EXPLO: Explosives Thermal Analysis Computer Code
This report was issued originally in January 1978.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
EXPLO: Explosives Thermal Analysis
Computer Code

Dwight L. Jaeger
CONTENTS

ABSTRACT .. 1

I. INTRODUCTION .. 1

II. THERMAL ANALYSIS THEORY .. 3
 A. Problem Description ... 3
 B. External Convection Analysis .. 3
 C. Internal Convection Analysis ... 4
 D. Conduction Analysis .. 6

III. COMPUTER CODE ORGANIZATION ... 13

IV. MATERIAL LIBRARY .. 15

V. EXAMPLE PROBLEMS ... 16
 A. PBX 9502 Sphere ... 16
 B. Plutonium-Beryllium Sandwich ... 18
 C. Skid Model .. 25

REFERENCES ... 32

APPENDIX: EXPI.0 INPUTS .. 33

NOMENCLATURE .. 36
EXPLO: EXPLOSIVES THERMAL ANALYSIS COMPUTER CODE

by

Dwight L. Jaeger

ABSTRACT

The finite difference method is used to calculate temperature fields and times to initiation for explosive materials. The code is one-dimensional and is programmed for Cartesian, cylindrical, and spherical coordinates. Temperature-dependent properties, phase changes, and multiple heat source terms are allowed. Multiple source terms use Nth-order Arrhenius kinetics for each material component. Temperature, flux, convection, or radiation boundary conditions may be employed. Internal convection is considered for materials that undergo a solid-liquid phase change. The Crank-Nicholson implicit solution method, which allows large time steps and short running time, is used.

I. INTRODUCTION

WX Division of the Los Alamos National Laboratory has been concerned with thermal initiation of explosives for many years. Stringent weapons safety requirements, aerodynamic heating in low-altitude high-speed aircraft, and explosives that are in contact with radioactive materials are examples of the thermal initiation problems of current interest. The code EXPLO is a derivative of the TEPLO code developed by Anderson. EXPLO deviates from TEPLO in the following major areas: (1) variable conductivity between each node, (2) Nth-order rather than zero-order Arrhenius kinetics, (3) multiple heat generation terms, and (4) internal convection for melt problems.
EXPLO solves the conduction equation with N source terms:

\[
\rho C_p \frac{\partial T}{\partial \tau} = (\nu \nu T) + \sum_{j=1}^{N} \rho (S_j - W_j)^N Q_j Z_j e^{-E_j/RT} + QJ + \rho QI \\
+ \rho FQ_m(T - T_f)
\]

where \(W \) must obey

\[
\frac{dW_j}{dT} = (S_j - W_j)^N e^{-E/RT}
\]

and where

- \(T \) = temperature,
- \(\tau \) = time,
- \(\rho \) = density,
- \(C_p \) = heat capacity,
- \(k \) = thermal conductivity,
- \(S \) = original fraction of species \(j \),
- \(W \) = current burned fraction of species \(j \),
- \(N \) = reaction order,
- \(Q \) = heat of reaction,
- \(Z \) = collision number,
- \(E/R \) = activation temperature,
- \(QJ \) = heat input at layer interfaces,
- \(QI \) = heat generation,
- \(T_f \) = transition (melt) temperature,
- \(F \) = constant, and
- \(Q_m \) = phase transition energy.

For problems involving melt and internal convection a free convection analysis is performed, which uses Prandtl and Grashof numbers to determine the Nusselt number. This is then used to determine an effective thermal boundary layer.
thickness. Finally, the thermal conductivity of the liquid region outside the thermal boundary layer is increased artificially to simulate the heat flow caused by the free movement of the liquid region. The conduction equation [Eq. (1)] can then be used to simulate the conduction-convection problem.

II. THERMAL ANALYSIS THEORY
A. Problem Description

EXPLO was developed as a heat transfer tool for a variety of explosives thermal initiation problems. These include aerodynamic heating of external weapons on high-speed aircraft, irradiated materials in contact with explosives, the possibility of exposure of weapons to fire, and many others. The high explosives can have nonlinear material properties, internal heat generation, and phase changes, which most heat transfer codes cannot handle. A one-dimensional, multilayer, finite difference approach was selected for this computer code.

Temperature, flux, and convective external boundary conditions were required. The capability for either temperature or energy initialization was required with an exponential form for the energy initialization. Phase change and internal convection were required for materials, such as TNT, that melt long before ignition temperatures are reached. Nth-order Arrhenius kinetics with multiple species were also required to simulate mixed explosives. The code uses either steady-state or transient boundary conditions, with either fixed or variable time steps. The classical convection analysis using Prandtl, Reynolds, Grashof, and Nusselt numbers is incorporated into the code.

B. External Convection Analysis

Routines are available within EXPLO to perform either free or forced convection on the external boundary. The free convection analysis assumes a vertical plate theory and uses the correlation

\[N_{\text{NU}} = C (N_{GR}N_{PR})^m \]

with the following coefficients and exponents.
The exact location of the transition between coefficients and exponents, based on the product of Grashof and Prandtl numbers, was selected to give a piecewise smooth correlation with the Nusselt number. The analysis is reasonably accurate for vertical plates and vertical cylinders. EXPLO uses this analysis for all problems, including spherical problems, and thus caution is in order.

The forced convection analysis uses three continuous correlations among the Nusselt, Prandtl, and Reynolds numbers from a flat plate theory.\(^3\)

\[
0 < \text{Re} < 3305
\]

\[
\text{Nu} = 0.332 \left(\frac{1}{3} \right) \left(\frac{1}{2} \right) \text{Pr} \text{Re}^{1/2}
\]

\[
3305 < \text{Re} < 2,846,758
\]

\[
\text{Nu} = 0.0292 \left(\frac{1}{3} \right) \left(\frac{0.8}{0.8} \right) \text{Pr} \text{Re}^{0.8}
\]

\[
2,846,758 < \text{Re}
\]

\[
\text{Nu} = 0.185 \left(\frac{1}{3} \right) \frac{\text{Re}}{(\log \text{Re})^{1.584}}
\]

The flat plate theory was used to develop the programmed correlations, and further code development may be required for certain cylindrical and spherical problems.

C. Internal Convection Analysis

TNT thermal initiation experiments conducted at Los Alamos\(^4\) indicated that a substantial amount of internal convection was taking place in the liquid TNT. To simulate the convection phenomena, a model was devised that calculated the effective thermal boundary layers and then artificially increased the
conductivity of the material that was above the melting point and outside the boundary layer. In this way a conduction code can simulate the heat conduction plus the heat transport. To illustrate this point, consider a vertical heated plate (Fig. 1). The low-density hot air near the wall tends to rise, establishing a velocity profile and a thermal boundary layer. The classical definition of a boundary layer is

\[
\frac{T_w - T_{BL}}{T_w - T_{AMB}} = 0.99 ,
\]

where

\begin{align*}
T_w &= \text{wall temperature}, \\
T_{BL} &= \text{temperature at maximum thickness}, \text{ and} \\
T_{AMB} &= \text{ambient temperature}.
\end{align*}

Therefore, there is sufficient mixing in the fluid outside the boundary layer to maintain a temperature gradient near zero. The internal convection problem can be simulated by defining an effective boundary layer with a resistance to heat flow equal to the real boundary layer's resistance and then setting the conductivity of the free moving fluid sufficiently high to restrain the temperature variations in this region to <1%. The interface resistance can be calculated by using the free convection correlations, defined in Sec. II. B., to define the Nusselt number, and hence h, the convection coefficient. Then, using the relation for equal thermal resistance, it follows that

![Fig. 1. Vertical heated plate.](image-url)
\[
\frac{q}{A} = h(T_w - T_{AMB}) = \frac{k\Delta T}{\Delta X},
\]

where
\begin{align*}
q & = \text{heat flow}, \\
A & = \text{area}, \\
h & = \text{convection coefficient}, \\
T_w & = \text{wall temperature}, \\
T_{AMB} & = \text{ambient temperature}, \\
k & = \text{conductivity}, \\
\Delta T & = \text{temperature drop in boundary layer}, \text{ and} \\
\Delta X & = \text{boundary layer thickness}.
\end{align*}

This can be rewritten to define the effective thermal boundary layer as
\[
X_{\text{eff}} = \frac{k}{h}.
\]

The internal convection problem is thereby reduced to a conduction problem that uses both the real conductivity of the fluid in the boundary layer and the conduction through the central portion of the fluid pool with its conductivity made high enough to ensure a <1\% deviation of the temperature through the boundary layer.

D. Conduction Analysis

The previous sections defined the boundary conditions and translated the internal convection problem into a conduction problem. The solution to this conduction problem is different from Anderson's classical solution\(^1\) in that the thermal conductivity variations at the fluid-boundary layer intersection are now large, and the intersection moves with time.

The conduction equation [Eq. (1)] can be expanded, using a Taylor series expansion, and formulated according to the Crank-Nicholson method\(^5\) to give
\[T'_m = \frac{(1-\beta)\Delta\tau}{C_p} FQM \cdot T'_m - \frac{\alpha \Delta\tau}{\Delta r^2} (1-\beta) \left[T'_{m+1} + T'_{m-1} - 2T'_m + \frac{K \Delta r}{2r} \left(T'_{m+1} - T'_{m-1} \right) \right] \] (7)

\[= T_m + \frac{\beta \Delta\tau}{C_p} FQM \cdot T_m + \frac{\alpha \Delta\tau}{\Delta r^2} \beta \left[T_{m+1} + T_{m-1} - 2T_m + \frac{K \Delta r}{2r} \left(T_{m+1} - T_{m-1} \right) \right] \]

\[+ \frac{\Delta\tau}{C_p} \sum_{j=1}^{N} \left(S_j - W_{mj} \right) Q_j Z_j e^{-E_j/RT_m} + \frac{\Delta\tau}{\rho C_p} \left(QJ + \rho QI - \rho FQ_m T_f \right) \]

where

\(T'_m \) = temperature at a new time step;
\(m \) = node number;
\(K = 0, 1, \) or 2 for Cartesian, cylindrical, or spherical geometry, respectively;
\(\alpha \) = thermal diffusity;
\(\tau \) = time;
\(r \) = spacial coordinate;
\(S \) = initial species fraction;
\(W \) = species at \(\tau \);
\(Q \) = heat of decomposition;
\(Z \) = collision number;
\(E/R \) = activation temperature; and
\(\beta \) = 0-backward difference, .5-Crank-Nicholson, 1-forward difference.

Equation (7) can be simplified to give

\[-C_1(1-\beta)T'_{m-1} + \left[CC - \frac{\rho \Delta r^2}{k} FQM (1-\beta) + 2(1-\beta) \right] T'_m = C_2 (1-\beta) T_{m+1} \] (8)

\[= \beta C_1 T_{m-1} + (CC + \frac{\beta \rho \Delta r^2}{k} FQM - 2\beta) T_m + \beta C_2 T_{m+1} \]

\[+ \frac{\rho \Delta r^2}{k} \sum_{j=1}^{N} \left(S_j - W_{mj} \right) Q_j Z_j e^{-E_j/RT_m} + \frac{\Delta r^2}{k} \left(QJ + \rho QI - \rho FQ_m T_f \right) \]

where

\[CC = \frac{\Delta r^2}{\alpha \Delta\tau} \]
Equation (8) is valid over a region of equally spaced intervals with constant conductivity. The normal finite difference scheme applies Eq. (8) over a defined layer and adds a dummy node at each end of the layer for the boundary conditions or layer intersections. However, if a melt transition is moving through a layer in which the conductivity of the liquid differs from the solid, the temperature distribution is not calculated correctly. The solution is to consider all layers to be one element thick and to use two dummy nodes to define the interface with the next element. The dummy nodes may then be eliminated algebraically to give a matrix equal in size to that of a one-layer problem and smaller than that in a multilayer problem solved by the conventional procedure.

The nodal pattern (Fig. 2) consists of one real element and two boundary elements for each node. Equation (8) is valid for node \(m \) with the boundary conditions in which the temperature and flux must be continuous. Thus, for the boundary between nodes \(\ell \) and \(m \), the boundary conditions are

\[
\frac{q}{A} = k_{\ell} \frac{T_\ell - T_{\ell+1}}{\Delta x_\ell} = k_m \frac{T_{m-1} - T_m}{\Delta x_m} ,
\]

(9)
and

\[
\frac{T_\ell + T_{\ell+1}}{2} = \frac{T_{m-1} + T_m}{2},
\]

(10)

where

\[
\begin{align*}
 k_\ell &= \text{conductivity of element } \ell, \\
 k_m &= \text{conductivity of element } m, \\
 \Delta X_\ell &= \text{size of element } \ell, \text{ and} \\
 \Delta X_m &= \text{size of element } m.
\end{align*}
\]

Solving Eq. (10) for \(T_{\ell+1}\), substituting the result into Eq. (9), and solving for \(T_{m-1}\) gives

\[
T_{m-1} = \frac{1 - n_{\ell m}}{1 + n_{\ell m}} T_m + \frac{2 n_{\ell m}}{1 + n_{\ell m}} T_\ell,
\]

(11)

where

\[
n_{\ell m} = \frac{k_\ell \Delta X_m}{k_m \Delta X_\ell}.
\]

A similar expression can be derived for the interface between \(m\) and \(n\) giving

\[
T_{m+1} = \frac{1 - n_{nm}}{1 + n_{nm}} T_m + \frac{2 n_{nm}}{1 + n_{nm}} T_n,
\]

(12)

where

\[
n_{nm} = \frac{k_n \Delta X_m}{k_m \Delta X_n}.
\]

Substitution of Eqs. (11) and (12) into Eq. (8) gives the final form of the conduction equation:
Equation (13) is an implicit equation capable of large time steps and it can be solved by Gaussian elimination. It is valid for all interior nodes and is unaffected by layer intersections. Note that if $\Delta X_m = \Delta X_n$ and $k_m = k_n$ (on the interior of a given layer), then $n_{nm} = 1$, $n_{zm} = 1$, and Eq. (13) reduces to a more conventional equation.1,3,4

Temperature, flux, and convection boundary conditions are of interest in thermal initiation problems. If node x (Fig. 2) is on the boundary and a temperature is imposed on the boundary between it and the dummy node $x-1$, the average temperature of the two nodes must equal the boundary temperature (T_0); thus, the temperature boundary condition can be stated as

$$T_1 + T_2 = 2T_0 \quad .$$

The flux boundary condition is obtained from Fourier's conduction law, which states (defined for heat flow into the system as positive)

$$\frac{q}{A} = k \frac{dT}{dX} \quad .$$
A Taylor series expansion of Eq. (15) provides the final form for the flux boundary condition,

\[T_1 - T_2 = \frac{q \Delta X}{k} \quad \text{(16)} \]

The convection-radiation boundary condition is obtained by equating Newton's law of cooling to Fourier's conduction law:

\[cG \left[T_R^4 - \left(\frac{T_1 + T_2}{2} \right)^4 \right] + h \left(T_0 - \frac{T_1 + T_2}{2} \right) = \frac{q}{A} = k \frac{dT}{dX} \quad \text{(17)} \]

A Taylor series expansion of Eq. (17) provides the final form of the convection-radiation boundary condition,

\[\frac{h \Delta X}{k} T_0 + \frac{cG \Delta X}{16k} (T_1 + T_2)^3 \quad \text{and} \quad T_1 + \left[-1 + \frac{h \Delta X}{2k} + \frac{cG \Delta X}{16k} (T_1 + T_2)^3 \right] T_2 \]

\[= \frac{h \Delta X}{k} T_0 + \frac{cG \Delta X}{k} T_R^4 \quad \text{(18)} \]

Equations (14), (16), and (18) are the boundary equations where subscript 0 refers to ambient temperature, subscript 1 refers to the dummy boundary node, subscript 2 refers to the first real node, and subscript R refers to the radiation ambient temperature. The boundary conditions can be combined with the conduction equation [Eq. (13)] to generate a Crank-Nicholson tridiagonal matrix \(D_{ij} \) of the form

\[
\begin{bmatrix}
D_{11} & D_{12} & 0 & 0 & \ldots & \ldots & \ldots & 0 \\
D_{21} & D_{22} & D_{23} & 0 & \ldots & \ldots & \ldots & 0 \\
0 & D_{32} & D_{33} & D_{34} & \ldots & \ldots & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & D_{i,i-1} & D_{ii} & D_{i,i+1} & 0 & \ldots & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 0 & D_{k-1,k-2} & D_{k-1,k-1} & D_{k-1,k} & \ldots \\
0 & 0 & \ldots & 0 & 0 & 0 & D_{k,k-1} & D_{kk} & \ldots
\end{bmatrix}
\]
where the conduction equation has the form

\[\begin{bmatrix} D_{ij} \\ T_i \end{bmatrix} = \begin{bmatrix} V_i \end{bmatrix}, \quad (19) \]

where

\[D_{11} = D_{kk} = 1.0, \text{ or } -1.0, \text{ or } 1.0 + \frac{h\Delta X}{2k} + \frac{\sigma \kappa T}{16k} (T_1 + T_2)^3 \quad (20) \]

and

\[D_{12} = D_{k,k-1} = 1.0, \text{ or } -1.0, \text{ or } -1.0 + \frac{h\Delta X}{2k} + \frac{\sigma \kappa T}{16k} (T_1 + T_2)^3 \quad (21) \]

for temperature, flux, or convection-radiation boundary conditions, respectively; and where

\[D_{1,i-1} = \frac{2C_1 n_{lm}}{1 + n_{lm}} (1-\beta), \quad (22) \]

\[D_{i,i} = CC + \left[2C_1 \left(\frac{1 - n_{lm}}{1 + n_{lm}} \right) - C_2 \left(\frac{1 - n_{nm}}{1 + n_{nm}} \right) - \frac{\rho \Delta r^2 F_0}{k} \right] (1-\beta), \quad (23) \]

\[D_{i, i+1} = \frac{2C_2 n_{nm}}{1 + n_{nm}} (1-\beta), \quad (24) \]

and also

\[V_i = V_n = 2T_0, \text{ or } \frac{a\Delta X}{k}, \text{ or } \frac{h\Delta XT}{k} + \frac{\sigma \kappa T_0}{k} T_R^4 \quad (25) \]

for temperature, flux, or convection boundary conditions, respectively; and finally, where
\[
V_i = \frac{2\beta C_1 n_{\text{lm}}}{1 + n_{\text{lm}}} T_{i-1} + \left[CC - 2\beta + \beta C_1 \left(\frac{1 - n_{\text{lm}}}{1 + n_{\text{lm}}} \right) + \beta C_2 \left(\frac{1 - n_{\text{nm}}}{1 + n_{\text{nm}}} \right) \right] T_i
\]

\[
+ \frac{\beta \rho \Delta r^2}{k} FQ_m T_i + \frac{2\beta C_2 n_{\text{nm}}}{1 + n_{\text{nm}}} T_{i+1} + \frac{\rho \Delta r^2}{k} \sum_{j=1}^{N} \left(S_j - W_{i,j} \right) Q_j Z_j e^{-\frac{E_j}{RT_m}}
\]

\[
+ \frac{\Delta r^2}{k} \left(Q_j + \rho Q I \right) - \frac{\rho \Delta r^2}{k} FQ_m T_m
\]

The above analysis has been programmed for the CDC 7600 and VAX/VMS computers at Los Alamos and is used to simulate a variety of tests. Temperature distribution errors and energy check errors were prevalent in all problems before the \(n_{\text{lm}}\) and \(n_{\text{nm}}\) were included in the analysis. There was an early attempt to fix the error problems by including the nonlinear term \(\delta k \delta T / \delta \delta \delta \delta \) in the analysis and defining a linear conductivity variation, \(k_0 + \beta T\), across the melt interface. However, this proved unsuitable. The solution to the conduction equation given here is the only solution that handles properly the moving interface between the low-conductivity boundary layer and the high-conductivity liquid pool between the boundary layers.

III. COMPUTER CODE ORGANIZATION

EXPL0 is written in FORTRAN IV. The main program is only a controller; as many input, output, and execution steps as possible are organized into subroutines. Data transmission between the subroutines is through four common blocks. The first contains the major arrays, such as temperature, which are used by most of the subroutines. The second contains layer-independent variables such as geometry definition and boundary conditions. The third contains layer-dependent variables such as dimensions, kinetics constants, and material properties. The fourth contains parameters that are generated by the code such as total heat, flux, and internal energy. A list of the inputs and their functions is in the Appendix.

Special features of some inputs and their effect on program execution need further discussion. The code calculates an average temperature for each time step, which, in turn, is used to calculate temperature-dependent material properties. Temperatures from a previous time step are stored in the T array, and new calculations are stored in the TT, or T' array. At the beginning of
each new time step, the T and TT arrays contain the same temperatures. If the number of variable property iterations (IKOUNT) is set to zero, the material properties are determined from the previous time step. However, if IKOUNT is set to one, the code first uses the previous temperatures to determine material properties and calculates the TT array. Then, the code determines material properties from the average of the T and TT arrays and calculates a new TT array. This process continues IKOUNT times. Normally, IKOUNT need not be set greater than one. However, for problems involving melt with internal convection, problems that burn beyond initiation (IDR or IDM = 2), or if the code output contains energy warning errors, IKOUNT may have to be set to three or greater.

Some problems involve a fixed flux at one boundary and a time-dependent temperature at the other boundary. Often the system should be allowed to equilibrate to a temperature distribution defined by the flux and the initial boundary temperature. If the ISS input is set to 1 (Card 2, see the Appendix), the code calculates an initial temperature distribution before it runs the transient analysis.

The code has a variable time step feature. If the maximum temperature change for all nodes is >4°C, the time step is decreased by half. If the maximum temperature change for all nodes is <10% of the maximum change allowable, the time step is increased by a factor of 2. If the initial time step is set to 0 or is not input, the code will calculate the initial time step.

The third card contains an input called GLOAD. GLOAD is a gravity-loading coefficient; it is used only by the internal convection routine to calculate the Grashof number. It is intended for use on studies involving the aerodynamic heating of an explosive beyond its melting point in aircraft or missile systems subject to aerodynamic forces other than gravity.

A point should be made about the code's operation in reacting boundary layer calculations. If a liquid explosive is heated through a boundary layer, thermal initiation occurs within the boundary layer. The code applies Nth-order kinetics to each element. In a real case, part of the explosive reacts, vaporizes, and floats away leaving a void to be filled. To represent this within the code, only for cases with internal convection (IDM = 2), the array that contains the burned fraction is reinitialized to zero before each calculation. Thus, each time step generates only the total energy available in an element, but that energy is replaced for the next time step. This use of the code gives better
results for the initiation of liquids; however, it invalidates the code's use for liquid burn problems.

If the energy initialization option is used, the code requires input of the average initial energy deposit (ENGA) and the front face energy deposit (ENGF) for each layer of material. The code then fits an exponential curve of the form

\[E_i = (ENGF)e^{-C_1X} \]

where \(C_1 \) is selected such that the average energy criteria are met, \(E_i \) is the nodal initial energy, and \(X \) is the spatial distance.

The specific heat and thermal conductivity are defined as functions of temperature. The user may define the value of specific heat and conductivity for up to five temperatures. If a phase transition (such as melting) exists, the user can input the phase transition energy at any or all of the five temperatures. The computer code will linearly interpolate the defined values to determine the value at any temperature during the transient.

The use of Nth-order kinetics hints that the code may be valid for burn calculations. The reaction indicator (IDR) can be set equal to two, to allow the code to continue calculating beyond the initiation point. The code assumes that the heat is generated in the solid or liquid phase and is available for conduction from the generation point. In a real case the high explosive vaporizes and releases heat as gas. Any heat that is not lost must be convected and conducted back into the solid. Therefore, the code calculates reaction rates that may be considerably different than reality.

The user can simulate test configurations with the code and plot thermocouple data on the space plots generated by the code. If this option is used, inputs for the number of thermocouples (NTH) and the number of data points per thermocouple (NDATA) must be specified on Card 2. The code uses the thermocouple data to interpolate data points linearly in time and then places these points on the space plots.

IV. MATERIAL LIBRARY

A material library has been constructed to be compatible with the EXPLO computer code. This library (MATLIB) greatly reduces the time required to
prepare an input file. A library search is initiated if the user defines the reaction indicator (IDR) to be a number greater than 99. A list of the materials that are available for use with EXPLO is printed on the output file during each execution of the computer code. The data format used in the material library is the same as that used for the normal EXPLO input.

V. EXAMPLE PROBLEMS

EXPLO assumes that the user will have the figures output on the color FR80 system at Los Alamos. To reduce the amount of data that appears on each figure, EXPLO makes extensive use of color coding according to layer. Therefore, although some of the figures in this document may look confusing to the reader, the normal color film output will be clear.

From the many thermal analyses performed at Los Alamos, three were selected for simulation with EXPLO. The first is an analysis of a 2.54-cm-diam PBX 9502 sphere that was tested in the Los Alamos unconfined critical temperature test chamber. This example shows the type of problems the code was designed to solve. The second example shows how the code can be used to calculate the temperature distribution of a plutonium-beryllium sandwich subjected to pulsed heating. The third example shows how a user may add a FORTRAN subroutine that can add energy (as a function of time) between layers of a composite. This particular example is a theoretical model that describes a potential mechanism by which HE is ignited during a skid impact.

A. PBX 9502 Sphere

We first prepared an input deck (Fig. 3) that consisted of a title card (line 1), two cards of control information (lines 2 and 3), three cards

```
1 2.54 cm diameter 9502 sphere
2 41 10 299 0 0 3 0 .60 .5
3 0.0001 40000 .9 203.0 0 0 0 .60 pbx-9502
4 1 293 .0 643
5 1 293 .0 643
6 1 293 .0 643
7 1 293 .0 643
8 1 293 .0 643
9 1 293 .0 643
10 1 293 .0 643
```

Fig. 3.
Input deck for PBX 9502 sphere.
describing the transient temperature on the external surface (lines 4, 5, and 6), and four lines describing the material properties and geometry (lines 7 through 10). In this case, the material properties for PBX 9502 were found from material 102 in the material library. The sphere was divided into four layers to facilitate comparison of the analysis with test results. The terminal output (Fig. 4) shows the maximum temperature for each layer at each time. This particular analysis shows that we would have a thermal ignition at the center of the sphere after 2395 seconds.

![Terminal output for PBX 9502 sphere.](attachment:image.png)
The first frame on the film file contains a description of the geometry and a summary of the room-temperature material properties (Fig. 5). The subsequent plots that are printed on the film are dependent on the output option selected on card 2. For option 1, the code will generate a temperature versus space plot for the initial temperature distribution (Fig. 6) and the final temperature distribution (Fig. 7). If EXPLO had detected more than 0.1% decomposition of a high explosive (HE) component, it will also generate a burned fraction versus space plot (Fig. 8). EXPLO then generates plots of the boundary flux and internal heat generation versus time (Fig. 9) and temperature (Fig. 10), which are helpful when comparing EXPLO results with differential thermal analysis results. EXPLO then generates temperature versus time plots for each layer (Fig. 11) followed by a composite (Fig. 12) of all layers (the film output is color coded). Finally, EXPLO will generate plots of specific heat, internal energy, and conductivity versus temperature for each layer.

B. Plutonium-Beryllium Sandwich

This example demonstrates EXPLO's ability to deposit energy as a function of both space and time. The first three cards of the input deck (Fig. 13) are similar to those discussed in the first example. Lines 4 through 29 define a time-dependent multiplication factor (QFI - fourth column) for the internal heat generation. The geometry section (lines 30 through 41) is similar to the first example except for the energy generation term (QI) in the right-hand column of
Fig. 6.
Temperature distribution for PBX 9502 sphere.

Fig. 7.
Final temperature distribution (PBX 9502 sphere).
Fig. 8.
Burned fraction versus space plot (PBX 9502 sphere).

Fig. 9.
Boundary flux and internal heat generation versus time (PBX 9502 sphere).
Fig. 10.
Boundary flux and internal heat generation versus temperature (PBX 9502 sphere).

Fig. 11.
Temperature versus time (PBX 9502 sphere) (individual layer).
Fig. 12.
Temperature versus time (PBX 9502 sphere) (composite of all layers).

Fig. 13.
Input deck (plutonium-beryllium sandwich).
data. The magnitude of the internal heat generation for each time step is the product of QFI and Q1. Therefore, the magnitude of either QFI or Q1 may be arbitrary but the other must be selected appropriately. The terminal output (Fig. 14) shows the maximum temperature for each layer as a function of time.

The first plot on the film file (Fig. 15) shows the geometry and provides a room-temperature summary of the material properties. EXPLO then generates several plots as described in the previous example, which include transient temperature plots for each layer (Fig. 16) and a composite transient temperature plot (Fig. 17). As previously described, EXPLO will follow these plots with material property plots for each layer.

<table>
<thead>
<tr>
<th>POLY SLAB STUDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0.000000</td>
</tr>
<tr>
<td>0.077</td>
</tr>
<tr>
<td>0.128</td>
</tr>
<tr>
<td>0.144</td>
</tr>
<tr>
<td>0.164</td>
</tr>
<tr>
<td>0.174</td>
</tr>
<tr>
<td>0.184</td>
</tr>
<tr>
<td>0.226</td>
</tr>
<tr>
<td>0.256</td>
</tr>
<tr>
<td>0.345</td>
</tr>
<tr>
<td>0.452</td>
</tr>
<tr>
<td>0.460</td>
</tr>
<tr>
<td>0.435</td>
</tr>
</tbody>
</table>

Terminal output (plutonium-beryllium sandwich).
Fig. 15.
Geometry description and room-temperature summary of material properties (Pu-Be sandwich).

Fig. 16.
Transient temperature plot for individual layer (Pu-Be sandwich).
C. Skid Model

EXPLO has also been modified, on several occasions, to accept user-defined routines that calculate energy input as a function of other variables. As an example, we developed one subroutine that calculated the energy generated by a sliding surface as a function of several variables and time. We are using this subroutine, with EXPLO, to try to understand better the initiation of HE caused by a skid impact. The subroutine requires one additional line of input data (line 9, Fig. 18) in the input file. The first input (the number 3) indicates the layer to the left of which the energy will be added. The second input is the drop height (cm), and the third is the weight (g). The fourth and fifth inputs are temperatures that correspond to shear strengths, the sixth and seventh inputs. The last input is the skid angle.

The first frame on the film output (Fig. 19) shows the geometry used for the calculation. We simulated the moving HE with a thick and a thin layer. We used the thin layer to obtain accurate calculations at the skid interface. The target was a gold layer, backed by a copper layer, which, in turn, was backed by an aluminum layer. The energy from skid was input between layers 2 and 3. The TTY output (Fig. 20) shows that the specimen rebounded 2.1 ms after impact. It also shows that, even though the HE was heated to 648 K, the specimen did
not ignite. The temperature distribution after rebound (Fig. 21) shows that this target was able to conduct heat away from the HE and thus prevent ignition. The burned fraction plot (Fig. 22) shows that 3% of the explosive at the interface has reacted. The flux gradient plot (Fig. 23) shows that the energy input was very high for approximately the first 10 μs while the HE was still cold and strong. By 25 μs, the HE has thermally softened at the interface, and the heat input is constant until rebound. The temperature of the HE at the interface increases rapidly for approximately 10 μs (Fig. 24). After 10 μs the HE is able to transfer most of the generated heat to the gold layer. The HE temperature does, however, continue to increase, but at a much lower rate. The
<table>
<thead>
<tr>
<th>Layer</th>
<th>Model</th>
<th>Temp (°C)</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The table above shows the maximum temperature for each layer over time.

Fig. 20.
TTY output (skid model).
Fig. 21.
Temperature distribution after rebound (skid model)

Fig. 22.
Burned fraction plot (skid model).
Fig. 23.
Flux gradient plot (skid model).

Fig. 24.
Transient temperature plot for individual layer (skid model).
temperature-time curve is not smooth, partly because of the phase transitions within the HE. The composite transient plot (Fig. 25) shows the complexity of the heat transfer that takes place. Finally, Figs. 26, 27, and 28 show the material property plots for PBX 9501.

![Composite transient temperature plot (skid model).](image)

Fig. 25.
Composite transient temperature plot (skid model).

![Heat capacity versus temperature plot (skid model).](image)

Fig. 26.
Heat capacity versus temperature (skid model)
Fig. 27.
Internal energy versus temperature (skid model).

Fig. 28
Conductivity versus temperature (skid model).
REFERENCES

APPENDIX
EXPLO INPUTS

Card 1 5A10

1-60 - Title

Card 2 1615

1- 5 - IGEOM - 0-Slab, 1-Cylindrical, 2-Spherical
6-10 - K - Number of layers (10 max)
11-15 - INDOUT - Output indicator
- 0-Time-temperature summary
- 1-Detailed time-temperature
- 2-Above plus plots
- 3-Above plus temperature of each node
16-20 - NCYC - Cycles per print
21-25 - NCYP - Number of cycles printed
26-30 - IIBC - Inner B.C.
- 0-Temperature
- 1-Flux
- 2-Convection
- 3-Conv-radiation
31-35 - IOBC - Outer B.C.
- 0-Temperature
- 1-Flux
- 2-Convection
- 3-Conv-radiation
36-40 - NOTIM - Number of time-dependent boundary conditions
41-45 - IDT - Variable time? 0-Yes, 1-No
46-50 - IZZY - Initialization, 0-Temperature, 1-Energy
51-55 - IKOUNT - Variable property iterations
56-60 - I SKID - 0-Normal, 1-For skid tests, 2-For hot wire initiation
61-65 - NTH - Number of thermocouple locations
66-70 - NDATA - Number of data points
71-75 - ISS - Initial steady-state indicator
76-80 - BETA - 0-Euler forward, .5-Crank-Nicholson, 1-Euler backward

Card 3 8E10

1-10 - DT - Initial time increment(s)
11-20 - TIMEMX - Maximum calculation time
21-30 - RI - Inner radius (cm)
31-40 - TQIB - Temp or flux on inner boundary (K, or cal/cm²/s)
41-50 - TQOB - Temp or flux on outer boundary (K, or cal/cm²/s)
51-60 - SSFR - Solid state reaction function
61-70 - VOLR - Initial HE volume ratio (<1.0)
71-80 - PRESMX - Maximum container containment pressure (atmos)

Next Card (If External Convection or Radiation) 8E10.3

1-10 - DIM - Characteristic dimension (cm)
11-20 - ALT - Altitude - (meters)
<table>
<thead>
<tr>
<th>Card Range</th>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-30</td>
<td>VELOC</td>
<td>Velocity (m/s)</td>
</tr>
<tr>
<td>31-40</td>
<td>DELTAM</td>
<td>Ambient temperature deviation from standard</td>
</tr>
<tr>
<td>41-50</td>
<td>EMIS</td>
<td>Emissivity</td>
</tr>
<tr>
<td>51-60</td>
<td>TOR</td>
<td>Radiation temperature base</td>
</tr>
</tbody>
</table>

New Card(s) (If Time-Dependent Boundary) 8E10.3

<table>
<thead>
<tr>
<th>Card Range</th>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>TIMB</td>
<td>Time(s)</td>
</tr>
<tr>
<td>11-20</td>
<td>TQIB</td>
<td>Temperature or flux on inner boundary (K, cal/cm²/s)</td>
</tr>
<tr>
<td>21-30</td>
<td>TQOB</td>
<td>Temperature or flux on outer boundary (K, cal/cm²/s)</td>
</tr>
<tr>
<td>31-40</td>
<td>QFI</td>
<td>Time-dependent multiplication factor for QI</td>
</tr>
<tr>
<td>41-50</td>
<td>QFJ</td>
<td>Time-dependent multiplication factor for QJ</td>
</tr>
<tr>
<td>51-60</td>
<td>ALT</td>
<td>Time-dependent altitude, transient convection</td>
</tr>
<tr>
<td>61-70</td>
<td>VELOC</td>
<td>Time-dependent velocity (m/s), transient convection</td>
</tr>
<tr>
<td>71-80</td>
<td>QRAD</td>
<td>Radiation flux</td>
</tr>
</tbody>
</table>

Next Card(s) (1-Each Layer) I4, 2I3, 6F10.0, A10

<table>
<thead>
<tr>
<th>Card Range</th>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>NNL</td>
<td>Number of elements per layer</td>
</tr>
<tr>
<td>5-7</td>
<td>IDR</td>
<td>Reaction, 0-No, 1-Yes, 2-Continue analysis beyond initiation, if >99, find all material data in material library</td>
</tr>
<tr>
<td>8-10</td>
<td>IDM</td>
<td>Melt, 0-no, 1-yes, 2-internal convection</td>
</tr>
<tr>
<td>11-20</td>
<td>THICK</td>
<td>Thickness of layer (cm)</td>
</tr>
<tr>
<td>21-30</td>
<td>TAVI</td>
<td>Initial average temperature (K)</td>
</tr>
<tr>
<td>31-40</td>
<td>ENGA</td>
<td>Initial average energy (cal/gm³)</td>
</tr>
<tr>
<td>41-50</td>
<td>ENGF</td>
<td>Initial front face energy (cal/gm³)</td>
</tr>
<tr>
<td>51-60</td>
<td>QI</td>
<td>Internal heat generation (cal/g/s)</td>
</tr>
<tr>
<td>61-70</td>
<td>QJ</td>
<td>Heat generation at interface (cal/cm²/s)</td>
</tr>
<tr>
<td>71-80</td>
<td>MTL</td>
<td>Material label</td>
</tr>
</tbody>
</table>

Next Card(s) (If IDM=2) 8E10.3

<table>
<thead>
<tr>
<th>Card Range</th>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>VISC(1)</td>
<td>Viscosity coefficient</td>
</tr>
<tr>
<td>11-20</td>
<td>VISC(2)</td>
<td>Viscosity coefficient</td>
</tr>
<tr>
<td>21-30</td>
<td>VISC(3)</td>
<td>Viscosity coefficient</td>
</tr>
<tr>
<td>31-40</td>
<td>BET</td>
<td>Coefficient of thermal expansion</td>
</tr>
</tbody>
</table>

Next Card(s) (5 maximum) 10F10.0

<table>
<thead>
<tr>
<th>Card Range</th>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>TMLT</td>
<td>Transition temperature</td>
</tr>
<tr>
<td>11-20</td>
<td>RHO</td>
<td>Density (g/cm³)</td>
</tr>
<tr>
<td>21-30</td>
<td>CP</td>
<td>Specific heat (liquid phase, cal/g/K)</td>
</tr>
<tr>
<td>31-40</td>
<td>EK</td>
<td>Conductivity (liquid phase, cal/cm/s/K)</td>
</tr>
<tr>
<td>41-50</td>
<td>HTFUS</td>
<td>Heat of fusion (cal/g)</td>
</tr>
<tr>
<td>51-60</td>
<td>E</td>
<td>Activation energy (cal/mole)</td>
</tr>
<tr>
<td>61-70</td>
<td>Q</td>
<td>Heat release (cal/g)</td>
</tr>
<tr>
<td>71-80</td>
<td>Z</td>
<td>Frequency factor (1/s)</td>
</tr>
<tr>
<td>81-90</td>
<td>ORDR</td>
<td>Reaction order</td>
</tr>
<tr>
<td>91-100</td>
<td>SPFR</td>
<td>Species fraction (can be 0 for last)</td>
</tr>
</tbody>
</table>

For Each Above Card (5 maximum) 10F10.0

<table>
<thead>
<tr>
<th>Card Range</th>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>51-60</td>
<td>E</td>
<td>Activation energy (cal/mole)</td>
</tr>
</tbody>
</table>
61-70 - Q - Heat release (cal/g)
71-80 - Z - Frequency factor (1/s)
81-90 - ORDR - Reaction order
91-100- SPFR - Species fraction (can be 0 for last)
End with a blank card

Next Card(s) (If Test Data) 20E6.0 (There should be NTH points)
1-100- RTST - Location of each thermocouple

Next Card(s) (If Test Data) 20E6.0 (There should be NDATA cards)

1-10 - TIMTST - Time of thermocouple reading
11-100- TEMTST - Thermocouple temperatures
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Constant</td>
</tr>
<tr>
<td>$CC = \frac{\Delta r^2}{\alpha \Delta t}$</td>
<td>Coefficient of finite difference equation</td>
</tr>
<tr>
<td>$C_1 = 1 - \frac{k \Delta r}{2r}$</td>
<td>Geometry coefficient</td>
</tr>
<tr>
<td>$C_2 = 1 + \frac{k \Delta r}{2r}$</td>
<td>Geometry coefficient</td>
</tr>
<tr>
<td>D_{ij}</td>
<td>Matrix coefficient</td>
</tr>
<tr>
<td>E_j</td>
<td>Activation energy of jth component</td>
</tr>
<tr>
<td>h</td>
<td>Convection coefficient</td>
</tr>
<tr>
<td>K</td>
<td>Thermal conduction coefficient</td>
</tr>
<tr>
<td>$i,j,k,l,m,n,$</td>
<td>Exponent or subscript</td>
</tr>
<tr>
<td>N</td>
<td>Number of explosive species present</td>
</tr>
<tr>
<td>N_{GR}</td>
<td>Grashof number</td>
</tr>
<tr>
<td>N_{NU}</td>
<td>Nusselt number</td>
</tr>
<tr>
<td>N_{PR}</td>
<td>Prandtl number</td>
</tr>
<tr>
<td>N_{RE}</td>
<td>Reynolds number</td>
</tr>
<tr>
<td>Q_j</td>
<td>Energy of decomposition</td>
</tr>
<tr>
<td>Q_I</td>
<td>Internal energy generation</td>
</tr>
<tr>
<td>Q_J</td>
<td>Interface energy generation</td>
</tr>
<tr>
<td>R</td>
<td>Gas content</td>
</tr>
<tr>
<td>S_j</td>
<td>Initial species concentration</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td>T_{AMB}</td>
<td>Ambient temperature</td>
</tr>
<tr>
<td>T_{BL}</td>
<td>Boundary layer temperature</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>T_w</td>
<td>Wall temperature</td>
</tr>
<tr>
<td>T_R</td>
<td>Ambient temperature for radiation</td>
</tr>
<tr>
<td>V</td>
<td>Force vector</td>
</tr>
<tr>
<td>W_j</td>
<td>Species present at any given time</td>
</tr>
<tr>
<td>ΔX</td>
<td>Incremental distance</td>
</tr>
<tr>
<td>ΔX_{eff}</td>
<td>Effective boundary layer thickness</td>
</tr>
<tr>
<td>Z</td>
<td>Collision number</td>
</tr>
<tr>
<td>α</td>
<td>Thermal diffusivity</td>
</tr>
<tr>
<td>ε</td>
<td>Emissivity</td>
</tr>
<tr>
<td>Δ, δ</td>
<td>Denotes difference</td>
</tr>
<tr>
<td>$\eta_i = \frac{K_i \Delta X_i}{K_j \Delta X_j}$</td>
<td>Coefficient in difference equation</td>
</tr>
<tr>
<td>ρ</td>
<td>Density</td>
</tr>
<tr>
<td>σ</td>
<td>Stefan-Boltzmann Constant</td>
</tr>
<tr>
<td>τ</td>
<td>Time</td>
</tr>
<tr>
<td>Page Range</td>
<td>Domestic Price</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>001-025</td>
<td>$5.00</td>
</tr>
<tr>
<td>026-050</td>
<td>6.00</td>
</tr>
<tr>
<td>051-075</td>
<td>7.00</td>
</tr>
<tr>
<td>076-100</td>
<td>8.00</td>
</tr>
<tr>
<td>101-125</td>
<td>9.00</td>
</tr>
<tr>
<td>126-150</td>
<td>10.00</td>
</tr>
<tr>
<td>151-175</td>
<td>$11.00</td>
</tr>
<tr>
<td>176-200</td>
<td>12.00</td>
</tr>
<tr>
<td>201-225</td>
<td>13.00</td>
</tr>
<tr>
<td>226-250</td>
<td>14.00</td>
</tr>
<tr>
<td>251-275</td>
<td>15.00</td>
</tr>
<tr>
<td>276-300</td>
<td>16.00</td>
</tr>
<tr>
<td>301-325</td>
<td>$17.00</td>
</tr>
<tr>
<td>326-350</td>
<td>18.00</td>
</tr>
<tr>
<td>351-375</td>
<td>19.00</td>
</tr>
<tr>
<td>376-400</td>
<td>20.00</td>
</tr>
<tr>
<td>401-425</td>
<td>21.00</td>
</tr>
<tr>
<td>426-450</td>
<td>22.00</td>
</tr>
<tr>
<td>451-475</td>
<td>$22.00</td>
</tr>
<tr>
<td>476-500</td>
<td>24.00</td>
</tr>
<tr>
<td>501-525</td>
<td>25.00</td>
</tr>
<tr>
<td>526-550</td>
<td>26.00</td>
</tr>
<tr>
<td>551-575</td>
<td>27.00</td>
</tr>
<tr>
<td>576-600</td>
<td>28.00</td>
</tr>
<tr>
<td>601-up</td>
<td>$9.00</td>
</tr>
</tbody>
</table>

†Add $1.00 for each additional 25-page increment or portion thereof from 601 pages up.