An Evaluation of the Radiative-Capture Cross Section for Tungsten
An Evaluation of the Radiative-Capture Cross Section for Tungsten

by

J. J. Devaney
AN EVALUATION OF THE RADIATIVE-CAPTURE CROSS SECTION FOR TUNGSTEN

by

J. J. Devaney

ABSTRACT

An evaluation of the smooth neutron radiative-capture cross section for tungsten and its isotopes between 0.006 and 20 MeV is presented. Included are multiple-reaction corrections to the data which lower the cross section appreciably, especially above 1 MeV. The results are available in ENDF/B format.

I. INTRODUCTION

This paper, an interim report on the evaluation of tungsten neutron cross sections, gives the smooth radiative-capture cross sections from about 0.006 to 20 MeV. We have continued the conservative philosophy of the first paper in this series (De72a); that is, the expected fluctuations at low energy have not been displayed because they could not be substantiated from author to author nor from isotope to isotope. This remark is perhaps borderline for normal tungsten between 0.04 and 0.1 MeV (see Fig. 1 at the end of the report) where several authors (Gi61, Fr70, Ba69) partially agree on some fluctuation; however, this agreement is not substantiated by comparison of the abundance-weighted isotopic sum with natural tungsten, and it is even contradicted by others (e.g. Po67). We do find significant differences between the isotopic cross-sections, supported both by data and theory, with a reversal in relative magnitude of the isotopes at about 0.2 MeV. This reversal is caused by the differing onset and importance of inelastic-scattering competition. Beyond 3.4 MeV, we cannot justify any isotopic differences, so only the natural element is offered (see Fig. 16). The cross section above about 7 MeV is expected to result largely from direct and collective (semidirect) processes (C165, Br94, Gue66, Lo68, Be68, Be71, Lo70, Ve67, Be70, La59, Lo69, but see also Da64 and Sp69 who would permit higher statistical contributions). In our evaluation, we have weighted experiment according to the stated error, point scatter, comparisons with other data, age, consistency, extensiveness, and general theoretical expectations. Wherever we could determine the sample size, we made multiple reaction corrections (Dr71, De72b, De73). However, without known sample sizes and the consequent amount of the multiple reaction correction needed, we are forced to regard some of the data above 1 MeV as only upper bounds to the true cross sections. These data are so indicated in the figures by downward directed arrows.

II. RESULTS

We present the smooth capture cross sections in a series of graphs, (Figs. 1-16), together with experimental points as corrected for multiple reactions (De73) and for revised standard cross sections where appropriate. We have put error bars on only a few representative points for clarity. References to experiment are given on each graph. Above 3.4 MeV, the curve for 186 W (Fig. 16) is our best estimate for all isotopes. Above 1 MeV, all even isotopes are given by 186 W, Fig. 15. The smooth cross sections are also given in tabular form in Appendix A, (ENDF/B format - Dr70).

The smooth curve through the data was generated from weighted cross-section averages over variable energy intervals. Intervals and numbers of experimental points were varied widely as appropriate to an optimum description of the smooth curves. Initial analyses were readjusted within errors so that the abundance-weighted isotopic sums matched the normal element to within experimental error.
\[W = \text{abundance } 0.135\% \text{ (Ni 58)} \] and other isotopes (0.005\%) were combined with an effective abundance of 26.5\%, and \[W = 0.005\% \] as 30.64\%, and \[W = 28.41\% \] (Ni 58). The atomic weight of natural tungsten is 183.85.

III. DISCUSSION

A. 0.1- to 3.4-MeV Neutron Energy.

Comparison of our curves for W and \[\text{W} = 0.005\% \] (Fig. 6 vs Fig. 10), shows that \[\sigma_{\text{n}7} (W) \text{ (W)} \] crosses from below to above \[\sigma_{\text{n}7} (\text{W}) \] at about 0.23 MeV. Interpreting this effect to be the more successful competition of inelastic scattering of the lighter isotopes, especially the odd isotope, \[\text{W} = 0.005\% \], we have constructed the curves of Figs. 7-9 and 11-14. Onset of inelastic scattering is appreciable above the first level of the target, which is 0.1001 MeV for \[\text{W} = 0.005\% \] (Wa66), 0.0465 MeV for \[\text{W} = 0.005\% \] (Ar66), 0.1112 MeV for \[\text{W} = 0.005\% \] (Ma66), and 0.1225 MeV for \[\text{W} = 0.005\% \] (Gov 66). The \[(n,\gamma\gamma) \] reaction, which also contributes below the first excited level of the target, is expected to be negligible within the accuracy of our estimates of the effect of inelastic scattering on the capture cross section, (See Ref. 1k of De73 for further discussion.) We used identities of the form

\[\sigma_{\text{n}7} = \sigma_{\text{FCN}} \frac{\sigma_{\text{CMn}} + \sigma_{\text{CMn}} + \sigma_{\text{n7}}}{\text{modified nucleus}} \]
\[(1) \]

to estimate the competition of inelastic scattering. \[\sigma_{\text{FCN}} = \sigma_{\text{CMn}} + \sigma_{\text{CMn}} + \sigma_{\text{n7}} \] is the compound-nucleus-formation cross section; \[\sigma_{\text{CMn}} \] is the compound elastic cross section; and \[\sigma_{\text{CMn}} \] is the total inelastic scattering. These parameters were taken from experiment, extrapolated from experiment, and estimated from optical-model calculations. The results were then revised to fit \[\sigma_{\text{T}} \] (De72a), as well as the known experimental \[\sigma_{\text{T}} \] self-consistently for \[\text{W} = 0.005\% \] plus \[\text{W} = 0.005\% \] only up to 0.1 MeV. All cross sections were further adjusted within errors so that the abundance-weighted isotopic sum gave the normal tungsten cross section to well within experimental error. In the above, we used the inelastic scattering data of Lister et al. (Li67 and Go166) for \[\text{W} = 0.005\% \], \[\text{W} = 0.005\% \], and \[\text{W} = 0.005\% \] inelastic scattering was estimated on the basis of the Artna level scheme (Ar66). It might be noted that this procedure gave cross sections differing by about a factor of 2 from the high-energy capture data of Kononov et al. (Ko66), which data we argue are justifiably rejected because of the equal disagreement of Kononov et al., not only with our above described extrapolation above 0.1 MeV, but also with the \[\text{W} = 0.005\% \] weighted average curve at 0.1 - 0.17 MeV (see Fig. 10). Their data also disagree with the \[\text{W} = 0.005\% \] curve (see Fig. 6).

Reliable data for \[\text{W} = 0.005\% \] and \[\text{W} = 0.005\% \] at 0.1 MeV. We do carry the evaluations for \[\text{W} = 0.005\% \] and \[\text{W} = 0.005\% \] distinct from \[\text{W} = 0.005\% \] to about 1 MeV according to the foregoing prescription in order to account for the natural vs \[\text{W} = 0.005\% \] cross-section difference. Beyond 1 MeV, we expect a gradual equivalence in cross section for the even isotopes, but, perhaps more importantly, we have already extrapolated 0.9 MeV above any datum. Consequently, we blend \[\text{W} = 0.005\% \] and \[\text{W} = 0.005\% \] into \[\text{W} = 0.005\% \] at about 1 MeV. However we keep \[\text{W} = 0.005\% \] distinct to higher energy. Accordingly, \[\sigma_{\text{n7}} \] \[\text{W} = 0.005\% \] is predicted to be smaller than for the even isotopes until about 3.4 MeV, where lack of data forces us to one curve for all isotopes. Convergence of the \[\sigma_{\text{n7}} \] curves is somewhat expected since one believes that isotopic differences tend to disappear at high energy, especially for the dominant collective giant-resonance part.

B. 3.4- to 20-MeV Neutron Energy.

As noted above, we offer one curve for all isotopes in this range (Fig. 16). We have data at 3-4 MeV for \[\text{W} = 0.005\% \] and at 14.1 MeV for \[A = 181 \] and 197 (Dr71). We know that the compound-nucleus process dominates at low energy and the direct and giant-resonance collective processes dominate at the middle energies (Cl165, Br66, Be68, Be70, Be71, Lo68, Lo69, Lo70, Os66, Ve67, and La59, but see also Da64 and Sp69). Therefore, for the lower energies in this range, we take as a guide the work of Lane and Lynn (theory-La59), Schmittroth for \[\text{Au} = 197 \] (theory-Sc72), Barry et al. for \[\text{W} = 0.005\% \] (expt.-Ba64), and Bergqvist et al. for \[\text{Ni} = 58 \] (expt. and theory-Be68). From 7-15 MeV we are guided by Coulomb unfolded \[(p,7) \] cross sections \[\text{Ce}(p,7) \text{Se}137, \text{Da64} \] and \[\text{Ve66}; \text{Br}50, \text{Da68}; \text{Br}50, \text{Da68}; \text{Bi}(p,7) \text{Pb209, Da64}; \text{Br}50, \text{Ni}(p,7) \text{Cu, Da72}; \text{Zn}(p,7) \text{Zn65, Da72}); \text{and} \text{(n,7)} \text{cross sections}
on elements other than tungsten \((^{206}_{\text{Pb}}(n,\gamma)^{207}_{\text{Pb}})\), \(^{208}_{\text{Pb}}(n,\gamma)^{209}_{\text{Pb}}\), \(^{209}_{\text{Pb}}(n,\gamma)^{210}_{\text{Pb}}\), \(^{58}_{\text{Ni}}(n,\gamma)^{59}_{\text{Ni}}\), \(^{59}_{\text{Ni}}(n,\gamma)^{60}_{\text{Ni}}\), \(^{60}_{\text{Ni}}(n,\gamma)^{61}_{\text{Ni}}\), \(^{132}_{\text{Ba}}(n,\gamma)^{133}_{\text{Ba}}\), \(^{133}_{\text{Ba}}(n,\gamma)^{134}_{\text{Ba}}\), \(^{134}_{\text{Ba}}(n,\gamma)^{135}_{\text{Ba}}\), and \(^{238}_{\text{U}}(n,\gamma)^{239}_{\text{U}}\). We unfold the Coulomb penetration from the proton reactions using the code PENET kindly supplied by P. G. Young (Yo72).

In estimating the trend of \(\sigma_{\text{n,\gamma}}\) above 15 MeV we have been guided by Gutfreund and Rakavy (Gu66) and by Longo and Saporetti (Lo68).

ACKNOWLEDGEMENTS

It is a pleasure to acknowledge the help of D. M. Drake, P. G. Young, D. R. Harris, and R. J. LaBauve. We are grateful for private communications of data from D. Drake, D. McDaniel, and P. G. Young; from the National Neutron Cross Section Center, Brookhaven National Laboratory by M. Goldberg; and from the Livermore Experimental Cross Section Information Library (refer to the University of California report series, UCRL-50400), Lawrence Livermore Laboratory, by R. J. Howerton. We are also pleased to acknowledge drafting and clerical help from B. Powell, D. McClellan, and N. Whitmore, as well as a critical reading by D. G. Foster, Jr.

REFERENCES

Be72a. I. Bergqvist, D. M. Drake, and D. K. McDaniel, "Radiative Capture of Fast Neutrons by \(^{40}_{\text{Ca}}\)," to be published.
De73. J. J. Devaney, "Multiple-Reaction Correction to Reaction Cross Sections," to be published in Nuclear Science & Engineering.

APPENDIX

ENDF/B-FORMAL LISTING OF TUNGSTEN CROSS SECTIONS

The capture cross section of tungsten and its isotopes from about 0.005 MeV to 20 MeV are listed in ENDF/B format. Hollerith descriptive information is omitted here because it is included in the text.

<table>
<thead>
<tr>
<th>TUNGSTEN SMOOTH RADIATIVE CAPTURE CROSS SECTION MATERIAL</th>
<th>740</th>
<th>740 1451</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.40000+00 1.52213+02</td>
<td>0</td>
<td>0</td>
<td>740 3102</td>
</tr>
<tr>
<td>0.00000+00 0.49401+06</td>
<td>0</td>
<td>0</td>
<td>740 3102</td>
</tr>
<tr>
<td>7.40000+00 1.52213+02</td>
<td>0</td>
<td>0</td>
<td>740 3102</td>
</tr>
<tr>
<td>0.00000+00 0.49401+06</td>
<td>0</td>
<td>0</td>
<td>740 3102</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TUNGSTEN-182 SMOOTH RADIATIVE CAPTURE CROSS SECTION MATERIAL</th>
<th>742</th>
<th>742 1451</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.41820+04 1.80385+02</td>
<td>0</td>
<td>0</td>
<td>742 3102</td>
</tr>
<tr>
<td>0.00000+00 0.619140+06</td>
<td>0</td>
<td>0</td>
<td>742 3102</td>
</tr>
<tr>
<td>7.41820+04 1.80385+02</td>
<td>0</td>
<td>0</td>
<td>742 3102</td>
</tr>
<tr>
<td>0.00000+00 0.619140+06</td>
<td>0</td>
<td>0</td>
<td>742 3102</td>
</tr>
</tbody>
</table>
TUNGSTEN-184 SMOOTH RADIATIVE CAPTURE CROSS SECTION

<table>
<thead>
<tr>
<th>Energy (eV)</th>
<th>Cross Section (barns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6</td>
<td>+0.70 0.12</td>
</tr>
<tr>
<td>3.0</td>
<td>+0.52 0.14</td>
</tr>
<tr>
<td>5.5</td>
<td>+0.35 0.16</td>
</tr>
<tr>
<td>8.0</td>
<td>+0.27 0.18</td>
</tr>
</tbody>
</table>

TUNGSTEN-186 SMOOTH RADIATIVE CAPTURE CROSS SECTION

<table>
<thead>
<tr>
<th>Energy (eV)</th>
<th>Cross Section (barns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>+0.70 0.18</td>
</tr>
<tr>
<td>4.5</td>
<td>+0.38 0.16</td>
</tr>
<tr>
<td>4.9</td>
<td>+0.26 0.18</td>
</tr>
<tr>
<td>7.5</td>
<td>+0.15 0.16</td>
</tr>
<tr>
<td>1.2</td>
<td>+0.11 0.16</td>
</tr>
<tr>
<td>2.4</td>
<td>+0.05 0.16</td>
</tr>
<tr>
<td>5.5</td>
<td>+0.05 0.16</td>
</tr>
<tr>
<td>8.0</td>
<td>+0.04 0.18</td>
</tr>
<tr>
<td>1.1</td>
<td>+0.07 0.14</td>
</tr>
<tr>
<td>2.0</td>
<td>+0.07 0.20</td>
</tr>
</tbody>
</table>

Additional Values

<table>
<thead>
<tr>
<th>Energy (eV)</th>
<th>Cross Section (barns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6</td>
<td>+0.70 0.12</td>
</tr>
<tr>
<td>3.0</td>
<td>+0.52 0.14</td>
</tr>
<tr>
<td>5.5</td>
<td>+0.35 0.16</td>
</tr>
<tr>
<td>8.0</td>
<td>+0.27 0.18</td>
</tr>
</tbody>
</table>

For a complete set of values, please refer to the original document.
Fig. 1. Natural tungsten smooth radiative capture cross section.
Fig. 2. Tungsten-182 smooth radiative capture cross section.
Fig. 3. Tungsten-183 smooth radiative capture cross section.
Fig. 4. Tungsten-184 smooth radiative capture cross section.
Fig. 5. Tungsten-186 smooth radiative capture cross section.
Fig. 6. Natural tungsten smooth radiative capture cross section.
Fig. 7. Tungsten-182 smooth radiative capture cross section.
Fig. 8. Tungsten-183 smooth radiative capture cross section.
Fig. 9. Tungsten-184 smooth radiative capture cross section.
Fig. 10. Tungsten-186 smooth radiative capture cross section.
Fig. 11. Natural tungsten radiative capture cross section.
Fig. 12. Tungsten-182 radiative capture cross section.
Fig. 13. Tungsten-183 radiative capture cross section.
Fig. 14. Tungsten-184 radiative capture cross section.
Fig. 15. Tungsten-186 radiative capture cross section.
Fig. 16. Tungsten radiative capture cross section.