Evaluation of the $d+t$ Cross Sections Based on an R-Matrix Analysis of the 3He System

AUTHOR(S): Hale, G. M., T-2

SUBMITTED TO: To be presented at the IAEA Specialists' Meeting on Charged Particle and Photonuclear Data Evaluation's for FENDL Smolenice, Slovakia, April 18-21, 1994
EVALUATION OF THE $d+t$ CROSS SECTIONS
BASED ON AN R-MATRIX ANALYSIS OF THE 5HE SYSTEM

G. M. Hale
Theoretical Division
Los Alamos National Laboratory

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Arguments Against:

Theory-based evaluation

- Harder to do; takes longer.
- Limited ranges of mass, energy over which any one theory (model) is practical.
- Too much (approximate) theory \Rightarrow bad representations of data.

Curve-fitting evaluation

- Completely unconstrained by physical principles.
- Burden falls entirely on measurements to get reliable results.
- Can get good representations of bad data.
ASYMPTOTIC REGION
(S matrix, phase shifts, etc.)

INTERIOR REGION
(Microscopic Calculations)

SURFACE

\[R_{c'c} = (c'[H+\mathcal{L}-E]^{-1}c') = \sum_{\lambda} \frac{\gamma_{c'\lambda} \gamma_{c\lambda}}{E_{\lambda} - E} \]

- builds in fundamental conservation laws, symmetries, and analytic properties (causality, unitarity, etc.) of nuclear reactions.
- parametrizes only interior quantities (correct Coulomb, angular-momentum barrier penetration built in).
- explicit energy dependence (poles) ideal for describing resonances.
Energy Dependent Analysis Code

\[
R^{cc} = \sum_{\lambda} \frac{\gamma^c_{\lambda} \gamma^c_{\lambda}}{E_{\lambda} - E}
\]

- Calculate T- (or S-) matrix elements
- Form scattering observables using Wolfenstein trace formalism.
- Compare \(\chi^2\)
- Experimental data for all reactions
- Adjust parameters for minimum \(\chi^2\)

Capabilities and Features

1) Accomodates general (spins, masses, charges) two-body channels
2) Uses relativistic kinematics and R-matrix formulation
3) Calculates general scattering observables for 2 → 2 processes
4) Has rather general data-handling capabilities
5) Uses modified variable-metric search algorithm that gives parameter covariances at a solution.
\({^5\text{He}} \) System Analysis

<table>
<thead>
<tr>
<th>Channel</th>
<th>(l_{\text{max}})</th>
<th>(a_c) (fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d-t)</td>
<td>5</td>
<td>5.1</td>
</tr>
<tr>
<td>(n-4\text{He})</td>
<td>5</td>
<td>3.0</td>
</tr>
<tr>
<td>(n-4\text{He}^*)</td>
<td>1</td>
<td>5.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Energy Range</th>
<th># Observable Types</th>
<th># Data Points</th>
<th>(\chi^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T(d,d)T)</td>
<td>(E_d=0-8 \text{ MeV})</td>
<td>6</td>
<td>683</td>
<td>1284</td>
</tr>
<tr>
<td>(T(d,n)^4\text{He})</td>
<td>(E_d=0-10 \text{ MeV})</td>
<td>14</td>
<td>1241</td>
<td>1727</td>
</tr>
<tr>
<td>(T(d,n)^4\text{He}^*)</td>
<td>(E_d=4.8-8 \text{ MeV})</td>
<td>1</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>(^4\text{He}(n,n)^4\text{He})</td>
<td>(E_n=0-28 \text{ MeV})</td>
<td>2</td>
<td>813</td>
<td>1108</td>
</tr>
</tbody>
</table>

Totals: 23 2747 4134

\# parameters = 117 \(\Rightarrow \) \(\chi^2 \) per degree of freedom = 1.57

[109 phase parameters are necessary to describe the S matrix at a single energy]
\(T(d,d)T \) 197 MeV

\(T(d,d)T \) 3.97 MeV

\(T(d,d)T \) 6.10 MeV

\(T(d,d)T \) 8.00 MeV
Renormalization Factors for T(d,n) Cross-Section Data

<table>
<thead>
<tr>
<th>Data set</th>
<th>Type</th>
<th>E_d (MeV)</th>
<th>Scale factor</th>
<th>Scale error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jarrnie '84</td>
<td>$\sigma(E)$</td>
<td>0.008 - 0.070</td>
<td>1.017</td>
<td>1.26</td>
</tr>
<tr>
<td>Brown '87</td>
<td>$\sigma(E)$</td>
<td>0.053 - 0.116</td>
<td>1.025</td>
<td>- (rel.)</td>
</tr>
<tr>
<td>Bame '57</td>
<td>$\sigma(\theta)$</td>
<td>0.50</td>
<td>0.939</td>
<td>10</td>
</tr>
<tr>
<td>Bame '57</td>
<td>$\sigma(\theta)$</td>
<td>0.75</td>
<td>0.931</td>
<td>10</td>
</tr>
<tr>
<td>Bame '57</td>
<td>$\sigma(\theta)$</td>
<td>1.0</td>
<td>0.949</td>
<td>10</td>
</tr>
<tr>
<td>Bame '57</td>
<td>$\sigma(\theta)$</td>
<td>1.3</td>
<td>0.929</td>
<td>10</td>
</tr>
<tr>
<td>Bame '57</td>
<td>$\sigma(\theta)$</td>
<td>1.5</td>
<td>0.912</td>
<td>10</td>
</tr>
<tr>
<td>Bame '57</td>
<td>$\sigma(\theta)$</td>
<td>2.5</td>
<td>0.973</td>
<td>10</td>
</tr>
<tr>
<td>Bame '57</td>
<td>$\sigma(\theta)$</td>
<td>3.0</td>
<td>0.977</td>
<td>10</td>
</tr>
<tr>
<td>Bame '57</td>
<td>$\sigma(\theta)$</td>
<td>3.5</td>
<td>0.994</td>
<td>10</td>
</tr>
<tr>
<td>Bame '57</td>
<td>$\sigma(\theta)$</td>
<td>4.0</td>
<td>1.004</td>
<td>10</td>
</tr>
<tr>
<td>Bame '57</td>
<td>$\sigma(\theta)$</td>
<td>4.5</td>
<td>0.981</td>
<td>10</td>
</tr>
<tr>
<td>Bame '57</td>
<td>$\sigma(\theta)$</td>
<td>5.0</td>
<td>0.986</td>
<td>10</td>
</tr>
<tr>
<td>Bame '57</td>
<td>$\sigma(\theta)$</td>
<td>6.0</td>
<td>0.977</td>
<td>10</td>
</tr>
<tr>
<td>Bame '57</td>
<td>$\sigma(\theta)$</td>
<td>7.0</td>
<td>0.980</td>
<td>10</td>
</tr>
<tr>
<td>Paulsen '64</td>
<td>$\sigma(\theta)$</td>
<td>1.0</td>
<td>0.956</td>
<td>- (rel.)</td>
</tr>
<tr>
<td>Paulsen '64</td>
<td>$\sigma(\theta)$</td>
<td>3.0</td>
<td>0.974</td>
<td>- (rel.)</td>
</tr>
<tr>
<td>Ivarovich '68</td>
<td>$\sigma(\theta)$</td>
<td>4.2 - 10</td>
<td>1.016*</td>
<td>1.0</td>
</tr>
<tr>
<td>McDaniels '90**</td>
<td>$\sigma(\theta)$</td>
<td>5.0</td>
<td>0.996</td>
<td>1.5</td>
</tr>
<tr>
<td>McDaniels '90</td>
<td>$\sigma(\theta)$</td>
<td>6.0</td>
<td>0.980</td>
<td>1.5</td>
</tr>
<tr>
<td>Drosg '82</td>
<td>$\sigma(\theta)$</td>
<td>3.973</td>
<td>1.024</td>
<td>3.0</td>
</tr>
<tr>
<td>Drosg '78</td>
<td>$\sigma(\theta)$</td>
<td>7 - 10</td>
<td>0.986</td>
<td>1.5</td>
</tr>
<tr>
<td>Drosg '90</td>
<td>$\sigma(180^\circ)$</td>
<td>4.7 - 10</td>
<td>1.009</td>
<td>1.0</td>
</tr>
<tr>
<td>Goldberg '61</td>
<td>$\sigma(\theta)$</td>
<td>7.9</td>
<td>1.004</td>
<td>- (rel.)</td>
</tr>
</tbody>
</table>

* Experimental scale value of 1.028 ±0.01 determined by Drosg
** Based on McDaniels '73 as revised by Drosg
\(^3\text{H}(d,n)^4\text{He} \) Cross Section

Scale Factor = 1.0173

Scale Uncertainty = ±1.26%

Los Alamos

ENDF/B-VI

Brown, 1987

Jarmie, 1984
$^{3}\text{H}(d,n)^{4}\text{He}$ Cross Section

$\sigma(E) \cdot E \exp[1.404/E^{1/2}]$

- Los Alamos
- ENDF/B-VI
- Conner, 1952
- Arnold, 1954
\(^3\text{H}(d,n)^4\text{He} \) Cross Section

\[
\sigma(E) \cdot E \cdot \exp[1.404/E^{1/2}]
\]

- Los Alamos
- ENDF/B-VI
- Kobzev, 1966
- Argo, 1952
- Balabanov, 1957

Deuteron Energy (MeV)
$^{3}\text{H}(d,n)^{4}\text{He}$ Cross Section

Los Alamos
ENDF/B-VI
Bame, 1957
Galonsky, 1956
Hemmendinger, 1955
Conner, 1952
Argo, 1952
Balabanov, 1957
Kobzev, 1966
3H(d,n)4He Cross Section

- Bame, 1957
- Magiera, 1975
- Drosd, 1978
- Goldberg, 1961
- McDaniel, 1973
- Stratton, 1952
- Galonsky, 1956

DEUTERON ENERGY (MeV)

CROSS SECTION (b)
\[T(d,n)^{4}\text{He} \quad 5.00 \text{ MeV} \]

\[T(d,n)^{4}\text{He} \quad 6.00 \text{ MeV} \]

\[\theta_{\text{cm}} \]

\[\frac{d\sigma}{d\theta} \]

McDaniels '73
$T(d,n)^4\text{He} \theta_{cm} = 0.0$

$T(d,n)^4\text{He} \theta_{cm} = 180.0$
Stability of Low-Energy Cross-Section Extrapolation

Present value of $\sigma_{d,n}(100 \text{ eV}) = 2.0506 \times 10^{-56} \text{ b}$

$\Rightarrow S(0) = 11.75 \text{ MeV-b}$

is:

5.5% higher than the value we had in 1979 (pre-Jarmie & Brown)

0.2% higher than the value we had in 1986 (used in Bosch & Hale)

0.5% higher than the value we had in 1992 (CSEWG 1993)
Conclusions

1. R-matrix theory, when used in its full multilevel, multichannel form, is an extremely useful tool for doing charged-particle evaluations for reactions in light systems at moderate energies.

2. No other evaluation for the d+t reactions has considered more data, and has been constrained by as much theory as the R-matrix calculations reported here. They give a good fit to all the data in the system, and especially for the T(d,n)\(^4\)He cross sections at energies below 10 MeV.

3. A single-level representation of the J\(^*\) = \(3/2^+\) R-matrix in the \(^5\)He system gives a cross-section extrapolation to low energies that is adequate to only about 5%. There are two other J\(^*\) = \(3/2^+\) resonances in the range below \(E_d = 8\) MeV, plus higher background-level contributions, that contribute 2.3% of the total reaction R-matrix element (or about 4.6% in the cross section) at low energies.

4. The calculations presented here allow a consistent evaluated file of cross sections and angular distributions to be constructed for all the d+t reactions [T(d,d), T(d,n), and T(d,n*)] at energies below 10 MeV, which give all the information necessary to do charged-particle transport.

5. The results of the R-matrix calculation at energies up to 10 MeV match well with the evaluation that has been done recently by Drosg for the T(d,n) cross section at higher energies.