Neutrino Disintegration of the Deuteron at LAMPF Energies
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

In the interest of prompt distribution, this LAMS report was not edited by the Technical Information staff.
Neutrino Disintegration of the Deuteron at LAMPF Energies

by

J. S. O’Connell*

NEUTRINO DISINTEGRATION OF THE DEUTERON

AT LAMPF ENERGIES

by

J. S. O'Connell

ABSTRACT

The differential cross section for the neutrino disintegration of the deuteron is calculated using effective range theory for neutrino energies from zero to 53 MeV.

The general formula for the neutrino-nucleus reaction

\[\nu_e + A(Z,N) \rightarrow A(Z+1, N-1) + e^- \]

with the kinematics defined as

\[\begin{align*}
\mathbf{k} & \rightarrow \mathbf{v} - \mathbf{k} \\
\mathbf{q} & \rightarrow \mathbf{q} - \mathbf{n} \\
\omega & = E - \nu
\end{align*} \]

is given by

\[\frac{d\sigma}{d\nu} = 2\pi \sum_{\text{lepton spins}} \frac{1}{2J_z + 1} \sum_{m_f} \sum_{m_i} |\langle J_f | \mathbf{H}_\nu | J_i \rangle|^2. \quad (1) \]

For relativistic electrons (\(E >> m_e \)) the multipole decomposition of the weak interaction Hamiltonian between nuclear states of definite total angular momentum and parity is (1,2)

\[
\sum_{\text{lepton spins}} \frac{1}{2J_z + 1} \sum_{m_f} \sum_{m_i} |\langle J_f | \mathbf{H}_\nu | J_i \rangle|^2 = 2 \pi \frac{4\pi}{2J_z + 1} \cos^2 \theta \left\{ \sum_{J=0} |\langle J_f | \mathbf{M}_J + \omega | J_i \rangle|^2 \right. \\
+ \left. \left(\frac{1}{2} q_\lambda^2 + \tan^2 \theta \right) \sum_{J=1} |\langle J_f | \mathbf{T}_J^{\text{el}} | J_i \rangle|^2 + |\langle J_f | \mathbf{T}_J^{\text{mag}} | J_i \rangle|^2 \right\} \\
- \tan \frac{\theta}{2} \left(\frac{q_\lambda^2}{q^2} + \tan^2 \theta \right) \sum_{J=1} 2 \text{Re} \langle J_f | \mathbf{T}_J^{\text{mag}} | J_i \rangle < \langle J_f | \mathbf{T}_J^{\text{el}} | J_i \rangle > \right\} \\
\]

(2)

where \(\cos \theta = \mathbf{k} \cdot \mathbf{v} \) and \(q_\lambda^2 = q^2 - \omega^2 \).
These multipole operators are the partial-wave decompositions of the operators

\[\tau_\pm (l, \sigma, \nu, \sigma') e^{i \cdot \gamma} = \frac{1}{\sqrt{2}} \sum_{\sigma} \left(\begin{array}{c} \mu \\ \sigma \\
 \end{array} \right) \cdot \left(\begin{array}{c} \nu \\ \sigma' \\
 \end{array} \right) e^{i \cdot \gamma} \]

They are defined in references (1) and (2) and are made up of spherical Bessel functions in \(q_r \), vector spherical harmonics, and the nucleon spin and momentum operators.

The cross section for the nucleon reaction \(\nu_e + N \rightarrow P + e^- \), \(Q = 0.78 \text{ MeV} \)
is evaluated by taking the density of final states as

\[\frac{d\sigma}{d\nu} = \frac{d^3k}{(2\pi)^3} \frac{k}{E} \frac{d\phi}{d\nu} \]

and evaluating the reduced matrix elements \(\langle J_1 = \frac{1}{2}, J_f = \frac{1}{2} \rangle \) of the major low momentum transfer terms, viz., the vector,

\[\langle \frac{1}{2} | u^+ (q) L_L | \frac{1}{2} \rangle = \frac{\langle \frac{1}{2} | J_o (q_r) \gamma_\nu (p) | \frac{1}{2} \rangle}{\langle \frac{1}{2} | J_o (q_r) \gamma_\nu (p) | \frac{1}{2} \rangle} = \left(\frac{2}{4\pi} \right)^{\frac{1}{2}} \left(1 - \frac{\omega^2}{q^2} \right) f_N (q) \]

and the axial vector (with subscript 5 from \(\gamma_5 \))

\[\langle \frac{1}{2} | a_5 (q) | \frac{1}{2} \rangle = \frac{\langle \frac{1}{2} | J_o (q_r) \gamma_\nu (p) | \frac{1}{2} \rangle}{\langle \frac{1}{2} | J_o (q_r) \gamma_\nu (p) | \frac{1}{2} \rangle} = \left(\frac{2}{4\pi} \right)^{\frac{1}{2}} f_N (q) \]

and the vector

\[\langle \frac{1}{2} | V^{(5)} | \frac{1}{2} \rangle = \left(\frac{2}{3} \right)^{\frac{1}{2}} \left(\frac{4u}{2\pi} \right)^{\frac{1}{2}} \langle \frac{1}{2} | J_o (q_r) \gamma_\nu (p) | \frac{1}{2} \rangle = \left(\frac{4u}{2\pi} \right)^{\frac{1}{2}} f_N (q) \]

where \(f_N (q) \) is the nucleon form factor and \(\mu = \mu_p - \mu_n \) is the nucleon vector magnetic moment.

Substituting in Eqs. (1) and (2) gives

\[\frac{d^3N}{d\nu} = \frac{C^2 kE}{4\pi} \left\{ \begin{array}{c} 2 \left(1 - \frac{\omega^2}{q^2} \right)^2 \cos^2 \frac{\theta}{2} + 4 \left[F_A^2 + \frac{q_{\nu}^2}{2M} \right] \\
\left(\frac{1}{2} + \frac{1}{2} \sin^2 \frac{\theta}{2} \right) - 8 F_A \left(2M \right)^2 \sin \frac{\theta}{2} \end{array} \right\} \]

In the approximation \(q^2 = (1 - \cos \theta) \), i.e. \(\omega = 0 \), the angular distribution can be integrated to give

\[\sigma_{\nu N} = \frac{C^2 kE}{\pi} \left[\begin{array}{c} 1 + 3 \frac{F_A^2}{2M^2} + \frac{20}{3} \left(\frac{q_{\nu}}{2M} \right)^2 - 16 F_A \left(\frac{q_{\nu}}{2M} \right)^2 \end{array} \right] \]

These last two terms are usually neglected at low neutrino energies, however, at \(V = 53 \text{ MeV} \) the last term contributes + 2.6. This cross section, evaluated with the coupling constants,

\[G = 1 \times 10^{-8} M_p, F_A = -1.24 \]

is shown in Fig. (1) in the region of electron-neutrino energies available from the decay of stopped muons:

\[\mu^+ + e^+ + \nu_\mu + \nu_e \]

The cross section for the breakup of the deuteron

\[\nu_e + D \rightarrow P + P + e^- , Q = -1.44 \text{ MeV} \]

has a density of final states

\[\frac{d\sigma}{d\nu} = \frac{d^3k}{(2\pi)^3} \frac{d^3p}{(2\pi)^3} \frac{k}{E} \frac{d\phi}{d\nu} \frac{M_p}{2(2\pi)^3} E dE dP \]

where \(p \) is the relative momentum between the two final protons

\[\nu = E + \frac{p^2}{M} + Q \]

The nuclear recoil energy has been neglected.
where ψ_o and ψ_p are the initial and final S-wave radial wave functions of the bound deuteron and the continuum protons. The double differential cross section obtained by integrating over the (isotropic) proton angular distribution is

$$
\frac{d^2\sigma_{UD}}{dE'dE} = \frac{4}{3} \frac{G^2}{(2\pi)^2} \frac{ke}{(2\pi)^2} \frac{N_F}{M_p}
$$

$$
x \left[\frac{1}{2} + \frac{1}{2} \sin^2 \frac{\theta}{2} \right] \left[\frac{F_A}{2M} \right]_{\psi_p}^2
$$

$$
- 2 \sin \frac{\theta}{2} F_A \left(\frac{qU_N}{2M} \right) I_0^2 (p,q)
$$

Effective-range theory provides simple, reliable wave functions for the 3S_1 bound state and the 1S_0 continuum state

$$
\psi_o (r) = \sqrt{\frac{2a}{1 - a r_e}} \frac{e^{-ar}}{r} \frac{1}{\sqrt{4\pi}}
$$

$$
\psi_p (r) = \frac{\sin (pr + \delta)}{pr}
$$

$$
p \cot \delta = \frac{1}{a_s} + \frac{1}{2} r_s p^2
$$

where $a = 0.232 \text{ fm}^{-1}$, r_e (triplet effective range) = 1.75 fm, $r_s = 2.79 \text{ fm}$, and a_s (singlet scattering length for protons) = -7.82. These functions give

$$
I_{0}^e (p,q) = \sqrt{4\pi} \sqrt{\frac{2a}{1 - a r_e}} \frac{1}{p q/2}
$$

$$
x \left[\cos \delta \frac{\alpha^2 + (p + q/2)^2}{4 \ln (\alpha x + (p - q/2)^2)} \sin \delta \frac{\alpha^2}{(p - q/2)^2} + \epsilon \right]
$$

$$
\left[\tan^{-1} \frac{2a (q/2)}{\alpha^2 + p^2 - (q/2)^2 + \epsilon} \right]
$$

$\epsilon = 0$ for $\alpha^2 + p^2 - (q/2)^2 \geq 0$

$\epsilon = 1$ for $\alpha^2 + p^2 - (q/2)^2 < 0$.

Fig. 1. Electron-neutrino reaction cross section for the free neutron and the deuteron. The dashed line is for the singlet S-wave final state while the solid line includes the contribution of higher partial waves.
The total cross section, obtained by numerically integrating over the electron energy and angular distribution, is shown in Fig. (1).

The electron-neutrino spectrum from mu-plus decay at rest is given (with ν in MeV) by

$$\frac{dN}{d\nu} = \frac{12}{(53)^2} \nu^2 (53 - \nu).$$

The product $\frac{dN}{d\nu} \times \sigma_{VD}$ is plotted in Fig. (2) showing $\nu = 43$ MeV as the most probable interaction energy. When σ_{VN} and σ_{VD} are averaged over the neutrino spectrum we obtain

$$\langle \sigma_{VN} \rangle = 1.52 \times 10^{-40} \text{ cm}^2, \quad \langle \sigma_{VD} \rangle = 44 \times 10^{-40} \text{ cm}^2.$$
The contribution of higher nucleon partial waves can be obtained by adding the $L = \text{even singlet}$ partial waves using

$$
\psi_p = \frac{1}{2} \left(e^{i \mathbf{p} \cdot \mathbf{r}} + e^{-i \mathbf{p} \cdot \mathbf{r}} \right) - j_0 (pr)
$$

and the $L = \text{odd triplet}$ partial waves using

$$
\psi_p = \frac{1}{2} \left(e^{i \mathbf{p} \cdot \mathbf{r}} - e^{-i \mathbf{p} \cdot \mathbf{r}} \right).
$$

The cross section is augmented by these higher partial waves at the higher neutrino energies and back angles as shown in Figs. (1) and (4). The spectrum averaged cross section for the deuteron increases to

$$
\langle \sigma_{\text{total}} \rangle = 0.48 \times 10^{-40} \text{cm}^2.
$$

The present calculation differs from the extension of the Kelly and Überall calculation by Chen in that the momentum dependence of the radial integral has been taken into account and the weak magnetism term and higher partial waves added.

The spectrum-averaged cross sections for the free neutron and deuterium can be compared to the neutrino-electron elastic scattering and to recent shell model calculations for carbon and oxygen.

$$
\langle \sigma_{\text{ve}} \rangle = 0.0053 \times 10^{-40} \text{cm}^2
$$

$$
\langle \sigma_{\text{vc}} \rangle = 0.146 \times 10^{-40} \text{cm}^2
$$

$$
\langle \sigma_{\text{vd}} \rangle = 0.052 \times 10^{-40} \text{cm}^2
$$

These results show that the deuteron is an important target for neutrino interactions because of its large reaction cross section and because this cross section can be reliably computed. The proposed LAMPF experiment of Hughes, Nemethy, Duclos, Burman, and Cochran will utilize a 6m3 deuterated-water Cerenkov counter separated by 6m of shielding from the LAMPF beam stop. With 1/3 mA of 750 MeV protons incident on the beam stop a $\nu_e + D \rightarrow 2P + e^-$ event rate of 40 per day can be expected for the deuteron spectrum averaged cross section.

The deuteron cross section is closely related to the weak reaction

$$
P + P + D + e^+ + \nu_e
$$

which governs the rate of proton fusion in the sun and other stars. This reaction, a $^1S_0 \rightarrow ^3S_1$ transition, has never been observed in the laboratory. Therefore, a measurement of the neutrino disintegration of the deuteron will help our understanding of the astrophysical process.

References

5. T. W. Donnelly, private communication.