$\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 32.01$ and $29.33\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 14.57\left(\mathrm{OHCH}_{2} \mathrm{CH}_{3}\right)$; IR (Nujol) $3355,1650,1428(\mathrm{~s}) \mathrm{cm}^{-1}$; MS (EI) m / e (relative intensity) 314 (87, \mathbf{M}^{+}), $299\left(100, \mathbf{M}^{+}-\mathrm{CH}_{3}\right.$). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}$ 72.58 ; H, 8.34; N, 8.91. Found: C, 72.56; H, 8.33 ; N 8.93 .

4-(\boldsymbol{N}-Methylamino)-6,7-(1,2,3,4-tetrahydro-1,1,4,4-tetramethylbenzo)indole (16). A solution of indole $4(20.0 \mathrm{~g}, 0.063$ mol) in dry THF (280 mL) under argon was treated over ${ }^{1 / 2} \mathrm{~h}$ at room temperature via syringe with $\mathrm{LiAlH}_{4}(127 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, gas evolution was noted upon addition), and the resulting light yellow suspension refluxed for $1 / 2 \mathrm{~h}$. TLC revealed the absence of indole 4 ($R_{f} 0.4 \mathrm{in} \mathrm{B}$) and the presence of amine 16 , which had an identical $R_{f}(0.4$ in B), but which had staining characteristics different from the starting carbamate. The solution was cooled to $0^{\circ} \mathrm{C}$, and the remaining LiAlH_{4} was destroyed with a mixture of $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$-Celite (1:1). The thick slurry was filtered through a Celite pad, the pad was washed with several portions of 5:1 THF-NEt t_{3} and EtOAc, and the filtrate was concentrated. The solid remaining was purified by chromatography using $3: 1$ hexane/EtOAc as eluant to yield $15.0 \mathrm{~g}(92 \%)$ of amine 16: mp 197-199 ${ }^{\circ} \mathrm{C}$ (dec, purple crystals/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane); ${ }^{1} \mathrm{H}$ NMR $\delta 8.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H), 7.03(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}=), 6.36$ (dd, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}=$), 6.27 (s, $1 \mathrm{H}, \operatorname{Ar} H$), $2.96(\mathrm{~s}, 3 \mathrm{H}$, NCH_{3}), 1.72 (m, complex, $\left.4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.44(\mathrm{~s}, 6 \mathrm{H}$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.28\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 140.28(\mathrm{Ar}), 140.15$ (Ar), 134.31 (Ar), 121.37 (Ar), 117.66 (ArNCH=C), 116.27 (Ar$\mathrm{CH}=\mathrm{C}), 98.25(\mathrm{Ar}), 98.11(\mathrm{Ar}), 37.62$ and $35.68\left(\mathrm{C}_{\left(\mathrm{CH}_{3}\right)}^{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 34.66 and $33.24\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 32.19\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 28.19\left(\mathrm{NCH}_{3}\right), 29.69$ ($\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right)$; MS (EI) m / e (relative intensity) 256 ($55, \mathrm{M}^{+}$), 241 (100 , $\mathrm{M}^{+}-\mathrm{CH}_{3}$). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2}: \mathrm{C}, 79.63 ; \mathrm{H}, 9.44 ; \mathrm{N}, 10.93$. Found: C, 79.31; H, 9.43; N, 10.84.
(S)-4-(Methyl(1-(((Phenylmethyl)oxy)carbonyl)-2-methylpropyl)amino)-6,7-(1,2,3,4-tetrahydro-1,1,4,4-tetramethylbenzo) indole (17). A mixture of indole $16(1.20 \mathrm{~g}, 4.68$ mmol) and (R)-2-(((trifluoromethyl)sulfonyl)oxy)-3-methylbutanoic acid benzyl ester ${ }^{7 \mathrm{~A}}\left(1.55 \mathrm{~g}, 5.61 \mathrm{mmol}\right.$) in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ (20 mL) and 2,6 -lutidine ($0.7 \mathrm{~mL}, 6.08 \mathrm{mmol}$) was refluxed for 12 h . TLC revealed the absence of 16 ($R, 0.4$ in B) and the presence of indole 17 ($R_{f} 0.6$ in B). The solvent was evaporated, and the residue was partitioned between EtOAc and saturated aqueous NaHCO . The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The residue was purified by chromatography using $3: 1$ hexane/EtOAc as eluant to yield $1.95 \mathrm{~g}(93 \%)$ of 17 : $\mathrm{mp} 138-140^{\circ} \mathrm{C}$ (purple crystals/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexanes); ${ }^{1} \mathrm{H}$ NMR $\delta 8.21$ (br s, $1 \mathrm{H}, \mathrm{N} H$), 7.25 (m, $3 \mathrm{H}, \operatorname{Ar} H$), $7.11(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArCH}=$), 7.08 (m, $2 \mathrm{H}, \mathrm{Ar} H$), 6.64 (s, $1 \mathrm{H}, \mathrm{Ar} H$), 6.61 (dd, $J=$ $2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}=$), 5.07 ($\mathrm{q}, J=12 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}$), 4.02 (d, J $\left.=11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{NCHiPr}\right), 3.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.39$ (m, complex (9 lines), $\left.1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.75$ (m, $\left.2 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCH}_{2}\right), 1.66$ (m, $\left.2 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}\right), 1.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $1.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.12(\mathrm{~d}, J=6 \mathrm{~Hz}$ $\left.3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.93\left(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 171.97$ ($\mathrm{CO}_{2} \mathrm{Bn}$), 143.47 (Ar), 139.41 (Ar), 135.87 (Ar), 135.19 (Ar), 128.33 (Ar), 127.95 (Ar), 127.88 (Ar), 121.42 (Ar), 120.98 ($\mathrm{ArNCH}=$), 119.79 ($\mathrm{ArC=}=$), 107.56 (Ar), 101.21 (Ar), 70.66 $\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ar}\right), 65.74\left(\mathrm{CH}_{3} \mathrm{NC}(\mathrm{iPr}) \mathrm{CO}_{2} \mathrm{Bn}\right), 37.67$ and 35.47 ($(\mathrm{C}-$ $\left.\left.\mathrm{H}_{3}\right)_{2} \mathrm{CCH}_{2}\right), 34.51$ and $34.14\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 33.31\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 32.12$ $29.58,29.50$ and $27.92\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 19.87$ and $19.38\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$; MS (EI) m / e (relative intensity) $446\left(73, \mathrm{M}^{+}\right), 431\left(10, \mathrm{M}^{+}-\mathrm{CH}_{3}\right)$, $403\left(50, \mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right), 311\left(100, \mathrm{M}^{+}-\mathrm{PhCH}_{2} \mathrm{OC}=0\right)$. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 77.98; H, 8.58; $\mathrm{N}, 6.28$. Found: C, 78.13; H , 8.62; N, 6.24 .

Ethyl (S)-3-(4-(Methyl(1-(() phenylmethyl)oxy) carbonyl)-2-methylpropyl)amino)-6,7-(1,2,3,4-tetrahydro-1,1,4,4-tetramethylbenzo)-1 \boldsymbol{H}-indol-3-yl)-2-oximidopropionate (18). A suspension of $17(10.0 \mathrm{~g}, 0.022 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(28 \mathrm{~mL})$, ethyl 3-bromo-2-oximidopropionate ${ }^{23}$ ($4.72 \mathrm{~g}, 0.022 \mathrm{~mol}$), and $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.0 \mathrm{~g})$ was stirred for 12 h . TLC revealed the absence of 17 ($R_{f} 0.45$ in B) and the presence of oxime 18 ($R_{f} 0.1$ in B). The dark suspension was diluted with EtOAc, filtered, and concentrated. The oil remaining was purified by chromatography using 3:1 hexane/EtOAc and then 1:1 hexane/EtOAc as eluant to yield $6.43 \mathrm{~g}(50 \%)$ of 18 as a white solid: $\mathrm{mp} 128-131^{\circ} \mathrm{C}$ ($\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes); ${ }^{1} \mathrm{H}$ NMR $\delta 9.38$ (br s, 1 H , exch, NOH), 8.02 (br s, 1 H , no exch, $\mathrm{ArNHCH}=\mathrm{C}$), 7.26 (m, $3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{ArH}$), 7.17 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar} H$), 6.93 (s, $1 \mathrm{H}, \mathrm{ArH}$), 6.72 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArNHCH}=\mathrm{C}$), 5.09 (B part, AB q, $J=12 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}$), 4.95 (A part, AB q,
$\left.J=12 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 4.45(\mathrm{~B}$ part, AB q, $J=15 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{C}=\mathrm{NOH}$), 4.37 (A part, $\mathrm{AB} \mathrm{q}, J=15 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{NOH}$), 4.24 (B part AB q, $J=6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 4.22 (A part, AB $\left.\mathrm{q}, J=6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.72(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$. (iPr) $\mathrm{CO}_{2} \mathrm{Bn}$), 2.94 (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$), 2.31 (m , complex, $1 \mathrm{H}, \mathrm{CH}$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 1.71$ (m, complex, $\left.2 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}\right), 1.65$ (m, complex $\left.2 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}\right), 1.429\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.423\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $1.24\left(\mathrm{t}, J=6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ overlapping $1.24(\mathrm{~s}, 3 \mathrm{H}$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.13(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}-$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 0.93\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 173.10$ $\left(\mathrm{CO}_{2} \mathrm{Et}\right), 163.72\left(\mathrm{CO}_{2} \mathrm{Bn}\right), 152.75(\mathrm{C=}=\mathrm{NOH}), 144.70(\mathrm{Ar}), 139.28$ (Ar), 135.99 (Ar), 135.74 (Ar), 128.34 (Ar), 128.29 (Ar), 128.00 (Ar), $123.74(\mathrm{Ar}), 120.98(\mathrm{ArNHCH}=), 120.09(\mathrm{Ar}), 112.51(\mathrm{Ar}), 108.73$ $(\mathrm{ArC=}=\mathrm{CHN}), 72.48\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 65.98\left(\mathrm{OCH}_{2} \mathrm{Bn}\right), 61.70\left(\mathrm{CH}_{2}\right.$ $\mathrm{C}=\mathrm{NOH}), 37.66,35.31,34.47,33.38,32.08,29.43,29.12,28.80$, 22.47, 20.24, 28.98, $14.03\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; MS (EI) m / e (relative intensity) $575.2\left(100, \mathrm{M}^{+}\right), 532.2\left(20, \mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right), 440.2\left(62, \mathrm{M}^{+}\right.$ $-\mathrm{CO}_{2} \mathrm{Bn}$). Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{5}$: C, 70.92; H, 7.88; N, 7.28. Found: C, 70.93; H, 7.77; N, 7.27 .
(S, R and S, S)-Ethyl 3-(4-Methyl(1-(($($ phenylmethyl)-oxy)carbonyl)-2-methylpropyl)amino)-6,7-(1,2,3,4-tetra-hydro-1,1,4,4-tetramethylbenzo)-1 \boldsymbol{H}-indol-3-yl)-2-aminopropionates (20 and 21). A solution of oxime $18(11.0 \mathrm{~g}, 0.019$ mol) in dry THF (250 mL) was treated with aluminum foil (5 g , 0.19 mol) that had been cut into small pieces and immersed successively in 2% aqueous HgCl_{2}, distilled $\mathrm{H}_{2} \mathrm{O}$, and THF. The dark gray suspension was stirred for 12 h at room temperature at which time TLC revealed the absence of 18 ($R_{f} 0.5 \mathrm{in} \mathrm{A}$) and the presence of amino esters 20 and 21 ($R, 0.20$ and 0.15 in A, respectively). The suspension was filtered and concentrated to yield $7.8 \mathrm{~g}(75 \%)$ of a mixture of the amines as a light yellow oil. Analytical samples of each of the amino esters was provided by chromatography over silica gel using 1:1 hexane/EtOAc to give the S, R diastereomer 20 as an oil: ${ }^{1} \mathrm{H}$ NMR $\delta 8.14$ (s, $1 \mathrm{H}, \mathrm{NH}$), 7.23 ($\mathrm{q}, \mathrm{J}=3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar} H$), 7.05 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{ArH}$), 6.96 (d, $J=3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArNHCH}=$), 6.90 (s, $1 \mathrm{H}, \mathrm{ArH}$), 5.00 (B part, $\mathrm{AB} q, J=12 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH} 2$) 4.82 (A part, AB q,$J=12 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{ArCH}_{2}\right), 4.11\left(\mathrm{q}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 3.81(\mathrm{q}, J=3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCH}(\mathrm{iPr}) \mathrm{CO}_{2} \mathrm{Bn}$), $3.68\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{2} \mathrm{NCHCO}_{2} \mathrm{Et}\right), 3.33$ ($\mathrm{AB} \mathrm{q}, J=6,9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}_{2} \mathrm{Et}$), $2.87(\mathrm{br} \mathrm{s}, 3 \mathrm{H}$, NCH_{3}), 2.34 (sextet, $J=9 \mathrm{~Hz}, 1 \mathrm{H}$, (iPr)CH), 1.73 (m, complex, $\left.2 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}\right), 1.65$ (m, complex, $\left.2 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}\right), 1.62$ (br $\mathrm{s}, 2 \mathrm{H}$, exch, NH_{2}), 1.46 ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $1.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.16(\mathrm{t}, J=6 \mathrm{~Hz}$ $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$), $1.12\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H},(\mathrm{CH})_{3} \mathrm{CH}\right), 0.96(\mathrm{~m}$, complex, 3 H , (CH_{3}) CH); ${ }^{33} \mathrm{C}$ NMR δ 175.77, 172.47, 144.74, 139.03, $135.86,135.72,128.28,128.02,127.82$, $123.85,121.45,121.27,112.13$, $111.49,72.44\left(\mathrm{CHCO}_{2} \mathrm{Bn}\right), 65.83\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 60.53\left(\mathrm{ArCH}_{2}\right), 56.38$ $\left(\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}_{2} \mathrm{Et}\right), 37.74,35.32,34.48,33.38,32.52,32.20,32.09$, $32.05,29.55,28.90,28.75,20.35,14.11$; MS (FAB) m / e (relative intensity) 562.2 ($100, \mathrm{MH}^{+}$); high-resolution MS calcd for $\mathrm{C}_{34^{-}}$ $\mathrm{H}_{48} \mathrm{~N}_{3} \mathrm{O}_{4} 562.3644$, found 562.3690 . Further elution gave the S, S diastereomer 21 as an oil: ${ }^{1} \mathrm{H}$ NMR $\delta 8.15$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 7.21 (m, $\left.3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{ArH}\right), 6.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar} H\right.$), overlapping 6.94 ($\mathrm{m}, 1$ $\mathrm{H}, \mathrm{ArNHCH}=$), 6.91 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar} H), 5.02$ (B part, $\mathrm{AB} q, J=12$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2}$), 4.74 (A part, AB q, $J=12 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2}$), 4.17 (q, $J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$), 3.96 (br s, 1 H), 3.66 (br s, 1 H), 3.62 (dd, $J=3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.92 (m, 1 H) overlapping 2.88 (br $\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH} 3$), 2.33 (sextet, $J=6 \mathrm{~Hz}$, (iPr) CH), 1.74 (m, complex, $\left.2 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}\right), 1.67\left(\mathrm{~m}\right.$, complex, $\left.2 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2}\right), 1.48(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CCH}_{3}\right)_{2}$) overlapping 1.48 (br s, 2 H, exch, NH_{2}), 1.47 ($\mathrm{s}, 3$ $\left.\mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.25(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$), 1.24 (s, $\left.3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.15(\mathrm{~d}, ~ J=9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}-$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 0.90\left(\mathrm{~m}\right.$, complex, $\left.3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 175.44$, 139.21, 136.14, 135.64, 128.22, 127.94, 127.87, 123.80, 122.05, 120.97, 110.98, $72.53\left(\mathrm{CHCO}_{2} \mathrm{Bn}\right), 65.83\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 60.54\left(\mathrm{BnCH}_{2} \mathrm{O}\right)$, $54.75\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{NH}_{2}\right) \mathrm{CO}_{2} \mathrm{Et}\right), 37.61,35.29,34.49,33.39,32.10,31.96$, $29.70,28.92,28.62,20.41,14.18$; MS (FAB) m / e (relative intensity) 562.2 (100, MH^{+}); high-resolution MS calcd for $\mathrm{C}_{34} \mathrm{H}_{48} \mathrm{~N}_{3} \mathrm{O}_{4}$ 562.3644, found 562.3674 .
(S, S) - and (S, R)-1,3,4,5,7,8,10,11,12,13-Decahydro-4-(eth-oxycarbonyl)-8,10,10,13,13-pentamethyl-7-(1-methylethyl)$6 \boldsymbol{H}$-benzo $[g][1,4]$ diazonino $[7,6,5-c d]$ indol-6-one (23 and 24). A solution of a mixture of amines 20 and $21(4.50 \mathrm{~g}, 8.17 \mathrm{mmol})$, $10 \% \mathrm{Pd} / \mathrm{C}(0.5 \mathrm{~g})$, and camphorsulfonic acid (0.1 g) in EtOH (50 mL) was hydrogenated at 40 psi on a Parr shaker apparatus. After

