Potassium chlorate

From Sciencemadness Wiki
Revision as of 13:11, 4 August 2015 by Ave369 (Talk | contribs)

Jump to: navigation, search
File:KClO3.JPG
Crystals of potassium chlorate made from bleach.

Potassium chlorate is the inorganic chemical compound with the formula KClO3, and is the potassium salt of chloric acid. It is a strong oxidizing agent.

Properties

Chemical

Potassium chlorate is is an extremely powerful oxidizer.

If sulfuric acid is added to potassium chlorate, chloric acid is formed:

2 KClO3 + H2SO4 → 2 HClO3 + K2SO4

The chloric acid decomposes immediately to perchloric acid and chlorine dioxide. The latter will spontaneously ignite any combustible material (sugar, paper, dust). As a fun project, various sweets, often gummy bears(jelly babies) are dropped into molten potassium chlorate to produce intense pink flames and, if in a narrow container, a screaming sound.

Potassium chlorate will decompose if heated in the presence of a catalyst, usually manganese dioxide, releasing oxygen and leaving potassium chloride behind. This effect can be taken advantage of in order to quickly add oxygen to a system.

2 KClO3(s) → 3 O2(g) + 2 KCl(s)

If the heating occurs without a catalyst, potassium perchlorate will be formed (although in practice, this is difficult to do):

4 KClO3 → 3 KClO4 + KCl

Physical

Potassium chlorate is a transparent to white salt that precipitates as well-formed, lustrous crystals which have a silky texture and are poorly soluble in water and glycerol. Similar to potassium nitrate, it is not hygroscopic, making it very useful as an oxidizer for pyrotechnics. Unlike hypochlorites, it has no odour, so a 'bleachy' smell is an indication of impure samples.

Availability

Potassium chlorate was available as a fruit growth fertilizer as well as weed killer, but in recent years it has become restricted, due to its powerful oxidizing properties, as it was used in many bombings.

It can also be found in safety match heads, where it is mixed with sulfur and glue, though one would need a large amount of safety matches. It's much cheaper to make it.

Preparation

Potassium chlorate can be prepared by boiling bleach (sodium hypochlorite solution) or calcium hypochlorite, for about 10-20 minutes, which causes it to disproportionate into sodium chlorate and sodium chloride. Since sodium chloride is less soluble than the chlorate, it will crystallize, while the chlorate will remain in solution. Crystallization begins at about the same time that the bleach reaches one third of the original volume. This chlorate solution is then added to equivalent solution of saturated potassium chloride solution, to precipitate the potassium chlorate. Carefully cooling the solution to about 0 degrees C will yield more product. The flat, shiny crystals should then be filtered out and washed multiple times with ice cold water.[1]

Potassium chlorate can also be produced much more efficiently via electrolysis of a saturated solution of potassium chloride with inert electrodes, procedure known as alkali chlorate cell.

Recrystallisation of KClO3 is easy as it is very soluble in hot water but sparingly soluble in freezing water

Projects

  • Screaming jelly baby(gummy bear)
  • Burning hearts
  • Cockroach cremation
  • Flash powder

Handling

Safety

When mixed with combustible materials, even those normally slightly flammable (such as dust and lint), it will burn vigorously in combination and the fires are extremely hard to put out, as the chlorate provides the oxygen for the fire. Sulfur and red phosphorus, should be avoided in pyrotechnic compositions containing potassium chlorate, as well as any acidic salts, as these mixtures are shock and friction sensitive and prone to spontaneous deflagration (in the safety head matches, such mixture is stabilized with glue). Molten potassium chlorate will ignite any combustible material and can burn even through standard lab safety clothing.

Storage

Potassium perchlorate should be stored in closed containers and away from any organic sources, as well as strong acidic vapors. Since it is not hygroscopic, it is not necessary to keep it air tight.

Disposal

Potassium chlorate can be neutralized with a reducing agent, such as sodium metabisulphite, sodium bisulphite, sodium sulphite or a mixture of sulfuric acid and ferrous and ferrous ammonium sulfate.[2]

References

  1. http://www.youtube.com/watch?v=JtxQT7aVDeg
  2. http://www.oocities.org/capecanaveral/campus/5361/chlorate/destroy.html

Relevant Sciencemadness threads