Difference between revisions of "Hexamethylene triperoxide diamine"

From Sciencemadness Wiki
Jump to: navigation, search
(Disposal)
(3 intermediate revisions by the same user not shown)
Line 62: Line 62:
 
| MeltingPt_ref =  
 
| MeltingPt_ref =  
 
| MeltingPt_notes = Decomposes at 75 °C<br>Ignites spontaneously at 133 °C
 
| MeltingPt_notes = Decomposes at 75 °C<br>Ignites spontaneously at 133 °C
 +
| Odor = Odorless
 
| pKa =  
 
| pKa =  
 
| pKb =  
 
| pKb =  
Line 117: Line 118:
 
==Properties==
 
==Properties==
 
===Chemical===
 
===Chemical===
Like most organic peroxides, such as [[acetone peroxide]], HMTD is unstable and detonates when subjected to shock, friction, and heat. It is, however, less unstable than many other peroxides under normal conditions. It's sensitivity is greatly increased from exposure to ultraviolet light or in contact with most common metals. HMTD is chemically very stable when pure (free of acids, bases, and metal ions) and does not quickly sublime like its acetone counterparts.
+
Like most organic peroxides, such as [[acetone peroxide]], HMTD is unstable and detonates when subjected to shock, friction, and heat. It is, however, less unstable than many other peroxides under normal conditions. Its sensitivity is greatly increased from exposure to ultraviolet light or in contact with most common metals. HMTD is chemically very stable when pure (free of acids, bases, and metal ions) and does not quickly sublime like its acetone counterparts.
  
 
===Physical===
 
===Physical===
Line 123: Line 124:
  
 
===Explosive===
 
===Explosive===
HMTD is can detonate when subjected to moderate shock, friction, and heat, but it is less sensitive than most peroxide-based explosives. It has a detonation velocity of 4511 m/s (though some sources give the value of 5100 m/s) and a R.E. factor of 0.8, identical to that of TATP (acetone peroxide).
+
HMTD is can detonate when subjected to moderate shock, friction, and heat, but it is less sensitive than most peroxide-based explosives. It has a detonation velocity of 4,511 m/s (though some sources give the value of 5,100 m/s) and a R.E. factor of 0.8, identical to that of TATP (acetone peroxide).
  
 
==Availability==
 
==Availability==
Line 136: Line 137:
  
 
==Projects==
 
==Projects==
Due to its instability, HMTD doesn't have many uses outside amateur explosives. As it is a stronger initiating explosive than [[mercury(II) fulminate]], it can be used to make blasting caps, albeit they should be used quickly. Unfortunately, due to its use in terrorist bombings it's best to stay away from using this compound as mush as possible.
+
Due to its instability, HMTD doesn't have many uses outside amateur explosives. As it is a stronger initiating explosive than [[mercury(II) fulminate]], it can be used to make blasting caps, albeit they should be used quickly. Never use metal for these blasting caps, as this increases its sensitivity! Unfortunately, due to its use in terrorist bombings it's best to stay away from using this compound as mush as possible.
  
 
==Handling==
 
==Handling==
 
===Safety===
 
===Safety===
Although it is more stable than most explosive peroxides, it is still sensitive to friction, shock and heat, especially when dry. Contact with metals should be avoided. If wet or underwater, it is more stable.
+
Although it is more stable than most explosive peroxides, HMTD is still sensitive to friction, shock and heat, especially when dry. Contact with metals should be avoided. If wet or underwater, it is more stable.
  
 
===Legal===
 
===Legal===
The manufacture, possession or use of HMTD without a permit/license is a crime in most countries.
+
The manufacture, possession or use of HMTD and other organic peroxide explosives without a permit/license is a crime in most countries.
  
Like acetone peroxide, it is a federal offense to make, possess, or use HMTD in the United States.
+
Like acetone peroxide, it is a federal offense to make, possess, or use HMTD or any other organic peroxide explosives in the United States.
  
 
===Storage===
 
===Storage===
NEVER STORE HMTD!
+
NEVER STORE HMTD! Try to use it as soon as possible.
 +
 
 +
A SM user has discovered that HMTD can be safely stored at -10 °C, with no signs of any decomposition, even after 15 years.<ref>http://www.sciencemadness.org/talk/viewthread.php?tid=10102#pid491902</ref>
  
 
===Disposal===
 
===Disposal===
Being a sensitive explosive, it is easy to dispose of via detonation, though this is an unsafe procedure.
+
Being a sensitive explosive, it is easy to dispose of via controlled detonation in a remote area, though this is an unsafe procedure.
  
 
Safe disposal can be done by adding a mixture of [[zinc sulfate]], [[copper(II) chloride]] with Zn and Cu powder, in a solution containing the peroxide. The salt/metal/peroxide ratio is 5:5:1. Small amounts of [[sulfuric acid]] are also added. <ref>http://energetics.chm.uri.edu/?q=/system/files/2008+Destruction+of+Peroxide+Explosives.pdf</ref>
 
Safe disposal can be done by adding a mixture of [[zinc sulfate]], [[copper(II) chloride]] with Zn and Cu powder, in a solution containing the peroxide. The salt/metal/peroxide ratio is 5:5:1. Small amounts of [[sulfuric acid]] are also added. <ref>http://energetics.chm.uri.edu/?q=/system/files/2008+Destruction+of+Peroxide+Explosives.pdf</ref>
Line 165: Line 168:
 
*[http://www.sciencemadness.org/talk/viewthread.php?tid=20277 Mixing HMTD with urea nitrate or ammonium nitrate]
 
*[http://www.sciencemadness.org/talk/viewthread.php?tid=20277 Mixing HMTD with urea nitrate or ammonium nitrate]
 
*[http://www.sciencemadness.org/talk/viewthread.php?tid=20383 HMTD with 40% H2O2]
 
*[http://www.sciencemadness.org/talk/viewthread.php?tid=20383 HMTD with 40% H2O2]
 +
*[http://www.sciencemadness.org/talk/viewthread.php?tid=10102 HMTD smells like ammonia]
 +
*[http://www.sciencemadness.org/talk/viewthread.php?tid=153009 Outburst at HMTD Synthesis]
  
 
[[Category:Chemical compounds]]
 
[[Category:Chemical compounds]]

Revision as of 15:54, 4 September 2019

Hexamethylene triperoxide diamine
Hexamethylene triperoxide diamine HMTD by Explosiopedia.jpg
HMTD as powder
Names
IUPAC name
3,4,8,9,12,13-Hexaoxa-1,6-diazabicyclo[4.4.4]tetradecane
Other names
1,6-diaza-3,4,8,9,12,13-hexaoxabicyclo[4.4.4]tetradecane
HMTD
Properties
C6H12N2O6
Molar mass 208.17 g/mol
Appearance White crystalline solid
Odor Odorless
Density 0.88 g/cm3
1.57 g/cm3
1.597 g/cm3 (at -123.15 °C)[1]
Melting point Decomposes at 75 °C
Ignites spontaneously at 133 °C
Boiling point Detonates
0.01 g/100 ml
Solubility Soluble in ethanol, THF
Solubility in acetone 0.41 g/100 ml
Solubility in diethyl ether 0.024 g/100 ml
Solubility in chloroform 0.36 g/100 ml
Hazards
Safety data sheet None
Related compounds
Related compounds
Acetone peroxide
Methyl ethyl ketone peroxide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Hexamethylene triperoxide diamine or HMTD is a dangerous high explosive organic compound. It has very little use outside of amateur explosives, and because it was used in many terrorist bombings, it gets a bad reputation.

Properties

Chemical

Like most organic peroxides, such as acetone peroxide, HMTD is unstable and detonates when subjected to shock, friction, and heat. It is, however, less unstable than many other peroxides under normal conditions. Its sensitivity is greatly increased from exposure to ultraviolet light or in contact with most common metals. HMTD is chemically very stable when pure (free of acids, bases, and metal ions) and does not quickly sublime like its acetone counterparts.

Physical

HMTD is a white solid, which decomposes if heated to 75 °C. It has a density of 0.88 g/cm3. HMTD is soluble in THF, and somewhat soluble in ethanol.[2] It is almost insoluble in acetone, chloroform, diethyl ether and water.[3]

Explosive

HMTD is can detonate when subjected to moderate shock, friction, and heat, but it is less sensitive than most peroxide-based explosives. It has a detonation velocity of 4,511 m/s (though some sources give the value of 5,100 m/s) and a R.E. factor of 0.8, identical to that of TATP (acetone peroxide).

Availability

HMTD is not sold by any supplier due to its sensitivity.

Preparation

The preparation of HMTD always presents the risk of premature detonation and should not be attempted by amateurs. But if you really want to know:

14 g of hexamine is dissolved in 45 ml of hydrogen peroxide 30% concentration and stirred (mechanically) at 0 °C. An amount of 21 grams of finely powdered citric acid is then slowly added under continuous stirring for 3 h, at 0 °C. After 3 hours, the product is allowed to reach room temperature and left for 2 h. The white crystalline product is filtered off, and washed thoroughly with water, to remove any water soluble impurities and rinsed with methanol. The wet product is air dried. This part is risky as the product may explode during drying. The yield is around 50-70%.[4]

Larger amounts are not safe to handle, so it's best to try to make smaller amounts based on the process above.

Projects

Due to its instability, HMTD doesn't have many uses outside amateur explosives. As it is a stronger initiating explosive than mercury(II) fulminate, it can be used to make blasting caps, albeit they should be used quickly. Never use metal for these blasting caps, as this increases its sensitivity! Unfortunately, due to its use in terrorist bombings it's best to stay away from using this compound as mush as possible.

Handling

Safety

Although it is more stable than most explosive peroxides, HMTD is still sensitive to friction, shock and heat, especially when dry. Contact with metals should be avoided. If wet or underwater, it is more stable.

Legal

The manufacture, possession or use of HMTD and other organic peroxide explosives without a permit/license is a crime in most countries.

Like acetone peroxide, it is a federal offense to make, possess, or use HMTD or any other organic peroxide explosives in the United States.

Storage

NEVER STORE HMTD! Try to use it as soon as possible.

A SM user has discovered that HMTD can be safely stored at -10 °C, with no signs of any decomposition, even after 15 years.[5]

Disposal

Being a sensitive explosive, it is easy to dispose of via controlled detonation in a remote area, though this is an unsafe procedure.

Safe disposal can be done by adding a mixture of zinc sulfate, copper(II) chloride with Zn and Cu powder, in a solution containing the peroxide. The salt/metal/peroxide ratio is 5:5:1. Small amounts of sulfuric acid are also added. [6]

References

  1. Wierzbicki, Andrzej; Salter, E. Alan; Cioffi, Eugene A.; Stevens, Edwin D.; Journal of Physical Chemistry A; vol. 105; nb. 38; (2001); p. 8763 - 8768
  2. http://actachemscand.org/pdf/acta_vol_42a_p0165-0170.pdf
  3. Haid; Globig; Z. Schiess-Sprengstoffw.; vol. 21; p. 164; Chem. Zentralbl.; vol. 98; nb. I; (1927); p. 967
  4. http://pubs.acs.org/doi/abs/10.1021/ja00294a043
  5. http://www.sciencemadness.org/talk/viewthread.php?tid=10102#pid491902
  6. http://energetics.chm.uri.edu/?q=/system/files/2008+Destruction+of+Peroxide+Explosives.pdf

Sciencemadness Library

Relevant Sciencemadness threads