988, 3; CN-1051, 13; CL-CDC #4,
24-28; CN-1312, 32-36; CN-2815, 34-37
Contamination, M-CN-1854, 11-15; M-CN-1884, 10
Reduction by Fe in HCl, M-CN-1424, 14
By H2 and Mg, M-CN-1614, 28
By NaBH4, M-CN-1104, 12; M-CN-1114, 14

Approved for public release
Short-lived contaminants, no interference, CN-2184, 10

Use of NaBiO₃, CN-2034, 12

Available information on fission isotopes, NUC-CD #80, TI, III;
CL-697, III 1-1-2, 1-11; CL-CD #8, 1-10

α and γ activity in pile products, CC-342-F, 4-6; CC-389-B, 4, 6-10

BiPO₄ process, carrying by BiPO₄, CN-1205, 62-64

Decontamination, CN-576, 4-7; CN-692, 41-45; CN-850, 8-9, 11;
CN-933, 5-8, 10; CN-989, 11; CN-1141, 10-12, 21; CN-1509, 2-5;
CN-1311, 1-16

Survey of Ru decontamination, CN-1214, 9-10

Chemistry of Ru, CC-2828, 2-8

Contamination of 133 activities, CC-529, 44

Fast neutron fission, C-200, T2

Pu fission, CN-1654, 10; CN-1911, 6; CN-1958, 1-8; CN-2799, 2

Summation study, CC-342-F, 4-6; CC-389-B, 4, 6-10; CC-465-B, 4-8, 11-13;

CC-579, 3-9; CC-643, 2-3; CC-651, 5-13; CC-1304, 3; CN-1911, 9-11;
CN-2126, 13-14; CC-2379, 11; CC-2658, 2-24

Tracer preparation, CN-1141, 21

Carrier free, CC-1050, 7; CC-2828, 2-8

Volatilization during metal dissolving, CN-933, 23-24

Weight in pile material, CN-1044, 4-8; CL-697, III D, 1-2

Wet fluoride process, decontamination, CN-722, 1-3

Samarium

Long-lived¹⁵¹, from (n,γ) on Sm, MonN-15, 13

Mass assignment by spectograph, CP-3221, 4; CP-3291, 10-13

⁴⁷Th(¹⁵₃γ), CN-2799, 5-6; CC-2966, 2-13

Fission yield in ²³⁵U, CC-2966, 2-13

Fission yield in ²³⁹Pu, CN-2799, 2

Absolute slow and fast yields, CN-2929, 2

From (n,γ) on Sm, ²³⁵U energy, CN-2809, 9

γ spectrum by means of thin magnetic lens spectrometer, CP-3102,

11, Fl0

July 16th nuclear explosion, determination of nuclear efficiency,

LA-356, 2-15

²³⁸U(¹⁵⁵γ), from (n,γ) on Sm, CN-2809, 9

¹⁰Be(¹⁵²γ), direct verification in fission, CC-2966, 3-5, 12

From early separation of ¹⁵²Eu(¹⁵²γ), CC-2310, 22, CC-2966, 3

Absence of ⁶⁰Co activity in neutron irradiated Sm, CP-2901, 22; CC-2966, 3

Absorption process, CC-2720, 2-27

Analytical procedure, CC-2185, 6; NUC-CD #8, 14-17; CC-2966, 4-5

Separation with Y in La-Y separation, CN-CN-2184, 10

Available information on fission isotopes, CL-CD #8, 1-10

"Trans-cerium" activities, CC-580, 22-25

Weight in pile material, CN-1044, 4-8; CL-697, III D, 1-2

Scandium, Absence of Triple Fission Products, CC-1767, 6-7; CC-2310, 26-27

Scattering

α radiation, CC-529, 17-23; CC-535, 14-27; CC-1112, 21; CC-1204, 28-36;

CC-1693, 7; CCN-1919, 1-7

γ radiation, CC-529, 17-23
Selenium

$^{115m} Se$, radiations and exchange studies, CN-2839, 9
$^{18m} Se$, presence in fission, extraction from $^{57m} Se$ parent by
CS_2, MonN-6, 9
Th fission, CC-920, 24-27
$^{57m} Se$, MonN-6, 9
$^{25m}^{\text{II}}$Se, chemical and exchange studies, CN-2819, 12; MonN-15, 12
γ radiations, MonN-2, 7
Half-life and Q energy, CN-2839, 10
Indepenedent fission yield along chain, MonN-15, 12-13
Th fission, CC-920, 24-27
Absence in fission of 74Se isotopes with half-lives greater than 57 minutes,
CC-1683, 2; CC-1767, 8; M-CN-1844, 13; CN-1911, 3; CC-2310, 49-51
Analytical procedures, CL-CDC #4, 24-25, 29-31; MUC-NS #200, 4-5;
CL-697, III D, 7, 3; CN-1312, 49-54; 112-115
Contamination by Te, M-CN-1414, 14
Available information on fission isotopes, MUC-CDC #80, TI, III;
CL-697, III D, 1-2, 1-14; CL-CDC #8, 1-10
Chemical and exchange studies, CN-2819, 12; CN-2839, 9; MonN-2, 7;
MonN-15, 12
Discovery in U and Th fission, CC-920, 35-42
Szilard-Chalmers reaction to prepare tracer, MonN-6, 9; MonN-15, 12
Weight in pile material, CN-1044, 4-8; CL-697, III D, 4, 1-2

Short-lived Chains

Qualitative estimate of yield, CC-529, 13-14

Silver

$^{7.5d} Ag$, CC-1331, 23-25
Fission yield in $^{235} U$, CN-1911, 3; CN-2799, 2
Fission yield in $^{238} U$, CC-2379, 5-6; CC-2485, 4
Fission yield in $^{239} Pu$, CC-1911, 6; CN-1958, 1-8; CN-2799, 2
Standard γ absorption curve, MUC-NS #230, 4, F9
$^{3.2h} Ag$, CC-1911, 2-3; CC-2310, 110-124; CC-2379, 3
Analytical procedures, CC-971, 27; MUC-NS #184, 1-2; CL-697, III D, u, 13;
CN-1312, 49-54, 116-119
Behavior of I tracer, M-CN-1884, 10
Precipitation of Ag$_2$S, M-CN-1884, 12
Available information on fission isotopes, MUC-CDC #80, TI, III; CL-697, III D, 1-2, 1-14; CL-CDC #8, 1-10
Extraction of Ag in presence of Cl$_2$, M-CN-1854, 15
Fast neutron fission, C-200, T2
Fission products in the Pb-Sb range, CC-1204, 22-26
Pu fission, M-CN-1654, 10; CN-1911, 6; CN-1958, 1-8; CN-2799, 2
Weight in pile material, CN-1044, 4-8; CL-697, III D, 4, 1-2

Sodium, Pile Irradiation, M-CN-1424, 15

Strontium

$^{55d} Sr$, δ backscattering as a function of thickness of backscatterer,
CCN-1919, 3, 7
Strontium (cont'd)

- γ energy, CC-465-B, 11-13; CP-2090, 21; CC-2283, 2-6; CP-2590, 6-7
- Chains of gaseous ancestry, CC-465-B, 14-18; CC-1331, 35-37
 - CC-1805, 1-16; CN-2126, 6-7; CC-2310, 55-59; CC-3146, 1-20
- Fission yield in 235U, CC-529, 28-30; CC-920, 1-8; CN-2799, 2
- Fission yield in 239Pu, CC-2485, 4
- Fission yield in 239Pu, CN-1911, 6; CN-1958, 1-8; CN-2799, 2
 - Absolute slow and fast yields, CN-2929, 2
- γ-radiation, absence, CP-2590, 6-7
- Homogeneous slurry pile, CC-1142, 21-22
- July 16th nuclear explosion, determination of nuclear efficiency,
 - La-356, 2-4
- Mass assignment by spectograph, CP-2796, 19-20; CP-2928, 2-5
- 100-ton test, LA-290, 2-22
- Range of fission recoils, CN-1998, 7; CC-2076, 1-17
- Standard β absorption curve, MUC-NS #230, 4, Fl
- Thermal neutron absorption cross-section, CC-3059, 2-12
- 30yr, CC-529, 31-38; CC-1112, 15-20
- β energy, M-CN-2034, 13; CC-2283, 2-6
- Chains of gaseous ancestry, CC-1805, 1-16; CC-3146, 1-20
- γ absence; M-CN-2034, 13
- Standard β absorption curve, MUC-NS #230, 4, Fl
- 9, 791, CC-2310, 70-84
- β and γ energies, CN-2126, 5; CC-2310, 70-73
- Branching to 5m^{9}1 and 57d^{9}1, CC-2310, 74-84; CC-2979, 9-10
 - CC-2310, 55-60; CC-3146, 1-20
- Fission yield in 235U, CC-2799, 2
- Fission yield in 239Pu, CC-1958, 1-8; CN-2799, 2
- Half-life, CC-2310, 70-73
- Range of fission recoils, CC-1546, 6; CC-1559, 1-5; CC-1683, 7;
 - CC-1767, 2; CK-1806, 1-14
- Th fission, CC-920, 24-27
- 2Th(92), chains of gaseous ancestry, CC-465-B, 14-18
- Fission yield in 235U, CC-2126, 5
- γ95, chains of gaseous ancestry, CC-1805, 1-16
- Activity on pile graphite, CC-988, 13
- Analytical procedures, CC-971, 6-8; CL-CDC #4, 15-17; MUC-NS #190, 2;
 - CC-1142, 15-16; CN-1312, 10-15; M-CN-1414, 14; CN-1850, 79-81;
 - CL-697, III D, 7, 5; CN-2815, 23-26
- Analysis in process solutions, CC-988, 3; CL-CDC #4, 15-17;
 - MUC-NS #190, 2; CN-1312, 10-15; CN-2815, 23-26
- Weighing of SrCO$_3$, CC-1546, 4
- Available information on fission isotopes, C-200, Tl; MUC-CDC #80, Tl, III;
 - CL-697, III D, 1-2, 1-14; CL-CDC #8, 1-10
- BaCl$_2$, separation from, CC-227-E, 1
- β and γ activity in pile products, CC-342-F, 4-6; CG-389-B, k, 6-10
- BiP$_4$, process, decontamination, CN-576, 4-7; CN-692, 41-45; CN-933, 5-7;
 - CN-1051, 18-19; CN-1113, 39; CN-1141, 21; CN-1309, 1-27; CN-1392, 3-6
- BiP$_4$ and Fe, scavenger, CN-1051, 18-19
- Carrying on La oxalate and Pb chromate, M-CN-1624, 24

APPROVED FOR PUBLIC RELEASE
Strontium (cont'd)

Energy generation curves, CC-579, 10; CC-829, 1, F1-6, T1; CC-1042, 1-2, 7, 22; CL-697, III D 6, 1-31
Extraction by partial precipitation of Pb(NO₃)₂, M-CN-2184, 12
Au fission, M-CN-1654, 10; CK-1806, 1-14; CN-1911, 6; CN-1958, 1-8; CN-2799, 2; CN-2929, 2
Summation study, CC-342-F, 4-6; CC-389-B, 4, 6-10; CC-465-B, 4-8, 11-13; CC-579, 3-9; CC-643, 1, F1-3; CC-851, 5-13; CC-1394, 3; CN-1911, 9-11; CN-2126, 13-14; CC-2379, 11; CC-2658, 2-24
Tracer preparation, CC-1050, 3-5; CN-CN-1h34, 20; CN-2627, 2-35, F1-30
Weight in pile material, CN-1044, 4-8; CL-697, III D, 4, 1-2
Wet fluoride process, decontamination, CN-722, 1-3
X-ray analysis of Sr phosphate crystals, CN-1998, 8

Sulfur, Absence of Triple Fission Products, CN-1998, 3; CC-2310, 18-21

Summation Study of Long-Lived β and γ Emitters, CC-342-F, 26; CC-389-B, 4-10; CC-465-B, 3-14; CC-579, 3-9; CC-643, 1; CC-851, 5-13; CC-1394, 3; CC-1683, 4; CC-1767, 3; CN-1911, 9-11; CC-1993, 6-7; CN-2126, 13-14; CC-2379, 11; CC-2658, 1-24

Szilard-Chalmers Methods for Preparing Tracers, CN-2809, 10, 17; CN-2819, 18, 18, 23-24; CN-2833, 2-14; CN-2839, 2-14; MonN-2, 17; MonN-6, 9

T

Tellurium

9, 3h¹²⁷, energy, CC-724, 10-11
90d¹²⁷, CC-529, 51; CC-680, 22, 26-29; M-CN-16344, 9
72m¹²⁷, energy, no conversion lines, CP-2590, 6, 9-10
Changes in chemical state on decay of 32d Te¹²⁹ to 72m Te¹²⁹. MonN-15, 12
Th fission, CC-920, 24-27
32d¹²⁹, CC-529, 51; CC-680, 22, 26-29
Changes in chemical state on decay to 72m Te¹²⁹. Mon N-15, 12
Energy of radiations by magnetic lens spectrometer, Cf-2090, 21
Fission yield in U²³⁵, CC-529, 28-30
Range of fission recoils, CN-1998, 7; CC-2076, 1-17
Standard absorption curves, M-CN-95/230, 4, F11-12
Stable-¹³⁰, (n,γ) cross-section, M-CN-1894, 12
30h¹³¹, fission yield in U²³⁵, CC-2310, 156
77h¹³², CC-529, 51
γ radiations, CC-763, 1-21
Capture to fission ratio determination, CN-528, 5-6
Fission yield in U²³⁵, absolute, CC-793, 6-16
Relative, CC-529, 28-30; CN-2799, 2
γ radiations, CC-763, 1-21; CC-826, 1-8
Homogeneous slurry pile, CC-1142, 21-22
Th fission, CC-920, 24-27
<1µ¹³⁵, maximum half-life of one minute, CC-2219, 3-4; CC-2379, 8

APPROVED FOR PUBLIC RELEASE
Ad sorption process, CN-1839, 1-15
An alytical procedures, CC-974, 23-29; CL-DIC #3, 24-25, 29-31; MUC-NS #190, 3-6; CL-697, III D-1, 18; CN-1312, 39-42, 49-54; CN-1850, 82-83; CN-2185, 38-40
Analysis in process solutions, CC-988, 3; CL-DIC #4, 24-25, 29-31; MUC-NS #190, 3-6; CN-1312, 39-42; CN-2815, 38-40
Contamination, CC-1050, 10-10b; M-CN-1404, 12; M-CN-1854, 15
Rh hold-back effect in SO2 reduction, M-CN-1414, 14
Separation from Rh, CN-1317, 100-111; M-CN-1404, 12; CC-154, 3; M-CN-1614, 23; X-CN-1624, 22; X-CN-1634, 7-8
Available information on fission isotopes, C-200, T3; MUC-CD #80, TII, IV; CL-697, III D-1-2, 1-14; CL-DIC #8, 1-10
β and γ activity in pile products, CC-342-F, 1-6; CC-389-B, 6-10
BiPO4 process, decontamination, CN-576, 4-7; CN-692, 41-45; CN-933, 5-8; CN-1309, 2-5; CN-1311, 1-16
Carrying on MnO2, M-CN-1424, 13; CN-168, 12
Chemical studies of radioactive Te, CN-2819, 12; MonN-2, 7; MonN-6, 708
Contamination in Cb coprecipitation on MnO2, CC-1112, 9-10
Contamination in Se procedure, X-CN-1414, 11
Contamination in Zr-Cb procedure, CN-1998, 3
Energy generation curves, CC-829, 1, F1-6, T1; CL-697, III D-6, 1-31
Homogeneous slurry pile, CC-1142, 21-22
Long-lived activities, CC-1050, 10-10b
Pu fission, X-CN-1654, 10
Preparation of I tracer from pile beam beraded Te, X-CN-1854, 16
Short-lived activities, CC-196-; 1; GS-1281m, 7
Summation study, CC-342-F, 4-6; CC-389-B, 4, 6-10; CC-4365-B, 4-8;
CC-579, 3-9; CC-613, 1, F1-3; CC-851, 5-13; CC-1394, 3; CN-1911, 9-11;
CN-2126, 13-14; CC-2379, 11; CC-2658, 2-24
Volatilization during metal dissolving, CN-933, 23-24
Weight in plb. material, CC-1044, 4-8; CL-697, III D-4, 1-2
Wet fluoride process, decontamination, CN-722, 1-3

Thorium
Abstracts of analytical methods, CC-1850, 3.
Th fission, CC-793, 17-21; C-CN-13, 1-11; CC-022, 25-77, 35-45

Thorium, Sweeping of Active Gases from Solution, CN-2929, 6

Tin
10d(12), CN-1998, 3; CN-2126, 3; CC-2310, 145-154
Fission yield in U235, CN-2126, 3; CC-2310, 145-154
62h(123), CN-2126, 3; CC-2310, 145-154; CC-2379, 4
Fission yield in U235, CC-2310, 145-154; CN-2799, 2
Fission yield in Pu239, CN-2799, 2
70n(126), CN-2126, 3; CC-2310, 145-154; CC-2379, 4
Fission yield in U235, CC-2310, 145-154
Analytical procedures, MUC-NS #200, 8-9; CL-697, III D-7, 16; CN-1312, 49-54
Available information on fission isotopes, MUC-CD #80, TII; CL-697, III D-1-2, 1-14; CL-DIC #8, 1-10
Fission products in the Po-85b range, CC-1204, 22-26
Long-lived activity, possibility, CC-529, 4-8
Pu fission, X-CN-1844, 13; CN-2799, 2
Triple Fission Products
Absence, CC-1767, 6-7; CN-1998, 5; CC-2330, 18-20
None observed in U235 fission fragments on photographic emulsion,
LA-427, 2-7

Tritium
Activities from tritium bombardment in n-irradiated Li salts,
CC-2605, 1-11
Preparation, M-CN-1841, 15; M-CN-2016, 12-13; M-CN-2184, 13;
M-CN-2194, 16-17; CSN-1281m, 9

U Uranium
Mass 233, delayed neutrons, CP-3147, 1-8
Mass 235, available information on fission isotopes, CL-697, III D, 1-2,
1-14; CL-CD 88, 1-10
Branching ratio of Be139 and Be140, EM-429, 1-14
Calorimetric determination of product-power ratio and of fission
energy, CF-2773, 2-15
Capture to fission ratio, CC-465-B, 8-10; CN-528, 2-8; CN-989, 3-5;
CN-1141, 5-8; CN-1191, 4; CN-1917, 1-4; CN-1098, 5; CN-2044,
1-10; CF-2773, 2-15
Change in specific activity in enriched U sample, CC-1394, 2
Delayed neutrons, CK-2310, 1-12; CP-3094, 1-30
Jentschke type experiment, CN-1840, 1-5
Range of fission recoils, LA-427, 2-7; CK-1806, 1-14
As a function of mass number, CC-2076, 1-17
Stopping power of various substances, LA-64, 2-13
Short-period delayed y's, LA-253, 2-15
Mass 236, CC-1204, 16-18
Absorption cross-section, CC-2485, 7; CP-3166, 1-10
6.8d237, coincidence experiments, CC-2739, 4
Ether extraction residues as source, M-CN-1414, 16
Half-life, energy, CC-724, 3-9
Production by cyclotron, CC-920, 49, 51; CC-1546, 2
Production in piles, CC-529, 15-16; CC-1331, 30-34; CC-1546, 2;
CC-1767, 9
Szilard-Chalmers methods for securing, CN-2819, 14; CN-2833, 2-14
Mass 238, branching ratio of Be139 and Be140, EM-429, 1-14
Capture to fission ratio, cf. mass 235
Fission yields, CC-2379, 5-6; CC-2185, 4
23.5m239, JUC-CD, 190, TIV; CL-697, III D, 2, 10
Capture yield, CN-771, 3
Homogeneous slurry pile, CC-988, 8-9; CC-1142, 18-19
Monitoring at St. Louis cyclotron, CC-771, 1-23
UF6 method of preparing enriched U239, M-CN-1614, 28; M-CN-1624,
25-26
Adsortion process, CN-2827, 2-35; Fl-30
Analytical procedure, CN-771, 3
Counter current ether extraction column, CN-1055, 3
Homogeneous piles, physico-chemical problems, M-CN-2, 8; M-CN-6, 9-11;
M-CN-15, 13-15
Hydrolysis and complex ion formation, CN-S-1878, 14-18
Preparation of thin films, CN-3328, 2-46
Uranium carbonyl, possibility of formation, C-144
Uranium sulfate, method of preparation, CN-104, 18
Uranil nitrate, mean activity coefficient, M-CN-1424, 14
Uranil phosphate, solubility in NH4 solutions, CN-2195, 1-28
Uranium X

Analytical procedures, CC-793, 22; CC-351, 28-31; CC-971, 34-36; CC-1063, 7; CC-1142, 8-9, 17; CN-1312, 97-99; CP-2825, 7-10

α activity

Determination of coating thickness, NUC-CDC #7, 1-7
Geometry determination, UX as source, CC-351, 14-27; CP-2825, 7-10
Preparation of reference standards, CP-2825, 7-10
Range of UX, α's, NUC-CDC #7, 3
Standard α absorption curve, NUC-NS #230, 4, F26
UX₂ radiation, CC-1050, 11-12b

BiPO₄ process, decontamination, CN-692, 41-45; CN-1141, 9-10
Contribution to total activity, CC-465-B, 5-6
Ether extract of irradiated UNH, CC-1112, 13-14
Removal from pile material, CC-528, 15-16

Wet fluoride process, decontamination, CN-722, 1-3
Zr iodate as carrier, CC-920, 28-29

Water

Activities induced in solid residues from Columbia River water.
CC-1308, 2-3
Chemistry of gas and peroxide formation induced by radiation.
CN-2809, 15; CN-2819, 20-21; CN-2839, 17-18; MonN-2, 16
Effect of radiation, CC-1310, 1-11; M-CN-1404, 11
Induced radioactivity, CN-774, 2-5; M-CN-1434, 17
Short-lived activities, CC-1306, 1-7; M-CN-1414, 16; M-CN-1624, 23;
CC-1631, 2-10
Recoil from Al pipes, CH-774, 2-5; CC-1631, 2-10

Wet Fluoride Process
Co-separation of Ba with LaF₃, CN-528, 9-13; CC-680, 32-39
Decontamination, CN-722, 1-3

Xenon

34m₁²¹ 下 energy of radiations, CC-389-B, 14
5.5m₁²³ 下 energy dissipation, CC-465-B, 13-14; CN-528, 14, 16-17
Half-life, CN-1998, 2; CN-2126, 2; CC-2310, 170-184
Radiations, CC-342-F, 7; CC-2310, 170-184
Yield, CC-342-F, 7

12m₁³⁵ independent yield, branching ratio, CC-2379, 7-9
9.2m₁³⁵ branching ratio, CC-2379, 7-9

Cross-section, CC-1993, 2-3; CC-2187, 1-5; M-CN-2194, 17418;
CC-2485, 3, 5; CP-2600, 2-10; CP-2620, 2-7; CP-2782, 2-15
Dependence of cross-section on neutron temperature, CP-2805, 2-9
Fission yield in U₂³⁵, CC-1993, 3; CN-2799, 2
Fission yield in Pu₂³⁹, CN-2799, 2
Half-life and β radiations, CC-2310, 185-187; CC-2379, 7-9
Independent yield in fission, CC-2310, 188-192; CC-2379, 7-9;
CN-2799, 8; CC-2007, 2-9

Pile poisoning due to short lived fission products, CP-2192, 1-17
Search for Ca₁³⁵ from Xe₁³⁵, CC-2310, 195
Xenon (cont'd)

Mass 136, cross-section, CC-2310, 196-197; CC-2485, 3, 5
3.4m 137, mass assignment of 35y Ce 137, CC-2310, 196-197
41s 139, half-life, CN-1911, 5; CC-2310, 167-169
16s 140, half-life, CC-2310, 167-169
~1.3s 143, half-life, CN-2799, 7
~0.8s 145 (ancestor of 1.2s Ce 145), CN-2799, 7
Absorption on charcoals at room temperature, CC-3106, 1-18
Analytical procedures, abstracts, CN-1850, 93
Separation from Kr, CC-2310, 63-64
Available information on fission isotopes, C-200, T3; MUC-CDC #80, TII, IV;
CL-697, III D,1-2, 1-14; CL-CDC #8, 1-10
Chains of gaseous ancestry, CC-465-B, 14-18; CC-1142, 23-26;
CC-1331, 35-37; CC-1767, 10; CC-1805, 1-16; CN-1911, 5;
CN-1998, 12-15; CC-2126, 6-7; CC-2310, 167-169; CN-2799, 7;
CC-3146, 1-20
Diffusion in UU in temperature range from 925°C to 1000°C, CP-3028, 5
Elementary distribution up to 110 days cooling, CC-465-B, 4-7
Mass spectrographic analysis of Xe from fission, BM-1149, 1-8;
BM-1248, 1-25
Isotopic abundances and some relative branching chain ratios,
for U235 fission, BM-1120, 1-9
Production of Xe isotopes by neutron activation, CC-2409, 1-12
Sweeping from solution, MonN-2, 16-17; MonP-5, 2-15
Apparatus for large-scale collection of fission products on a
charged wire, CC-2998, 2-15
Effect of viscosity, CN-2929, 6
From solutions of U and Pu, CC-3146, 1-20
Off gas activities from metal solution step, CN-1615, 2-19
Weight in pile material, CN-1044, 4-8; CL-697, III D,4, 1-2

X-Radiation

Energy-absorption curves, C-200, 4-5

Yttrium

60y 90, amount of ζ backscattering as a function of thickness of
backscatterer, CC-1919, 6-7
Spectrum by 1800 spectrometer, CC-2283, 2-6
Chains of gaseous ancestry, CC-1805, 1-16; CC-3146, 1-20
Fission yield in U235, CC-529, 28-30
Produced by Zr (n,p), N-CN-1404, 12
51m 91, branching ratio, radiations, CC-2310, 74-84; CC-2379, 9-10
57d 34, branching ratio, CC-2310, 74-84; CC-2379, 9-10
Chains of gaseous ancestry, CC-465-B, 14-18; CC-1331, 35-37; CC-1805
1-16
Dissipation of energy, CC-465-B, 11-13
Fast neutron induced activities in Cd, CC-2299, 1-2
Fission yield in U235, CC-529, 28-30; CC-920, 4-8; CN-2799, 2
Fission yield in Pu239, CN-1958, 1-8; CN-2799, 2
Mass assignment by spectrograph, CF-2926, 16-17;
CF-2928, 4-3, 6-9
100-ton test, LM-20, 4-8
Standard ζ backscatterer, MUC-CDC #230, 4, F2

APPROVED FOR PUBLIC RELEASE
Yttrium (cont'd)

3.5h(92), chains of gaseous ancestry, CC-465-B, 14-18; CN-2126, 6-7;
CC-2310, 44-61; CN-2799, 7; CC-3146, 1-20
Energies of radiations, CN-2126, 5; CC-2310, 83-89
Fission yield in U235, CN-2126, 5; CC-2310, 83-89
Half-life, CC-298-D, 4
Th fission, CC-920, 24-27

11h95, chains of gaseous ancestry, CC-465-B, 14-18; CC-1142, 23-26;
CC-1331, 35-37; CC-1805, 1-16; CC-2310, 55-62; CN-2799, 7;
CC-3146, 1-20
Evidence for chain 11h Y-65d Zr, CC-529, 39-43
Half-life, CC-298-D, 4
Homogeneous slurry pile, CC-1142, 21-22
Th fission, CC-920, 24-27

20m, CC-2310, 85-87; CC-2379, 10
Chains of gaseous ancestry, CC-2799, 7
Fission yield in U235, CC-2310, 85-87; CC-2379, 10
Adsorption procedures, CC-2799, 2-27; CC-289, 1-2, 6-35, Fl-30; CC-2829, 6-11
Analytical procedures, CC-253-B, 4; CC-971, 14-17; CC-1043, 7; CC-1142, 10-12, 17; CL-CDC #4, 32-41; MUC-NUS #190, 7-8; CN-1312, 65-91;
M-CN-1404, 12; CN-1859, 94-96; CL-697, III D, 7, 23-25; CN-2815, 56-61; CC-2845, 12-13
Ammonium formate to separate La from Y, CC-851, 36-37
Analysis in process solutions, CL-CDC #4, 32-41; MUC-NUS #190, 7-8;
CN-1312, 65-91; CN-1845, 56-61; CC-2845, 12-13
Fast procedure, CC-2310, 85-87
Iodate separation of Ce from other rare earths, CC-851, 32-35;
CC-2845, 12-13

K2CO3 digestion, rapid La-Y separation, CC-1204, 20-21
Separation of Eu and Sm with Y, CC-CN-2126, 10
Separation of Y from Nd and Pr, CN-2929, 9
Available information on fission isotopes, C-200, T1; MUC-CDC #80,
TI, III, CL-697, III D, 1-2; 1-14; CL-CDC #8, 1-10
P and y activity in pile products, CC-342-F, 4-6; CC-389-B, 4, 6-10
BiPo4 process, decontamination, CC-576, 4-6; CN-692, 41-45; CN-935, 5-7;
CC-1142, 21; CN-1509, 1-27; CN-1332, 6-14
Chains of gaseous ancestry, CC-465-B, 14-18; CC-1142, 23-26; CC-1331, 35-37; CC-1805, 1-16; CC-3146, 1-20
Energy generation curves, CC-579, 10; CC-389, 1, FL-6, T1; CC-1042, 1-2, 14, 33; CL-697, III D, 6, 1-31
Pu fission, M-CN-154, 10; CN-1958, 1-8; CN-2799, 2
Purity of stock solutions, radioactive tests, CC-465-B, 22
Summation study, CC-342-F, 4-6; CC-389-B, 4-10; CC-465-B, 4-8;
CC-579, 3-9; CC-643, 1, FL-3; CC-851, 5-13; CC-1394, 3; CN-1911, 9-11;
CN-2126, 13-14; CC-2379, 11; CC-2658, 2-24
Th fission, CC-920, 24-27
Tracer preparation, CC-1050, 6, 8; CN-2827, 2-35, FL-30
Weight in pile material, CN-1044, 4-8; CL-697, III D, 4, 1-2
Wet fluoride process, decontamination, CN-722, 1-3
Zinc

49h72, CN-2819, 12-13; CC-2835, 2-14
Fission yield in U235, CC-2835, 2-14
Parent of 14h Ge72, CN-2809, 9
Analytical procedure, CC-2836, 2-6
Available information on fission isotopes, CL-CDC #8, 1-10

Zirconium

90h95, parentage and mediations, CC-1204, 13, 15; CC-2310, 95-101
65d95, γ ray spectrum by 1000 spectrometer, CC-2283, 2-3, 11-14
Chains of gaseous ancestry, CC-1805, 1-16; CN-2126, 6-7
Evidence for 11h Y parent, CC-529, 49
Fission yield in U235, CC-529, 28-30; CC-920, 4-8; CC-1142, 5-7;
CN-2799, 2
Fission yield in U238, CC-2379, 5-6; CC-2485, 4
Fission yield in Pu239, CN-1911, 6; CN-1958, 1-8; CC-2799, 2
γ energy, dissipation, CC-405-B, 11-13
γ energy by coincidence counting, CC-826, 1-8
Growth, decay, and energetics, CC-1112, 4-8c
Half-life, CC-920, 49-50
Homogeneous slurry pile, CC-1142, 21-22
Mass assignment, CC-218-B, 10-11; CC-1112, 4-8c; CC-2345, 1-17
100-ton test, LA-290, 2-22
Parentage and radiations of 90h Cb95, CC-2310, 95-101
Radiations, CC-418-B, 10-11; CC-2160, 12-15
Ranges of fission recoils, CN-1998, 7; CC-2076, 1-17
Standard absorption curves, MUC-NS #230, 4, F3-4

17h97, CC-258-D, 5
Chains of gaseous ancestry, CC-1142, 23-26; CC-3146, 1-20
Energies of radiations, CN-1998, 2; CC-2310, 90-93
Fission yields in Pu239, absolute slow and fast, CC-2929, 2
July 16th nuclear explosion, determination of nuclear efficiency,
LA-356, 2-45

Absence of 22 fission isotopes in range 17h to 65d, CN-1998, 2
Activity on W corrosion experimental pipe, M-CN-162h, 23
Absorption of Na2O, M-CN-1414, 13; CN-1641, 1-13
Adsorption process, CN-1839, 1-15; CC-2827, 2-35, FI-40
Analytical procedures, CC-258-D, 5; CC-418-B, 9; CC-971, 18-21;
Addendum I to CC-971, 1-4; CC-988, 4-7; CC-1142, 13-14; CL-CDC #4,
18-20; CC-1312, 16-25; M-CN-1414, 15; CN-1850, 98-100; CN-1998, 5;
CN-2126, 6; CL-697, III D, 7, 6; CN-2815, 27-30
Analysis in process solutions, CC-988, 3; CC-1113, 30-31;
CL-CDW #4, 18-20; CC-1312, 16-25; CC-2815, 27-30
Comparison of BeZrF6 and oxalate procedures, CN-1911, 3; CN-1312, 21-22
Available information on fission isotopes, C-200, TI, MUC-CDC #80, TI, III;
CL-697, III D, 1-2, 1-14; CL-CDC #8, 1-10

γ and γ activity in pile products, CC-342-F, 4-6; CC-389-B, 4, 6-10
BiPO4 process, decontamination, CN-576, 4-7; CN-592, 41-45; CN-850,
8, 12, 14; CC-933, 5-10; CN-989, 14; CN-168; 18; CN-1113, 32-33;
CN-1141, 12-14, 16-18; CC-1309, 1-27; CN-1311, 1-16; CN-S-1843, 10-20
BiPO4 scavenger, CC-1113, 32-33
Carrying by Li6, CC-1114, 12-24, 16-18
Zr scavenger, CC-1114, 19-20

APPROVED FOR PUBLIC RELEASE
Zirconium (cont'd)

Chains of gaseous ancestry, CC-465-B, 14-18; CC-1142, 23-26; CC-1805, 1-16; CC-3146, 1-20

Cb isotopes from Zr, CC-2345, 1-17

Contamination in Le-Y fraction, M-CN-1404, 12

Coseparation with LeF3, CN-1141, 16-18; CN-1312, 74-81; M-CN-1624, 25;

CN-1641, 1-13

Energy generation curves, CC-579, 10; CC-829, 1, Fl-6, Tl; CC-1042, 1-2, 8, 23-24; Cl-697, III D, 6, 1-31

Fast neutron induced activities in Cb, CC-2299, 1-2

γ-activity, CC-418-B, 10-11, 13

Hydrolysis and complex ion formation, CN-31878, 1-14

Mass assignments, CC-418-B, 10-11; CC-1112, 4-8c; CC-2345, 1-17

Fission, M-CN-1654, 10; CN-1911, 6; CN-1953, 1-8; CN-2799, 2; CN-2929, 2

Possible new activities, CC-1546, 5

Summation study, CC-342-F, 4-6; CC-389-B, 4, 6-10; CC-465-B, 4-8;

CC-579, 3-9; CC-643, 1, Fl-3; CC-851, 5-13; CC-1394, 3; CN-1911, 9-11; CN-2126, 13-14; CC-2979, 11; CC-2658, 2-24

Th fission, CC-793, 21

Tracer preparation, CC-1112, 11-13; CN-1141, 22-23; CC-1204, 19;

CC-2009, 1-5

Absorption process, CC-1112, 11-13; CN-2827, 2-35, Fl-40

Extraction with chloroform and cupferron, M-CN-1654, 11;

M-CN-1854, 16; M-CN-1834, 12

Unsuccessful attempts, CC-1050, 7

Weight in pile material, CN-1044, 4-8; Cl-697, III D, 4, 1-2

Wet fluoride process, decontamination, CN-722, 1-3

Zr iodate

Carrier for Ux, CC-920, 28-29

Ce tracer preparation, CC-851, 35-36

Zr phosphate

Analysis for, CC-2379, 14

Composition, CN-1998, 9

Solubility in HNO3, M-CN-1424, 13