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Abstract

A shaped charge is an explosive device used to penetrate thick targets using a

high velocity jet. A typical shaped charge contains explosive material behind

a conical hollow. The hollow is lined with a compliant material, such as

copper. Extremely high stresses caused by the detonation of the explosive

have a focusing effect on the liner, turning it into a long, slender, stretching

jet with a tip speed of up to 12km s−1.

A mathematical model for the penetration of this jet into a solid target is

developed with the goal of accurately predicting the resulting crater depth and

diameter. The model initially couples fluid dynamics in the jet with elastic-

plastic solid mechanics in the target. Far away from the tip, the high aspect

ratio is exploited to reduce the dimensionality of the problem by using slender

body theory. In doing so, a novel system of partial differential equations for the

free-boundaries between fluid, plastic and elastic regions and for the velocity

potential of the jet is obtained.

In order to gain intuition, the paradigm expansion-contraction of a circular

cavity under applied pressure is considered. This yields the interesting possi-

bility of residual stresses and displacements. Using these ideas, a more realistic

penetration model is developed. Plastic flow of the target near the tip of the

jet is considered, using a squeeze-film analogy. Models for the flow of the

jet in the tip are then proposed, based on simple geometric arguments in the

slender region. One particular scaling in the tip leads to the consideration of a

two-dimensional paradigm model of a “filling-flow” impacting on an obstacle,

such as a membrane or beam.

Finally, metallurgical analysis and hydrocode runs are presented. Unresolved

issues are discussed and suggestions for further work are presented.
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Chapter 1

Introduction

1.1 What is a shaped charge?

In the 1880s, the US navy performed experiments involving the detonation of gun-cotton

blocks. The blocks had the initials “U.S.N.” hollowed into them. It was during these

experiments that Charles Munroe, a navy scientist, made a serendipitous discovery. He

observed that if the block was detonated with the marked surface in contact with a steel

block, then there was a corresponding mark imprinted into the steel block afterwards.

The importance of this observation, known as the Munroe, Neumann, von Foerster or

hollow-charge effect, was recognised by Swiss scientists. They discovered that adding an

inverted conical liner made from a compliant material, such as copper, would result in

a slender, accelerating jet capable of significantly deep penetration into a steel target (a

penetration depth of up to 1m is typical). This idea was then extensively developed by

military scientists around the world in order to counter the large threat posed by tanks

on the battlefield. Hence the first shaped-charge warhead was born. The first weapon

based on the technology was trialled and used successfully in the second world war.

1.1.1 Mechanics of a shaped-charge jet

The formation of a shaped-charge jet is well-understood theoretically [95]. A typical

shaped charge consists of an explosive with a liner material at one end and a detonator at

the other. The liner is usually conical, although it can have other axisymmetric geometries

such as a hemisphere, tulip or trumpet, to name but a few. Many liner materials have also

been considered; examples include zirconium, steel and depleted uranium [9, 22, 34]. In

view of the Munroe effect, the apex is the closest end of the conical liner to the detonator,

as is shown in Fig. 1.1(a)1. When the charge is detonated, a detonation wave races

1Other parts of the warhead, such as guidance systems and computers are housed ahead of the liner.

1
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from left to right in the charge with speeds from 6 − 7km s−1 and inducing pressures of

around 3× 1010Pa. This causes the surrounding casing to expand and ultimately leads to

fragmentation [69].

Undetonated explosive

Casing

Liner

(a) A pristine shaped-charge warhead be-
fore it is detonated at the left-hand edge.

Detonation front

Undetonated explosive

Detonated explosive

Casing expands

(b) When the charge is detonated, a deto-
nation wave traverses the charge, expand-
ing the casing as it progresses. The liner
begins to ‘collapse’.

Detonated explosive

Stretching jet

Slug

Significant acceleration

(c) The liner continues to collapse and
we see the start of an accelerating jet.

Slug

Stretching jet

(d) About 9µs after liner-collapse was initiated, the
jet continues to accelerate and stretches further.
The profile of the liner is now sword-like.

Figure 1.1: A sequence of events in shaped-charge jet formation.

Typically, the detonation wave takes only the order of 6µs to reach the apex of the

liner. The extreme pressure in the gaseous products of this detonation wave results in

severe deformation of the liner towards its axis, a process known as ‘collapsing’. The

symmetry of the liner means that when opposite parts of the liner reach the axis, the only

nonzero component of momentum is along the axis (although, in reality, perfect symmetry
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is never realised). Thus, the initial geometry of the liner has the effect of focusing the

momentum in the direction of the axis of the cone. The result of the liner-collapse is the

classical Birkhoff-problem of impinging jets [7, 21]. Two new metal jets are consequently

formed, both with net positive axial velocity (where we define positive z to be from left

to right) and, courtesy of symmetry, no radial component of the velocity. One of the jets

is a fast-moving, thin jet, typically with speeds of 6 − 12km s−1. The extreme pressure

from the detonation wave greatly exceeds the yield stress of the liner material, and so

the high-speed jet behaves like a plastic fluid. The other jet, known as the “slug”, trails

behind, with a typical velocity of up to 1km s−1. For conical liners, the majority of the

liner by mass goes into the slug. This is depicted in Figs. 1.1(b), 1.1(c).

The fast-moving jet continues to elongate owing to the initial tapering nature of the

liner. This occurs until it impacts its target. The distance between the front of the liner

and the target is termed the stand-off. The forming jet may either remain intact, or it may

particulate into many small fragments, spreading out. The latter is undesirable because

the cloud of fragments has little capability to penetrate [17, 19]. Off-axis drift may also

occur with a coherent jet and is still a factor that reduces penetration depth, but the

effects are far less pronounced than with incoherent jets [43] (that is, a jet in which the

fast-moving particles in the jet do not form a cohesive mass of material, a consequence of

‘overdriving’ the jet). It is observed that a longer jet leads to deeper penetration, and so

the appropriate stand-off must be estimated a priori so as to maximise the jet length.

About 50µs after the detonator is ignited, the liner has a profile that resembles a

sword (Fig. 1.1(d)). Typically, this is when the fast-moving, high-pressure jet strikes the

target2. The jet then creates a long, slender, almost perfectly-axisymmetric cavity in the

target.

The main mechanism responsible for the penetration is well-documented to be plas-

ticity of the target material, resulting from the extreme pressure at the tip of the jet.

Although the exact temperature profile of the jet is not well understood, the average

surface temperature of the jet is of the order 500oC (with some local hot-spots) and so

the cavity is not a direct result of melting. The plastic flow leads to radial expansion of

the target material about the axis of the jet, expanding the target and thus excavating a

hole. Eventually, the plastic jet comes to a halt after having furrowed a deep cavity. This

is, in reality, a combination of most of the jet’s energy being transferred to the target and

growth of instabilities in the jet leading to off-axis penetration. After the penetration has

terminated, it is observed experimentally [93] that the mass before penetration is equal

to the mass afterwards (neglecting effects of spall), so that no material is ‘lost’ from the

2The jet, even if coherent, often breaks up at the ‘hilt’ of the sword. The part that is the slower
moving slug is sometimes known as the “carrot”, and has little effect on the penetration.
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target.

1.1.2 Applications of shaped charges

The purpose of a shaped charge is to make a slender hole in a material that is otherwise

difficult to penetrate. This being so, much of its development has occurred because of the

high demand from the military. However, there are many relatively peaceful applications

to this remarkable technology, which we briefly outline in this section.

Firstly, we must mention an application in the oil industry, which uses more shaped

charges per year than the military. This is the process of well-bore perforation. After a

hole has been bored for an oil well, a process known as “cementing” occurs. Essentially,

this is when the surface of the hole is coated in a layer of ‘cement’ along its entire length in

order to strengthen it. Clearly, this has the detrimental effect of making it impossible to

get any oil (or gas) from the surrounding rock. To remedy this, a “carrier-tube” containing

many shaped charges is lowered down the hole. The charges are oriented such that, when

detonated, they produce jets that move radially, thus penetrating the cement3. This is

shown in Fig. 1.2.

Natural rock

Oil well

Concrete

“Carrier-tube”

(a) A carrier-tube containing many shaped charges is
lowered into a “cemented” oil well.

through concrete
Cavity made

(b) The charges are detonated, resulting in de-
sired perforations in the concrete-mix.

Figure 1.2: Two diagrams showing well-bore perforation.

Other major applications lie in industries in which a hole needs to be made. They

include, among others, applications in the mining industry (drilling rock and tunnelling),

demolition work (e.g. decommissioning unwanted structures), torpedoes, tree-felling,

3A problem with this process is that metal and other debris can block holes in the rock, decreasing
its porosity. A more expensive alternative is to use lasers.
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avalanche-control [70], jet-fighter ejector seats and safe-breaking. Although the under-

lying principles are the same, many of these applications have very specific demands on

the use and accuracy of this technology.

1.2 Background mathematics

This section of the thesis outlines some of the theoretical fundamentals that will be of

relevance to later models.

1.2.1 Elasticity

The theory of elasticity has been continuously developed since Galilei considered the now

classic problem of bending a clamped beam in the first half of the 17th century [25].

Since then, the subject has flourished, giving rise to a rich vein of mathematics. Naively,

the theory attempts to reconcile the deformations and stresses in a solid material with

an applied force or displacement. We will now outline the building blocks of the theory,

although must firstly point the reader towards the classic text on elasticity by Love [49].

1.2.1.1 Strain

When an elastic material is subjected to a stress, it will deform. In order to measure

these deformations, one defines the elastic strain as the fractional change in the shape of

the body. In one dimension, it is straightforward to visualise. Consider an elastic string

of length L, which we stretch to a length L̃ (at constant temperature). The stretching

will move a small portion AB of the string of length δx, to ÃB̃, say, where Ã has been

displaced by u and B̃ has been displaced by u+δu. The strain in the x−direction is given

by the ratio of the extension to the original length. As δx→ 0, it is written

εxx =
∂u

∂x
. (1.1)

In order to generalise this result to three dimensions, we look at an arbitrary three-

dimensional elastic body at constant temperature. Consider a vector with endpoints X

and X + δX in an unstressed elastic medium. When the elastic medium is stressed, this

vector will deform to a new vector, with endpoints x and x+δx, say. These endpoints can

also be posed in terms of a displacement vector, u, with respect to the initial unstressed

frame. Hence x = X +u(X) and x+δx = X +δX +u(X +δX). This is shown in Fig.

1.3. We relate the components of the two line vectors via the chain rule, so δxi = ∂xi

∂Xj
δXj,

where δxi is written for the ith component of δx and δXj for the jth component of δX.
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X

Stress material

Unstressed material Stressed material

x = X + u(X)

X + δX x + δx = X + δX + u(X + δX)

Figure 1.3: A diagram showing the deformation on a vector within an elastic medium

caused by stressing the virgin elastic material.

The tensor ∂xi

∂Xj
is defined as the deformation tensor, written as F . A measure of the

deformation is thus given by

|δx|2 − |δX|2 = δxiδxi − δXjδXj (1.2)

=
∂xi

∂Xj

δXj
∂xi

∂Xk

δXk − δXjδXj (1.3)

=

(
∂xk

∂Xi

∂xk

∂Xj

− δij

)
δXiδXj (1.4)

=

(
δij − ∂Xk

∂xi

∂Xk

∂xj

)
δxiδxj. (1.5)

We define the Green-Lagrange strain tensor (relating to the reference frame) as

Eij =
1

2

(
∂xk

∂Xi

∂xk

∂Xj

− δij

)
, (1.6)

or

E =
1

2
(F T F − I). (1.7)

Similarly, the Almansi strain tensor (relating to the deformed frame) is written

eij =
1

2

(
δij − ∂Xk

∂xi

∂Xk

∂xj

)
, (1.8)

or

e =
1

2

(
I − (F−1)T F−1

)
, (1.9)

so that |δx|2−|δX|2 = 2EijδXiδXj = 2eijδxiδxj. In terms of the displacements ui, these

strain tensors are

Eij =
1

2

(
(δki +

∂uk

∂Xi

)(δkj +
∂uk

∂Xj

)− δij

)

=
1

2

(
∂uj

∂Xi

+
∂ui

∂Xj

+
∂uk

∂Xi

∂uk

∂Xj

)
, (1.10)
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and

eij =
1

2

(
∂uj

∂xi

+
∂ui

∂xj

− ∂uk

∂xi

∂uk

∂xj

)
. (1.11)

When the shape of the deformed solid is close to the original reference shape, the terms
∂uk

∂xi
are small and we may neglect the quadratic terms. This leads to the infinitesimal

strain tensor for linear elasticity, termed the Cauchy strain tensor. We will write this as

εij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
. (1.12)

Clearly, this tensor is symmetric. The components of the strain tensor in cylindrical polars

are given in (A.2)-(A.7).

1.2.1.2 Stress

We define the stress tensor as the three dimensional tensor σij, where σij is the force

per unit area in the ith direction on a surface whose normal is in the jth direction with

respect to the deformed frame. The traction vector Ti is defined as the force on a surface

per unit area of deformed solid. By applying Newton’s Law to a small tetrahedron, it is

possible to shown that the traction on a boundary whose normal has components nj is

given by Ti = σijnj. It is also an easy exercise to show that the stress tensor is symmetric

(by considering forces on different faces of a cuboid and taking moments), so that

σij = σji. (1.13)

In order to write down equations for linear elasticity, we would like to relate the stress

tensor σ to the Cauchy strain tensor ε. In 1670, Robert Hooke4 came up with such a

law for a one-dimensional spring. Originally published in an anagrammatic form, his law

stated that

“ut tensio, sic vis,”

which literally means that “as is the extension, so is the force”, more modernly translated

as “force is proportional to extension”, or “stress is proportional to strain”. This is written

more compactly as σ = Eε, where E is the Young’s modulus.

The generalised Hooke law states that each of the components of stress can be written

as a linear sum of the six components of strain at the point, hence

σij = Aijklεkl, (1.14)

4Poor old Robert Hooke is described historically as a “lean, bent and ugly man”, which may account
for there being very few (if any) known portraits of him in existence!
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where Aijkl is a fourth rank tensor. For a homogeneous, isotropic material, this can be

reduced to [78]

σij = 2µεij + εkkλδij, (1.15)

where µ and λ are Lamé constants. The parameter µ is often called the shear modulus,

or modulus of rigidity (and is also denoted by G), and related to λ via the bulk modulus

K = λ+ 2
3
µ. The bulk modulus is a measure of the material’s resistance to volume change

when subjected to a hydrostatic load (i.e. a load in which the only nonzero elements of the

stress tensor are the diagonal entries, which are constant). The Young’s modulus can be

written in terms of λ and µ as E = µ(3λ+2µ)
λ+µ

. We also define Poisson’s ratio as ν = λ
2(λ+µ)

.

This is equal to the ratio of the lateral strain to the longitudinal strain (ν = −εyy/εxx for

a bar with axis parallel to the x−axis being stretched in the x−direction). It is usually

positive, as when most materials are stretched, they tend to get thinner in cross-section.

The 6× 6 matrix relating stress to strain is called the stiffness matrix.

The equations of equilibrium for an elastic medium are derived from (1.15) by applying

Newton’s second law of motion to an arbitrary region in the body, Ω, say. Assuming that

there are no external forces (i.e. body forces) on this region,

0 =

∫∫

∂Ω

σijnj dS (1.16)

=

∫∫∫

Ω

∂σij

∂xj

dV, (1.17)

using Green’s theorem. Since the region Ω is arbitrary, we finish with

∇.σ = 0, (1.18)

or, in terms of the displacements,

(λ+ µ)∇(∇.u) + µ∇2u = 0. (1.19)

These are Navier’s equations5. The system of equations is elliptic, and so the boundary

conditions are either the stress vector or displacement given on all boundaries, or some

combination.

If the inertia of the elastic body is important, we can easily modify the equation to

get

(λ+ µ)∇(∇.u) + µ∇2u = ρ
∂2u

∂t2
. (1.20)

The system is now hyperbolic, and hence can generate elastic waves. There are, in fact,

two wave speeds, namely the primary, or longitudinal wave speed (cp =
√

λ+2µ
ρ

) and

the shear, or secondary wave speed (cs =
√

µ
ρ
). These waves are commonly observed in

Earthquakes [44].

5These are also called the Lamé equations.
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1.2.1.3 Compatibility

Recall the definition of the Cauchy strain tensor, (1.12). We could consider this as a

system of equations in which the strains are prescribed, and hence we should be able

to solve for the components ui. In doing so, we see that there are six equations, but

only three unknowns. Hence, there is no solution unless the strain tensor satisfies some

compatibility conditions. To work out what the restrictions on the strain tensor are, we

could argue by looking at small elements in a general elastic body [79]. Instead, we put

the more concise argument as in Milne-Thomson [50]. If we write the strain matrix in

terms of the spatial derivative of the displacements as

ε =
1

2






· · · ∇u · · ·
· · · ∇v · · ·
· · · ∇w · · ·


 +




...
...

...

∇u ∇v ∇w
...

...
...





 , (1.21)

we see that we should get zero if we take the curl of the rows and then the columns. The

compatibility tensor is thus defined in terms of the alternating tensor εijk by

ηij = −εiklεjmn
∂2εln

∂xk∂xm

. (1.22)

When ηij = 0 ∀i, j, there is a unique solution for the displacements up to rigid body

motion6.

1.2.1.4 Stress functions

In two-dimensional or axisymmetric incompressible fluid dynamics, one often introduces

a stream function ψ. This function is defined so that the incompressibility condition

is automatically satisfied [2]. The key attribute of the stream function is that the two

unknown components of the fluid velocity are simply derivatives of ψ, and so if we can

solve one equation for ψ with appropriate boundary conditions, we can easily determine

the two velocity components.

A similar notion exists in elasticity. A simple example to consider is the equations of

equilibrium in plane strain,

∂σxx

∂x
+
∂σxy

∂y
= 0, (1.23)

∂σxy

∂x
+
∂σyy

∂y
= 0. (1.24)

6Essentially, by taking the curl, we have cross-differentiated the components of the strain and elimi-
nated the different displacements. In plane strain, the compatibility condition can easily be worked out
to be ∂2εxx

∂y2 + ∂2εyy

∂x2 − 2∂2εxy

∂x∂y = 0.
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We introduce the Airy Stress function, A(x, y), where the stress components are given as

σxx =
∂2A

∂y2
, σyy =

∂2A

∂x2
and σxy = − ∂2A

∂x∂y
, (1.25)

so that (1.23)-(1.24) are automatically satisfied. We now use the vector identity

∇2u = ∇(∇.u)−∇ ∧ (∇∧ u), (1.26)

and take the divergence of Navier’s equations (1.19). This yields

∇2(∇.u) = 0, (1.27)

and so ∇.u, the dilatation, is harmonic. Finally, (1.15) gives the relationship

σxx + σyy = 2(λ+ µ)∇.u, (1.28)

and so substituting for the stresses in terms of A(x, y) leads to a very familiar equation

in elasticity, namely the biharmonic equation:

∇4A(x, y) = 0. (1.29)

Hence if we can solve the biharmonic equation with appropriate boundary conditions, we

can solve for the state of stress. We can then solve for the displacements via the stress-

strain relations (1.15) with suitable boundary conditions (substituting for the strains in

terms of the displacements and checking the compatibility conditions).

The formulation above is simple to write down. A similar stress function exists for

axisymmetric elasticity. Sadly, the derivation is neither intuitive nor simple. However,

it is shown by Love [49] that there exists a stress function in axisymmetric coordinates,

χ(r, z), that satisfies the (quasistatic) Navier equations. We term this function the Love

stress function, and the equation that it satisfies is, remarkably,

∇4χ(r, z) = 0. (1.30)

The components of stress and displacement are given in terms of the Love stress function,

χ(r, z), in (C.2)-(C.7).

1.2.1.5 Nonlinear elasticity

We have already described the theory of linear elasticity, valid for infinitesimal strain. If

the strains are finite, we can no longer neglect the quadratic terms in (1.10), and so need a

different theory. This theory is termed finite hyperelasticity (or just finite elasticity), and

a material satisfying it is called a Green-elastic material. In order to write a relationship
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analogous to Hooke’s Law (1.15), we must firstly define the first Piola-Kirchoff stress

tensor, S. This is defined as7 the force per unit undeformed area acting on the deformed

body and is related to the true stress, σ, via the deformation tensor F as [39]

σ =
1

J
SF T , (1.31)

where J = det F . We now introduce the strain-energy function W . This is a scalar po-

tential and is a measure of the energy stored in the material as a result of the deformation

[36]. It is postulated to be a function of the eigenvalues of F , known as the principal

stretches. For an unconstrained hyperelastic material, it can be shown [39, 62] that

S =
∂W

∂F
. (1.32)

Incompressible hyperelasticity

If the elastic material is incompressible, this equation is modified to

S = −p(F−1)T +
∂W

∂F
. (1.33)

Here, p, the hydrostatic pressure, is the Lagrange multiplier for the constraint of incom-

pressibility. To write this in terms of the true stress σ, we use det J = 1 to find that

σ = −pI +
∂W

∂F
F T . (1.34)

In order to determine the stresses for such a hyperelastic material, we need to write down

an explicit law for the strain-energy function W . The simplest formulation is to assume

a Neo-Hookean law. This is written as

W =
µ

2
(I1 − 3), (1.35)

where I1 is the first invariant of Green’s deformation tensor C = F T F , written explicitly

as

I1 = tr(C). (1.36)

1.2.2 Metal plasticity

When applying a stress to an elastic metal, it is observed that Hooke’s law (1.15) does

not apply when the stress is over a certain threshold, and that, when the stress is released

again, there is permanent deformation8. Plastic flow has occurred. Indeed, the theory of

7Similarly, the second Piola-Kirchoff stress tensor, T , can be defined as the force per unit undeformed
area acting on the undeformed body, and is related to the first Piola-Kirchoff stress tensor via T = F−1S.

8For example, this is seen when a stress is applied to a paper-clip: when the stress is low, it will behave
elastically; when the stress is over a certain limit, the metal will behave plastically.
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metal plasticity dates back to 1864, when Tresca published an account of punching and

extrusion. He first postulated that a metal would yield plastically when the maximum

shear stress was greater than some specified value. It has since been developed and refined

over the centuries, the most comprehensive theory being given by Hill [36].

The flow occurs as the result of dislocations moving through the metal. Mathemati-

cally, a dislocation is represented as a singular solution to Navier’s equations, (1.19). The

solution may be a line singularity, or a point singularity. Suppose we take a cylinder of

radius r = a, and somehow pull a line r = a, θ = 0 out radially by an atom, say, ‘sticking’

it in its final configuration. This introduces what is called an edge dislocation, shown

in Fig. 1.4. Clearly, we have introduced a stress field by creating the dislocation, even

though there is no applied traction once the material is ‘stuck’ back together.

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

Edge dislocation

Figure 1.4: An edge dislocation in a cylinder.

If we look on an atomistic scale, we see that the lattice is no longer regular, but

a discontinuity has been introduced in the atomistic spacing (Fig. 1.5). This can be

observed experimentally, but only under an electron microscope as the lengthscale involved

is 1nm. Further, applying stress to the lattice will cause the dislocation to propagate

Atoms

Extra atoms squeezed in

Dislocation

Pristine metal block

Figure 1.5: A diagram showing a pristine metal block and one with a dislocation intro-

duced. The dislocation moves from right to left, the direction of the Burgers vector.

through the metal (as can be imagined by looking at Fig. 1.5). This is plastic flow. These
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dislocations can often get ‘stuck’ at any material faults in the lattice, which goes some

way to explain why plastic strain is irreversible.

An increasing amount of stress is often needed to maintain the movement of dislo-

cations. This is because new dislocations are created during plastic flow (which requires

energy). Further, the gradual agglomeration of dislocations getting ‘stuck’ in the material

makes it increasingly harder for dislocations to move through the lattice. This concept is

known as work-hardening (or strain-hardening), and leads to a stress-strain curve as in

Fig. 1.6(a).

We need to make some further simplifications in order to write down tractable equa-

tions of plasticity and a ‘yield condition’. One such simplification we assume is based

on another experimental observation, namely that the velocity field for the plastic flow

is incompressible. As well as neglecting any thermal effects, we will also neglect any

anisotropic loading/unloading effects such as the Bauschinger effect. This occurs as a

result of the randomness of the crystalline grain-sizes and orientations in a metal; when a

load is applied which causes plastic flow, the material can lean towards a favourable ori-

entation for the metal’s crystal structure which, when the load is released and reapplied,

results in the (now anisotropic) metal yielding at a much lower stress.

1.2.2.1 Yield

Armed with the aforementioned assumptions, we can now consider a yield condition for

the plastic flow. This is some kind of law that defines the limit of elasticity under any

applied stress. In order to interpret this condition geometrically, we introduce the three

principal stresses σ11, σ22 and σ33. For an isotropic material, the yield condition only

depends on the magnitude of these stresses. Using the principal directions as Cartesian

coordinates, we see that the yield condition can be geometrically represented as a surface.

This surface is known as the yield surface. For an isotropic material, the yield condition

can be simplified by the key experimental observation that, to leading order, plastic yield

is unaffected by any applied hydrostatic (isotropic) stress. This motivates splitting the

stress tensor into a hydrostatic part, p = 1
3
σkk, and a deviatoric part, σ′ij, defined by

σij = −pδij + σ′ij. (1.37)

Note that the sum σ′kk is automatically zero, and so, geometrically, the span of the three

vectors {σ′11e1, σ
′
22e2, σ

′
33e3} represents a plane, where ej is the unit vector in the j-th

principal direction. Since we have assumed that yield only depends on the hydrostatic

part of the stress, adding any hydrostatic pressure p to the stress cannot affect the yield

surface. Thus, the yield surface must be some kind of cylinder with axis (1, 1, 1). By

considering the projection of the cylinder onto the plane spanned by the deviatoric parts
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of the stress, one can consider further geometrical arguments involving symmetry of the

principal parts of the stress to show that the cylinder must have six axes of symmetry

[36]. This leads to two of the most famous yield conditions, namely those of Tresca and

Von-Mises ; the first assumes that the yield surface is hexagonal in cross-section, whereas

Von-Mises’ condition has a circular yield surface. In terms of the stresses, they are

max(|σ′11 − σ′33|, |σ′22 − σ′33|, |σ′11 − σ′22|) = σY (Tresca),

σ′11
2 + σ′22

2 + σ′33
2 = 2

3
σ2

Y (Von-Mises),
(1.38)

where the constant σY is the yield stress of the material9. Tresca’s condition is often

preferred for analytical modelling as it is piecewise linear in the stresses and hence math-

ematically easier to manipulate algebraically. The Von-Mises condition is more common

in numerical modelling as the relative sizes of the principal stresses do not need to be

calculated at each stage.

1.2.2.2 Stress-strain relations and flow law

The assumption above of constant yield stress in (1.38) is termed perfect plasticity, with

a stress-strain graph of Fig. 1.6(b). We need to relate the components of the stress tensor

0 σY /E

σY

0

Hooke’s law satisfied
(elastic behaviour)

Stress

Strain

with work hardening
Plastic flow

(a) A stress-strain diagram for a material ad-
mitting plastic work-hardening.

σY /E

Hooke’s law satisfied

σY

0
0

Stress

Strain

(elastic behaviour)

Plastic behaviour

(b) A stress-strain diagram for an elastic-
perfectly-plastic material.

Figure 1.6: Stress-strain relations for an elastic-plastic material.

to those of the strain tensor whilst the material is plastic. Historically, many authors have

put forward possible laws. The most physically realistic of these laws are the equations

of Reuss. Reuss splits the total strain into an elastic part and a plastic part, where the

elastic part is zero if there is no applied stress, and the plastic part represents permanent

9If we were to include work-hardening in this model, the right-hand side of the yield conditions would
have an extra term H(ε). This function, initially zero, increases with the amount of plastic flow.
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deformation. The plastic part of the strain is related to the deviatoric stress in perfect

plasticity via

σ′ij = Λε̇
(p)
ij , (1.39)

where Λ > 0 is a function of space and time, and ε̇
(p)
ij = 1

2
( ∂u̇i

∂xj
+

∂u̇j

∂xi
) is the plastic part of

the strain rate tensor. We note that Λ can be regarded as a Lagrange multiplier for the

constraint that the material is at yield. This is seen using an Euler-Lagrange approach

by minimizing the work-done by some state of stress, σ∗ij, in the incremental plastic strain

dεij (simply the product of the two) subject to the yield constraint. The flow law, since

it is derived from the yield surface, is termed an associative flow law.

The Reuss flow-law assumes that the elastic strains in the material are non-trivial.

In the case where ε̇
(p)
ij À ε̇

(e)
ij , the flow-law simplifies to the Lévy-Mises equations, which

state that the deviatoric stress is related to the total strain rate via

σ′ij = Λε̇ij. (1.40)

These equations are easier to deal with mathematically, though are not applicable to all

scenarios.

Other flow laws that we will not mention are given in [36]. The final constitutive law

that we will give is the one used by the modern hydrocodes, namely the Zerilli-Armstrong

law [105], which replaces Hooke’s law and (1.39). It bases plastic slip on a thermally

activated process, and can be written for a general body-centred-cubic metal as

σ = σ0 + c1 exp (−c2T + c3T log ε̇) + c4ε
n +

k√
l
, (1.41)

where σ0 is some function of the initial inhomogeneity of the metal and the yield stress,

T is temperature, l is an average grain diameter, k is some stress-intensity factor, and the

constants ci and n are properties of the particular metal.

1.2.2.3 Shear bands

Extreme plastic flow in a material can lead to shear bands. These are regions of very

high strain in a material. They are thought to originate at small material defects or

inhomogeneities (such as crack tips), and propagate in thin bands. The method behind

their propagation is believed to be a result of a contest between two competing processes

[100]. Firstly, we already know that the isothermal stress required to produce some

strain increases with work hardening (Fig. 1.6(a)). However, plastic work causes the

local temperature to increase, which in turn lowers the stress required to produce the

same isothermal strain in the material. This process is known as thermal softening, and

is a stronger effect than work hardening. Furthermore, it is unstable over a certain
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threshold. Once this level of thermal softening is reached, any small instabilities (often

caused by material defects) will grow, causing the plastic work and hence heat production

to increase even more, which leads to further softening. This self-sustaining process,

known as “localization”, results in a structure being formed. This is the shear band, an

example of which is shown in Fig. 1.7. It is the instability and localization processes that

Shear band

Figure 1.7: A picture illustrating typical shear bands on the internal surface of a collapsed

cylindrical cavity in stainless steel. We would like to acknowledge Professor Nesterenko et

al. [102] for kindly allowing us to publish this image.

account for the band being thin. The material surrounding the shear band then unloads

because of the lower stress in the shear band, and all the shearing now occurs solely in

the shear band. This shearing increases the local temperature in the band significantly,

which, in turn, releases heat by conduction into the material either side of the band. The

material on both sides of the shear band can now move as a rigid body (with respect to

the band). Owing to the thinness, one can derive ‘boundary layer’ equations to model

the shear band.

1.2.3 Asymptotics

Throughout this thesis, we will employ asymptotic techniques. This is a consequence of

common occurrences of a small parameter, usually ε, in our equations. We give some

common definitions. Formally, to define ‘order’ notation,

f(x) = O (g(x)) as x→ a if ∃ constants K and δ such that

0 < |x− a| < δ ⇒ |f(x)| ≤ Kg(x). (1.42)
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Similarly,

f(x) = O (g(x)) as x→ a if
f(x)

g(x)
→ 0 as x→ a. (1.43)

This enables us to define an asymptotic expansion for a function f . We will write

f(x; ε) ∼
∞∑

j=0

fj(x)φj(ε) as ε→ 0

if and only if

∀N, f(x; ε)−
N∑

j=0

fj(x)φj(ε) = O (φN+1(ε)) as ε→ 0.

Usually, φn(ε) = εn. We also note that the infinite sum
∞∑

j=0

fj(x)φj(ε) need not necessarily

converge.

We also write down matching conditions, which are needed to match different asymp-

totic regions together. These are given by Van Dyke [92] and written as

(mth term in inner)(nth term in outer) = (nth term in outer)(mth term in inner),

or

“(mti)(nto)=(nto)(mti)”. (1.44)

This rather cryptic condition is interpreted as follows. Take, for example, (1ti)(1to). This

means “take the first term in the outer expansion, expand it in terms of the inner variables,

and then take the first term of this”. The resulting expression must equal (1to)(1ti),with

one of the expressions once more rewritten in terms of the other’s variables10.

1.2.4 Slender body theory

A slender body is an axisymmetric body with high aspect ratio11, r = εf(z), say, where

0 < ε ¿ 1 [61]. The paradigm example of slender body theory in action is to consider a

lightning conductor. Suppose it is described by r = εR(z), with 0 < ε¿ 1, for 0 < z < 1.

Clearly, there are two lengthscales in the problem. If we are very close to the lightning

conductor and sufficiently far from the endpoints, the body will appear to be infinitely

long with a finite radius. Far away from the body, the body will appear infinitely thin,

but now with finite length. From Maxwell’s equations, the field equation is simply

∇2φ = 0, (1.45)

for some potential, φ. The boundary conditions we impose are zero potential on r = εR(z)

and a uniform field at infinity, so φ = Ez at infinity, where E is some constant. This is

shown in Fig. 1.8.

10Expansions involving log ε have to be treated in a slightly different manner [38, 92].
11The two-dimensional analogue of a slender body is termed a thin body, y = εf(x).
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φ = 0 on rod, r = εR(z)

z = 1z = 0

φ ∼ Ez at ∞

∇2φ = 0

Figure 1.8: Slender body theory applied to a lightning conductor.

The key observation at this stage is that the problem is a fully three-dimensional one.

Via potential theory, we can express the outer solution in terms of a Green’s function for

Laplace’s equation, hence

φ(r, z) =

∫ 1

0

Q(z′)√
r2 + (z − z′)2

dz′ + Ez, (1.46)

where the unknown function Q(z), which represents a series of point charges distributed

along the rod, will be determined by imposing φ = 0 on the rod.

Near the rod, r ¿ 1 and so we rescale r = εr′. This gives us an inner scaling.

Expanding the outer solution for such r′ gives

∫ 1

0

Q(z′)√
r2 + (z − z′)2

dz′ ∼ Q(z)

∫ 1

0

dz′√
ε2r′2 + (z − z′)2

, (1.47)

as the dominant contribution to the integral is when z − z′ ¿ 1. Thus we find that [38],

for some K,

φ(r, z) ∼ Q(z)K log(εr′) + Ez. (1.48)

Applying φ = 0 on r′ = R in the inner solution and matching this with (1.48) determines

the strength of the point charges, Q(z). More importantly, however, note that φ(r) =
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A log r is the two-dimensional solution to Laplace’s equation, so by using slender body

theory, we have reduced the dimensionality of the problem in the slender region by turning

our axisymmetric body into a two-dimensional problem.

1.3 Thesis outline

Chapter 2 contains a conspectus of the shaped-charge literature. We start by discussing

classical hydrodynamic models for penetration, paying special attention to the Birkhoff

fluid-fluid impact. We briefly mention particulation and axisymmetric modelling, before

discussing penetration with water jets. We then present existing models from solid me-

chanics and comment on the literature on plastic instabilities. After a brief outline of

numerical formulations, we set out our aims for the thesis.

The classical Birkhoff jet-penetration model described in Chapter 2 motivates an

elastic-plastic equivalent. In Chapter 3, we write down equations for such a model, with

extra experimental evidence being an additional signpost for this route. Having set the

scene for an axisymmetric elastic-plastic model, we give estimates for the different param-

eters involved, before subdividing the model into three different regions. Firstly, equations

for an inviscid, irrotational fluid are considered in the jet region, with suitable boundary

conditions. Moving out from the jet, we write down equations for plastic flow, briefly

discussing supersonic versus subsonic plasticity and flow laws along with inertial effects.

Finally, we consider the fully-inertial Navier equations in the elastic region. The chapter

concludes with a discussion of different scalings, some based on geometrical ideas.

Chapter 4 contains the innards of the elastic-plastic model described in the previous

chapter. We begin by nondimensionalising the governing equations, discussing two pos-

sible plastic velocity scales. We then exploit the slenderness of the system in developing

a slender-body model, thus reducing its dimensionality. These equations are matched to

the outer elastic solution, the latter obtained via the Love stress function. We attempt

a travelling-wave formulation, before considering inertial effects and drawing conclusions

about elastic-plastic modelling.

In Chapter 5, we draw analogies with the classic elastic-plastic expansion of a cylinder

under internal pressure. By analysing this in more detail and considering literature on

autofrettage (a process used to strengthen gun-barrels), we derive expressions for resid-

ual displacements and residual stresses based on linear elasticity with different pressure

regimes. We move on to consider the problem with nonlinear elasticity and discuss the

relevance to the cavity size in shaped-charge penetration, proposing a simple model in

which the jet is treated as a known pressure-pulse. We close the chapter by considering

non-radially-symmetric perturbations to the earlier solution in order to analyse the plastic
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flow and resultant residual stresses.

We start Chapter 6 by writing down an elastic-plastic model for the tip, motivated by

the gun-barrel analysis of Chapter 5. We move on to consider a plastic squeeze film as a

simple analogy for the mechanism for removing target material around the tip. In doing

so, we visualise the plastic flow and investigate the possibility of termination of the plastic

region. We conclude this chapter with a brief discussion on plastic mass conservation.

Chapter 7 is devoted to paradigm tip models for the jet. These models are based

on “filling-flows”. We begin with simplistic two-dimensional models to gain intuition

into more representative models, which we write down by considering the fluid-plastic

free-boundary as a membrane, beam, and then by using a general law between pressure

and height. Using techniques in matched-asymptotics and scaling ideas motivated by

earlier chapters, we can find travelling-wave solutions and similarity solutions to these

models, giving us indications of the large-time behaviour. We conclude this chapter by

writing down axisymmetric models; we motivate our final model by residual-displacement

arguments from Chapter 5 and comment as to the solubility of all these models.

Chapter 8 is concerned with experimental and numerical results. We begin by dis-

cussing properties of the microstructure known via existing experimentation. We then

present results of our own tests on a steel block penetrated by a silver jet, including a

discussion of detailed microscopic pictures of the microstructure and hardness test results.

We conclude the chapter with numerical results from QinetiQ ’s hydrocode.

Finally, we close the thesis in Chapter 9. Here, we recapitulate the key points brought

up in the previous chapters and list future work.

1.4 Statement of originality

The material in Chapter 2 is a review of existing literature and hence not original.

The following two chapters build on and improve the preliminary quasistatic model

of Watkin [96]. This leads to a novel free-boundary problem and two possible plastic

velocity scales. We match the inner and outer solutions and attempt a travelling-wave

formulation as well as discussing the equivalent inertial problem. This is original work.

The bulk of Chapter 5 is original material. There exists some literature on residual

stresses, although originality is claimed for the time-dependent modification and for con-

sideration and clarification of the effect of cyclic loading-unloading on recoverable and

non-recoverable parts of the stress tensor. Application of the ideas of residual stresses

and displacements is novel for shaped-charge modelling. We also claim originality for the

non-radially-symmetric perturbation to the simple cavity-expansion problem.

The elastic-plastic model for penetration in Chapter 6 is original work. Apart from
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the outline of the viscous squeeze film and the work on the basic plastic squeeze film, the

remainder of Chapter 6 is original (although there are some similarities with cold-rolling

of metals).

The work we present in Chapter 7 builds upon Peregrine’s filling-flow models [67, 68],

and touches on classic similarity solutions of the shallow-water equations. The remainder

of models in the Chapter are novel.

Finally, similar metallurgy analysis to that of Chapter 8 has been done before, although

with differing results.



Chapter 2

Shaped-charge literature

The literature on the varied aspects of shaped-charge penetration is vast. We have already

touched on the jet formation stage and some of its applications without going into detail

such as, for example, liner geometry and composition. Much of this is at least outlined

and referenced in the book by Walters and Zukas [95].

In this chapter, we give an account of existing ideas on the penetration of the target,

discussing the classical hydrodynamic models before investigating more physical models

based on solid mechanics. We also mention numerical “hydrocodes”, before motivating

new models. A relatively recent detailed account on the penetration literature is given by

Hebdon [32]. Metallurgical observations will be presented in a later chapter.

2.1 Hydrodynamic models

Early experiments on shaped-charge penetration indicated that the strength of the target

did not play a major role in the depth of penetration. Hence, the first models that were

developed neglected the strength of the target, treating both the jet and the target as

fluids.

2.1.1 Birkhoff jet impact

The simplest inviscid model for penetration by an incompressible, continuous fluid jet of

density ρj into a similar fluid of density ρt was developed by Birkhoff et al. [7, 11]1. We

briefly outline their model, which uses ideas from Helmholtz streamline theory.

Consider a jet of length L, density ρj and velocity V in two dimensions. When this fluid

impacts a stationary fluid with density ρt, say, it displaces the stationary fluid, turning

back on itself and thus creating a cavity whose boundary is a free-surface. The two fluids

1Mott et al. [65] also discussed penetration by ‘Munroe’ jets at a similar time to Birkhoff.

22
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are separated by a dividing streamline. We suppose that the velocity of penetration is U

(Fig. 2.1(a)) and that the effects of gravity are negligible. With respect to a rest frame,

the motion is unsteady. By changing to a frame moving with the penetration as shown

in Fig. 2.1(b), we can write down a steady Bernoulli condition for both the jet and the

target. Writing velocities as u, pressures as p and using the obvious subscripts for ‘jet’

and ‘target’ fluids, the conditions are:

U

V

Incoming jet

Outgoing flow

Jet tip

Displaced fluid

Cavity

(a) A liquid jet of velocity V impacting
liquid at rest, penetrating with velocity
U .

U
Incoming jet

V − U

Stagnation point

Dividing streamline

(b) Hydrodynamic penetration in a frame of
reference moving with the stagnation point.

Figure 2.1: Hydrodynamic penetration.

pj

ρj

+
1

2
|uj|2 =

1

2
(V − U)2, (2.1)

pt

ρt

+
1

2
|ut|2 =

1

2
U2, (2.2)

where the Bernoulli constants have been calculated using zero flow (in the rest frame)

at infinity and p = 0 on the free-surface. The pressures at the stagnation point must be

equal, hence we obtain the penetration velocity U in terms of V and the densities as

U =
V(

1 +
√

ρt

ρj

) . (2.3)

The depth of penetration is approximated by UT , where T is a typical timescale. We

calculate this by arguing that the timescale over which the jet gets ‘used up’ is L/(V −U),

and so the penetration depth, d, is given by

d = L

√
ρj

ρt

. (2.4)

The shape of the free-streamline (and dividing streamline) can also be calculated in

two dimensions using complex variable techniques [11, 51, 99]. To do this, four planes
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are considered. Firstly, the complex potential plane Ω, where Ω = φ + iψ. Here φ is

the velocity potential and ψ is the stream function for the fluid. Hence streamlines are

represented as the level sets of ψ in this plane. We also consider the Q−plane, where

Q = log
(

dz
dΩ

)
. Writing the velocity as u− iv = qeiθ, we observe that the direction of flow

is represented by the imaginary component in this plane. The fluid is now represented

by an open-ended rectangle, which is mapped to the upper-half plane via a map ξ =

coshQ = 1
2

(
dΩ
dz

+ dz
dΩ

)
. Finally, a Schwarz-Christoffel map allows us to map this to the

Ω-plane, allowing us to derive an expression for the velocity potential. By doing this

analysis, the behaviour of the free-boundary is given via the relationship

x = 2 log
(y

4
+ 1

)
−

(y
4

+ 1
)2

. (2.5)

For large x, this relationship shows that the boundary exhibits square-root behaviour,

y ∼ ±4h
√−x, where h is the width of the incoming jet2.

This simplified model for fluid-fluid penetration predicts the profile of the cavity, but

has a solution that is unbounded for large negative x. This unphysical solution is not

observed experimentally. An alternative model which takes the confinement of the cavity

into consideration was derived by Hopkins et al. [40]. They depart from the Helmholtz

theory by permitting the free-streamline to have non-constant velocity in the part of

the flow that has just reversed direction. Hence, Bernoulli’s equation does not hold in

this region where the fluid slows down, a result of turbulence and viscous effects. The

conformal mapping techniques now lead to a finite crater width for large negative x, given

by

y ∼ ±h
(

2V
√
ρjπ

V
√
ρj − U

√
ρt

)
. (2.6)

2.1.1.1 Penetration with particulated jets

Fluid jets can become particulated as the result of a classic Rayleigh instability [72].

Birkhoff et al. have developed similar models for analysing such jets [6]. The key difference

is that each fluid particle is modelled as a solid particle with velocity V . Hence, the average

pressure exerted by a particle on the fluid target is

pj = ρj(V − U)2. (2.7)

Writing the equations in a frame moving with the penetration, the motion is locally steady

and so Bernoulli’s equation holds once more in the target. Thus, at the stagnation point,

the velocities and pressures of the particles and target are in balance, yielding

ρj(V − U)2 =
1

2
ρtU

2. (2.8)

2Analysis of this kind arises frequently in “slamming” problems [63].
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This results in a penetration velocity of

U =
V(

1 +
√

ρt

2ρj

) , (2.9)

with depth of cavity given by

d = L

√
2ρj

ρt

. (2.10)

Comparing this with (2.4), a penetration depth of

d = L

√
λρj

ρt

. (2.11)

for 1 < λ < 2 is proposed by Birkhoff et al. for intermediate phase jets.

2.1.1.2 Axisymmetric models

The Bernoulli analysis for the two-dimensional case trivially applies also to a continuous,

incompressible, axisymmetric jet. The complex variable techniques previously used to

establish the shape of the cavity sadly cannot be used. A good alternative is to use

slender-body theory, outlined in §1.2.4. By considering a far-field solution as in Hebdon

[32], one can derive a solution for the velocity potential and hence asymptotically show

that the cavity shape for large negative z is

r ∼ A
√−z, (2.12)

where A is some positive constant.

Watkin [96] discusses a similar formulation in which a solution for the velocity potential

φ is given in terms of the Green’s function for Laplace’s equation, namely

φ(r, z) =

∫ 0

−∞

ε2R(ξ)R′(ξ)√
(z − ξ)2 + r2

dξ, (2.13)

where R(ξ) is the position of the outer free-boundary and 0 < ε ¿ 1 is the ratio of a

typical radial lengthscale to a typical axial one. He then obtains an integro-differential

equation for R(z) which has to be solved numerically.

2.1.2 Water jets

The traditional method of mining rock is to break it up using a high-speed drill. A real

danger in this process is that frictional heating can ignite methane and other flammable

gases that were once trapped in the rock. This has motivated investigations into drilling

with high-speed water jets.
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The simplest form of a water jet is a continuous, high-speed, high-pressure jet. The

jet impacts a designated target surface, excavating a hole. An experimental account

of continuous water-jet penetration is described by various authors [10, 46]. Leach and

Walker consider a high-speed jet with velocity 1km s−1 and pressure of up to 500MPa as

well as a slower jet, with velocity 340m s−1 and pressure 60MPa. A jet with diameter

1mm and total volume 10cm3 moving at the higher velocity produces a hole in sandstone

which is 20mm deep and, irrespective of the depth of penetration, 5mm in diameter. Even

faster jets with velocities of up to 9.5km s−1 can be produced by using a shaped charge

with a water gel as the liner [97].

This penetration can be improved by adding abrasive particles such as grit or silicon

carbide into the stream of the water jet. Hashish [31] reviews possible theories involving

erosion mechanisms and deformation theories for penetration. The key idea is from Bitter

[8], who considers impact via elastic-plastic deformation and introduces the “wear volume”

(equivalent to our cavity volume). This is given by the ratio of plastic energy dissipation

to energy required to remove unit volume. The effectiveness of this technique is discussed

by Swanson et al. [81], who note that the mixing of the abrasive particles and the water

jet is inefficient as it is difficult to get the particles near to the centre of the water jet.

A more interesting and relevant aspect of water jet penetration is the effect of percus-

sive jets. This is similar to a particulated shaped-charge jet in that the separate particles

impact the target, but crucially differs because it is beneficial for water jet penetration,

and usually more efficient by up to an order of magnitude. These jets work by impacting

the rock in a sequence of high-frequency, short duration bursts. The key feature of the jets

is that they are produced by perturbing the discharge rate between just above and just

below some average flow rate. Hence, some portions of the jet move faster than others,

resulting in “bunching” of the jet and so the jet separates into discrete particles [55]. The

main benefits of this technique over a pulsed, intermittent jet is that percussive jets are a

lot easier to produce and do not suffer from ‘water hammer’ effects (i.e. pressure waves

in the jet that result from stopping (and then restarting) the flow). Further, owing to

the bunching effect, the momentum from the percussive jet is transferred to the target as

a series of force peaks (and troughs); an intermittent jet would only produce a series of

equal lower-force impacts. There are also advantages of percussive jets over continuous

jets. Firstly, a percussive jet has a far higher ratio of impact area to volume of impacting

water. This is found to be very beneficial for excavation by liquids. Also, it is observed

experimentally that, for a continuous jet, it is the initial impact that has the greatest

net effect on target penetration. This observation is clearly exploited by percussive jets.

Finally, the cyclic loading/unloading promotes brittle fracture in the target.

An analytical model for the bunching of the jet is discussed by Sami and Ansari [77].
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They develop a model using the axisymmetric, unsteady Navier-Stokes equations for a

slender jet, allowing for surface tension effects. The modulation of the jet is modelled via

the boundary condition

u(0, t) = U + (δU) sinλt, (2.14)

where the jet is emitted at z = 0, λ is a constant (representing the frequency of the

modulation), U is the constant flow velocity and δU is a small perturbation to the fluid

velocity. They discuss three possible models for the jet radius as a function of position

and time, with the following three separate frameworks:

� inertia effects À surface tension effects,

� jet radius r ∼ r0 + εr1 +O (ε2),

� a Lagrangian model, where the velocity u of a particle is u = U + εu1 +O (ε2).

These models give estimates for the jet radius, thus describing the bunching of the jet

(which will eventually lead to jet break-up). They conclude that, although they have good

analytical approximations, it is likely that drag (so far neglected) plays an important role

in the break-up mechanism of the jet. This is confirmed by experimental observations, in

which flat fluid discs are seen to deform as they move forward rapidly.

Eddingfield et al. [23] discuss models for turbulent submerged water jets (that is, a fluid

penetrating inside a similar fluid). These models can be solved numerically by assuming

a lengthscale over which turbulent viscous mixing occurs. They move on to discuss a

multi-phase model for a water jet moving through air. The three separate phases are the

core of the jet itself, the surrounding air flow, and droplet flow (from the jet) in the air,

taking into account the drag.

2.2 Models from solid mechanics

The hydrodynamic model based on Bernoulli’s equation gives a good estimate for penetra-

tion depth. However, it is not a true representation of the underlying physical processes

and hence, at the cost of losing this extreme simplicity, many authors have considered

models to take account of the solid mechanics. Although much of this literature is re-

viewed by Hebdon [32], we must outline some models.

2.2.1 Models of penetration

A full elastic-plastic model of penetration is extremely complex. Hence, the first models

for penetration make the simplification of dividing the model into two processes, namely
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an axial penetration and a radial crater expansion part [95]. These models perform well

for high-velocity penetration where the inertia of the jet is much greater than the yield

stress of the target, but can have marked differences with low-velocity (rod) penetration

and particulated penetration.

One such model is developed by Szendrei [84, 85]. Among other authors, he borrows

ideas from traditional fluid models by using a modified Bernoulli equation from classical

high-velocity erosion literature. This is written as

1

2
ρj(V − U)2 + Y =

1

2
ρtU

2 +R, (2.15)

where Y and R are empirical constants for the jet and target, respectively. These target

strengths come into the penetration depth via a parameter K. Szendrei assumes a lower

penetration velocity and models the jet as a rod. This is motivated by the fact that

the jet slows down significantly after its ‘steady-state phase’ of penetration. Assuming

cylindrical expansion, an expression similar to equation (2.4) is derived. The parameter

K is also used to estimate the energy needed to create unit volume of crater, thus allowing

an estimate of the stress field of the target to be given in terms of the material constants.

The main flaw in this approach, apart from assuming cylindrical expansion and neglecting

shear effects, is that the empirical strength constants Y and R are not related to the yield

strength of the jet or target, and hence can’t be fully representative of the penetration.

Tate [86, 87] developed an elastic-plastic model for penetration. He assumes that

the plastic flow field follows the magnetic field of a solenoid, motivated by ideas from

Milne-Thomson [51]. He assumes the Levy-Mises flow law, incompressible plasticity and

that temperature effects are negligible, ultimately leading to an expression for the rate of

crater expansion in terms of the pressure from the jet.

Barnea and Sela [4] derive an elastic/plastic radial crater-expansion model with inertia.

The Von-Mises yield condition is used in conjunction with an associated flow law to model

the plasticity, assumed to be incompressible. They also assume that the penetration occurs

with constant velocity U , and allow the possibility of nonzero shear stress. After changing

to a frame moving with the penetration, they integrate the momentum equation across the

plastic region, considering the target as a series of two-dimensional slices. They impose

zero normal stress on the free-boundary a(t) separating the cavity from the plastic region

of the target, and eventually end up with a third-order ordinary differential equation for

the a(t). They also consider the large-U limit, obtaining an analytical estimate for the

crater radius in terms of a(0), ȧ(0), the density of the target and its yield stress. A “cut-off

velocity” (i.e. velocity below which no crater expansion occurs) is also estimated for large

U . This is found to agree with the Szendrei estimate. The problem with their model,

however, is that they are unable to provide any initial conditions for the crater position
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or velocity, thus not reconciling the analysis with any of the tip mechanics. Furthermore,

their model is a crater-expansion model, essentially considering radial cavity-expansion

for penetration as a travelling-wave.

A recent study by Watkin [96] also develops an elastic-plastic model, assuming in-

compressibility and a perfect-plastic flow law. This model exploits the slenderness of the

cavity and considers a local analysis of the flow sufficiently far from the tip. To simplify

the equations, the jet is modelled as a constant pressure P . This results in an equation

whose solution has the form of a travelling-wave. The equation contains undetermined

parameters, which probably come from the tip or matching with the bulk elastic material.

2.2.2 Plastic instability and jet particulation

Particulation of a shaped-charge jet is detrimental to the overall depth of penetration,

and so the nature of instabilities in such a jet has warranted study by many authors.

Robinson and Swegle [82, 83] discuss discrepancies between analytical and numerical

models for a general elastic-plastic solid that is accelerated by surface tractions. They

make a direct comparison with the classical Rayleigh-Taylor instability. A key difference

is that wave propagation and the accelerating forces mean that the stress field is a now

function of both the spatial variable and time. The authors use a Lagrangian numerical

scheme and impose a small sinusoidal perturbation to the elastic-plastic boundary. They

find that an important factor in the instability of the perturbation is the local stress

gradient and comment that, for analytical modelling, both the elastic and plastic parts of

the solid are important to determine when perturbations may become unstable.

Romero [74, 75] finds that the stability of a plastic sheet depends on a parameter Γ,

defined by the ratio of inertial forces to plastic forces: if Γ is large, the sheet is stable.

However, as the plastic sheet stretches, Γ decreases. His results are inconclusive for a

more exact criterion of stability.

Particulation of the jet is considered by Yarin [103]. He develops the equations for

a stretching jet in Lagrangian coordinates, firstly for a perfect-plastic jet, then using

an elasto-viscoplastic model. He shows that the perfect-plastic regime is unstable, and

ill-posed for short-wavelength perturbations. This occurs as the equation for small per-

turbations is an elliptic initial value problem (c.f. Laplace’s equation). Conversely, the

elasto-viscoplastic problem is well-posed. In the long-wavelength limit, the solution is in

agreement with the perfect-plasticity model. The short-wavelength perturbations are now

regularized by the elasticity. These perturbations are analysed using multiple-scales tech-

niques. The conclusion is that there is a fastest growing disturbance at some intermediate

wavelength owing to a trade-off between the destabilizing stress-dependent plasticity and

the stabilizing effect of the elasticity of the metal.
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A model for the necking of a rod is considered by Jeanclaude and Fressengeas [42].

They use a Lagrangian nonlinear visco-plastic formulation for the rod, and subject it

to a linear perturbation. They conclude that the stabilizing mechanisms are inertial

and visco-plastic effects, which compete against the geometrical effect of the necking of

the rod; inertia slows down large-wavelength perturbations, whereas small-wavelength

perturbations are damped by two-dimensional viscous effects. Hence, the most unstable

wavelength varies with time.

Cowan and Bourne [19] use a Zerilli-Armstrong equation of state (1.41). They obtain

their initial conditions from numerical codes (“hydrocodes”), and use a model based on

minimizing the radius of curvature of the necked parts of an unstable jet. They discuss the

“plastic particle velocity”, which is the average velocity between separate broken particles.

They find that their predicted value for the plastic particle is in extremely good agreement

with the mean experimental value. The experimental data, however, exhibits a significant

amount of scatter, indicating that a stochastic model might be used. Indeed, Cowan [18]

goes on to develop such a model. He uses a Monte Carlo process to simulate the random

effects associated with jet break-up. From experimental data, he observes that the mean

jet particle wavelength is 1.0, and notes the spread. Using this, he fits the experimental

data to a normal distribution and samples using a Monte Carlo method. He finds good

agreement between experimental data for plastic particle velocity and jet particle length

with the results of the Monte Carlo simulation. He concludes that the random effects are

caused by small manufacturing defects in the liner, inhomogeneity of the explosive and

the non-trivial interaction of the deformation wave with the surface of the liner.

2.2.3 Numerical models

Numerical codes have been developed over the years to represent the penetration pro-

cess. The aim of the code is to accurately represent the physical aspects of penetration

whilst minimizing computational time. Models using both a Lagrangian framework (e.g.

“DYNA”) and Eulerian formulation (e.g. “GRIM”) have been considered by various or-

ganisations. These codes are known as hydrocodes. The “GRIM” hydrocode was designed

and is used extensively by QinetiQ. The code is based on equations for conservation

of mass, momentum and energy. A general constitutive law to relate the stress to the

strain needs to be specified by the user. The Zerilli-Armstrong law (1.41) is usually cho-

sen. Often, the initial parameters immediately before impact are provided for “GRIM” by

QinetiQ ’s “JET-SUITE” [3, 14, 20, 41], an analytical jet-formation code. A Lax-Wendroff

predictor-corrector scheme is then used by GRIM to solve the coupled nonlinear equations.
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2.3 Aims of thesis

Our aim is to develop an elastic-plastic model that will model the physics of penetration.

We endeavour to improve the introductory model by Watkin [96] and perform a tip

analysis to resolve problems of initial conditions suffered by Barnea and Sela [4]. In

doing so, we hope to describe an accurate method of penetration and expansion of the

cavity that reflects the true nature of the intrinsic physical processes involved. Ultimately,

we wish to predict the final crater geometry.

Although the hydrocode models produce very good results in most scenarios, analytical

modelling is needed both to provide a check on the hydrocodes and so that more accurate

numerical models can be developed in the future. Further, it is observed that the Eulerian

hydrocodes are good at modelling all aspects of the penetration process, but are often

very slow for large stand-off jets [41] and for fracture-dominated penetration [94]. An

analytical model has the great advantage over the hydrocodes of its inherently quick

evaluation time.

Despite the fact that two-dimensional models can be attacked with elegant complex

variable methods, we will predominantly develop axisymmetric models. This is because

the penetration is observed to be a primarily axisymmetric process (neglecting jet drift).



Chapter 3

An axisymmetric elastic-plastic

model for penetration

3.1 Philosophy of the model

The classic hydrodynamic Birkhoff-type models (§2.1.1) provide a good first approximate

solution for the penetration by virtue of Bernoulli’s equation. They do not, however,

model the true underlying physics of penetration. The fact that the radial and hoop

stresses in the jet are up to two orders of magnitude greater than the yield stress of

the target [4, 22, 86, 93, 95] strongly suggests that we should be modelling the target

as an elastic-plastic material. Hence, we develop the obvious extension of the Birkhoff

hydrodynamic model, namely to consider a jet impacting an elastic-plastic material.

By examining penetrated blocks of rolled-homogenous armour (RHA), we observe an

almost perfectly-cylindrical cavity (Fig. 3.1). This motivates us to consider axisymmetric

penetration. The model divides naturally into three different regions. The first region is

the incoming jet , moving with velocity V (t). The jet will impinge on the target and turn

back on itself as in the hydrodynamic models, thus creating a cavity. The extremely high

pressure in the jet impacting on the target leads to a plastic region in the target, and

hence plastic flow. This is a possible mechanism to excavate the target material. Thirdly,

when the stresses in the plastic region are not great enough to satisfy the yield condition,

the material must revert to its elastic form again. These three regions are divided by free-

boundaries, shown in Fig. 3.2. In drawing this figure, we have implicitly assumed that

the plastic region extends far back from the tip of the jet. It is not obvious as to whether

this is the case, or whether the plastic region terminates for some z nearer the tip. We

will consider this when we analyse each of these regions individually, before simplifying

the model further with a second trichotomy. We will eventually write nondimensional

equations in a frame moving with the velocity of the stagnation point, U(t). Since this

32



3. An axisymmetric elastic-plastic model for penetration 33

10cm

Hardened steel block
Cylindrical cavity

Figure 3.1: A hardened steel block, penetrated by a silver shaped charge jet. The block

has depth 80mm.

frame is not inertial, we initially write all equations in a fixed frame of reference.

Free boundary r = R1(z, t)

Free boundary r = R2(z, t)

U(t)

Jet tip

Free boundary r = R0(z, t)

Incoming jet
Cavity

Outgoing flow

Plastic Region (target)

Elastic Region (target)

V (t)

Figure 3.2: Axisymmetric elastic-plastic penetration of a shaped charge.

Concerning nomenclature, we will always write fluid velocities as the ordered triple

q = (qr, qθ, qz), corresponding to the components in the (r, θ, z) directions respectively.

The vector u = (u, v, w) will be reserved for displacements, with associated velocities u̇ =

(u̇, v̇, ẇ). In the following two chapters when in the moving frame, we will take the origin

to be at the stagnation point, with the incoming jet coaxial with the negative z−axis.

Further, when using colour in diagrams, we shall endeavour to consistently associate green

with elastic behaviour, red with jet behaviour and blue with plastic behaviour (unless

stated otherwise).
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3.1.1 Parameter estimates

Before writing down the equations for the different regions, we present some typical values

of the material parameters. We will consider a copper jet impacting a roll-hardened steel

target, using data from [4, 15, 22, 93, 95]. We also give some a posteriori experimental

estimates. The orders of magnitude for the dimensions are reinforced by looking at Qine-

tiQ hydrocode runs (Fig. 3.3). Most, if not all of these parameters will be needed to

nondimensionalise the model and are shown in Table 3.1.

18.67

18.67

Cavity

Spall

28.00

28.00

28.80−4.80 6.40−16 17.60

9.33

9.33

0
Charge

r
/c

m

z /cm

Figure 3.3: Output from a typical hydrocode run after penetration with a short jet has

finished, showing some relative dimensions of the cavity depth and radius. The colouring

represents σrr (top) and plastic strain rate (bottom); this will be discussed in detail later.

3.2 The jet

In writing down an analytical model for the jet, we need to make some sensible as-

sumptions about it. The simplest approach is to model it as an inviscid, irrotational,
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Quantity Value

Incoming jet velocity 2.5km s−1 ≤ V (t) ≤ 10km s−1

Typical penetration velocity U0 ≤ 5km s−1

Jet radius rj ∼ 3mm

Density of copper jet ρj = 8920kg m−3

Reynolds number of copper jet R ∼ 104

Yield stress of target 107 (concrete) ≤ σY ≤ 2× 109kg m−1s−2 (steel)

Shear modulus of the target µ ∼ 6.41× 1010kg m−1s−2

Bulk Modulus K ∼ 1.4× 1011kg m−1s−2

Other Lamé constant for target λ = K − 2
3
µ ∼ 1× 1011kg m−1s−2

Density of the target 7.86× 103kg m−3 ≤ ρt ≤ 9× 103kg m−3

Typical penetration depth L ∼ 0.3− 1m

Typical final crater radius rf ∼ 7.5− 15mm

Elastic shear wave speed cs =
√

µ
ρ
∼ 3km s−1

Elastic primary (transverse) wave speed cp =
√

λ+2µ
ρ

∼ 5km s−1

Young’s Modulus for target material E = µ(3λ+2µ)
λ+µ

∼ 2× 1011kg m−1s−2

Poisson’s Ratio for target material ν = λ
2(λ+µ)

∼ 1
3

Typical penetration timescale τ ∼ 10−4s

Table 3.1: Order of magnitude parameter estimates for shaped-charge data.

incompressible fluid with axisymmetry. In doing so, we implicitly neglect any effects of

asymmetries in the jet formation process that can affect penetration. i.e. we assume that

the jet is coherent [21, 43, 64]. We will also assume that the jet is stable and hence does

not particulate [42, 74, 75, 103]. We thus neglect the possibility of any lateral drift of

separate jet particles on the side walls of the crater [16]. Since the main mechanism for

penetration is not by melting the target, we neglect any temperature effects in the jet.

Thus we can use equations from classical fluid dynamics and introduce the velocity

potential, ϕ(r, z, t), which satisfies Laplace’s equation ∇2ϕ = 0, written in cylindrical

polars as
1

r

∂

∂r

(
r
∂ϕ

∂r

)
+
∂2ϕ

∂z2
= 0. (3.1)

This is a statement of conservation of mass. Conservation of energy comes via Bernoulli’s

equation, which we write as
∂ϕ

∂t
+
p

ρ
+

1

2
|q|2 = G(t), (3.2)

where G(t) is an unknown function of time t.
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3.2.1 Boundary conditions

The jet has an inner free-boundary with the cavity, r = R0(z, t), and another with the

plastic region, r = R1(z, t). The normal component of the stress must be continuous

across both boundaries. Since the pressure of the jet is much greater than the pressure of

the cavity, we can write the first boundary condition as

p = 0 on r = R0(z, t). (3.3)

Continuity of normal stress across r = R1(z, t) gives

n.(σ.n) = −p on r = R1(z, t), (3.4)

where n is the normal to r = R1(z, t), which we write as

n =

(
1, 0,−∂R1(z, t)

∂z

)
. (3.5)

The kinematic boundary conditions on r = R0(z, t) and r = R1(z, t) are

q.n =
∂Rj

∂t

/
|∇(r −R0(z, t))| on r = Rj(z, t), j = 0, 1. (3.6)

Reformulating the velocity of the inviscid fluid as
(

∂ϕ
∂r
, 0, ∂ϕ

∂z

)
, we obtain

∂Rj

∂t
=
∂ϕ

∂r
− ∂ϕ

∂z

∂Rj

∂z
on r = Rj(z, t), j = 0, 1. (3.7)

Note that the boundary condition on r = R1(z, t) may simplify depending on the plastic

velocity scale.

3.3 Plastic region

When writing out the equations for a plastic medium, we need to write down a yield

condition, force balance equations, a flow law and boundary conditions. We will assume

that the plastic material has no temperature dependence and that we can neglect any

work-hardening or thermal-softening effects. Thus the yield stress, σY , is a constant.

We also neglect any loading-unloading phenomena, such as the Bauschinger effect, which

would otherwise lead to material anisotropy. Finally, we assume that the plastic material

is incompressible.

The Birkhoff hydrodynamic model gives a rough estimate for the penetration velocity

as half the incoming jet velocity. Depending on the jet velocity, we see from §3.1.1 that

the penetration velocity can be subsonic, transonic (between the two sound speeds) or

supersonic. Until recently, it was thought that the shear wave speed was the upper bound
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for the movement of dislocations. Recent work involving atomistic simulations [30, 76]

suggests that this is not the case, and that supersonic dislocations are possible. This

can happen if the dislocations are “born” with transonic or supersonic velocity, and is

attributed to nonlinear elasticity effects. Experimental evidence is still sketchy. In any

case, since our primary concern is to determine when the jet will stop penetrating, we

develop an axisymmetric plasticity model which holds when the penetration speed is below

the shear sound speed.

We elect to use the Tresca yield condition as it is mathematically easier to implement

for an analytical solution. By writing the deviatoric stresses in terms of the hydrostatic

pressure and the total stress, the yield condition can be written

max(|σrr − σzz|, |σrr − σθθ|, |σθθ − σzz|) = σY , (3.8)

where σY is assumed to be constant.

Minimising the plastic work done subject to the stress vector remaining on the yield

surface leads to an associated flow law relating the components of the plastic strain rate

tensor to those of the deviatoric stress tensor. This requires a constitutive law. The most

general constitutive law will include effects of temperature and many material parameters.

Indeed, modern hydrocodes tend to use sophisticated laws, such as the Johnson-Cook

model or, more commonly, a Zerilli-Armstrong model [100]. We will start with the simpler

model of perfect plasticity, using the equations of Reuss [36]:

Λε̇
(p)
ij = σ′ij, (3.9)

where Λ, an unknown Lagrange multiplier for the constraint (3.8), is a function of space

and time and ε̇
(p)
ij is the plastic component of the total strain rate, ε̇ij, as in (1.40). We

might try other flow laws that are also not dependent on temperature, such as the Lèvy-

Mises equations or Hencky stress-strain equations, which relate the total plastic behaviour

of the target material to the stress. The high strain-rate rules out use of the latter [36],

whereas the former, (1.40), may be applicable with good justification. We shall see that,

in fact, this is the case. We note that the flow law automatically implies incompressibility,

which could be rewritten in terms of the principal strain rates [71] as

ε̇rr + ε̇θθ + ε̇zz = 0. (3.10)

We also need to write down general momentum balance equations as well as the

assumption of incompressibility. Assuming that there are no external body forces, the

momentum equations are written in axisymmetric polars as

∂σrr

∂r
+
∂σrz

∂z
+
σrr − σθθ

r
= ρ

∂2u

∂t2
, (3.11)

∂σrz

∂r
+
∂σzz

∂z
+
σrz

r
= ρ

∂2w

∂t2
. (3.12)



3. An axisymmetric elastic-plastic model for penetration 38

By symmetry, σzθ = σrθ = 0.

3.3.1 Boundary conditions

The plastic region is bounded by the free boundaries r = R1(z, t) and r = R2(z, t). On

r = R1(z, t), we have continuity of traction (two stress components) and one kinematic

boundary condition. Continuity of traction is given by (3.4) and by

t.(σ.n) = 0. (3.13)

Using axisymmetry, we know that the azimuthal velocity v̇ is zero. Thus the kinematic

condition is written

(u̇, 0, ẇ).n =
∂R1

∂t
. (3.14)

i.e.

u̇− ∂R1

∂z
ẇ =

∂R1

∂t
on r = R1. (3.15)

Similarly, we have two equations involving normal and tangential components of the

normal stress vector on r = R2(z, t), as well as continuity of normal displacement. The

latter is easy to write down,

[u.n]+− = 0, (3.16)

whereas the stress balances need more attention because the boundary is not a material

boundary. We adopt an approach analogous to that in deriving the Rankine-Hugoniot

jump conditions in gasdynamics [47].

Consider an arbitrary closed volume V in an elastic-plastic medium, enclosing part

of the elastic-plastic boundary r = R(z, t), say (Fig. 3.4), and recall the useful transport

theorem as in [60],
d

dt

∫

V

f(x, t)dV =

∫

V

∂f

∂t
dV +

∫

∂V

vnfdS, (3.17)

where f is an arbitrary function, ∂V is the boundary of V and vn is the normal velocity

of the free-boundary. By putting f = ρ and splitting V into an elastic volume (V+) and

V−

R(z, t)

vn

V+

V

Figure 3.4: An elastic/plastic boundary r = R(z, t).
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a plastic part (V−) we arrive at mass conservation [89]

[ρ(u̇n − vn)] +
− = 0, (3.18)

where u̇n is the normal component of the velocity, and the subscripts ‘+’ and ‘−’ denote

the elastic and plastic sides of r = R(z, t), respectively.

Another balance is obtained by putting f = ρu̇i (using summation convention) and

by use of the equations of equilibrium,

[σijnj]
+
− = ρ−(u̇n− − vn) [u̇i]

+
−. (3.19)

Assuming that ρ is constant, we end up with the normal velocity being continuous and

conditions on the normal and tangential stress,

[u̇n] +
− = 0, (3.20)

[σin − ρ(u̇n − vn)u̇i]
+
− = 0. (3.21)

In the case where inertia is negligible, the jump conditions simplify to continuity of both

components of the normal stress (traction) and continuity of normal velocity, viz:

[n.(σ.n)]+− = 0, (3.22)

[t.(σ.n)]+− = 0, (3.23)

[u̇.n]+− = 0. (3.24)

We will also need to make some assumption about how the axial stress, σzz, behaves

over the elastic-plastic boundary and on how it matches into the tip region. This will be

discussed in more detail later.

3.4 Elastic region

The simplest elasticity model we can use is one of linear elasticity for an isotropic solid,

assuming infinitesimal displacement, with suitable boundary conditions. Briefly, writing

the stress in terms of the strain and hence displacement,

σij = µ

(
∂ui

∂xj

+
∂uj

∂xi

)
+ λ

∂uk

∂xk

δij, (3.25)

and by performing a force balance,

∇.σ = ρ
∂2u

∂t2
, (3.26)

we arrive at Navier’s equations [49],

µ∇2u + (λ+ µ)∇(∇.u) = ρ
∂2u

∂t2
. (3.27)
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Since we are developing an axisymmetric model, the azimuthal displacement v must be

zero. The r and z components of Navier’s equations in axisymmetric cylindrical coordi-

nates are

(λ+ 2µ)

(
∂2u

∂r2
+

∂

∂r

(u
r

))
+ (λ+ µ)

∂2w

∂r∂z
+ µ

∂2u

∂z2
= ρ

∂2u

∂t2
, (3.28)

µ

(
∂2w

∂r2
+

1

r

∂w

∂r

)
+ (λ+ µ)

∂

∂z

(
∂u

∂r
+
u

r

)
+ (λ+ 2µ)

∂2w

∂z2
= ρ

∂2w

∂t2
. (3.29)

3.4.1 Boundary conditions

As mentioned in §3.3, the boundary conditions on r = R2(z, t) are continuity of the normal

and tangential components of the normal stress vector, continuity of displacement, and

a relationship between the velocities, (3.22)-(3.23). The boundary condition (3.24) now

simplifies, as we are using an infinitesimal displacement elasticity model. Explicitly, the

elastic component of the velocity on the boundary is effectively zero, and so we rewrite

(3.24), contrasting it with the fluid-plastic kinematic boundary condition (3.15), as

u̇− ∂R2

∂z
ẇ = 0 on r = R2. (3.30)

The boundary conditions at infinity are of decaying stress and zero displacement (to

fix the body in space), so that

σij(xi) → 0 and ui(xi) → 0 as xi →∞. (3.31)

3.5 Different scalings

We have, so far, given dimensional equations for the three different regions. To attempt

to solve these equations analytically we make a key observation, which is very apparent

by looking at Fig. 3.1 and by looking at results from hydrocode simulations: the cavity

is slender. This leads to dividing the model into three more regions, shown in Fig. 3.5.

Firstly, the tip region is where the incoming jet hits the target and is rapidly turned

around by the impact. This is where the target material is excavated to create a cavity. A

possible mechanism for removing the target material will be discussed later. The returning

jet material flows into the slender region. Here, it is clear that when we nondimensionalise

the model, there will be a small nondimensional parameter, ε, say, equal to the ratio of

a typical radial lengthscale to a axial lengthscale. Hence, exploiting the slenderness of

the hole by using asymptotic techniques, we will be able to reduce the dimensionality of

the problem. When referring to the slender region, we only refer to the returning jet and

not the incoming jet. Far away from the slender region in the elastic material, we have
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Outer Elastic Region

Tip Region
Slender Region

Figure 3.5: A schematic of the tip, slender and outer region.

the outer region. The penetration is regarded as some kind of line discontinuity in this

region. We will solve the equations of elasticity here, then use matched asymptotics to

match into the inner slender region.

3.5.1 Geometric and other scaling ideas

Before looking at each individual region more closely, we make some comments on the

global effect of using certain scalings. We start by considering the slender region. Suppose

the crater radius is O (ε). The simplest radial scalings for the size of the returning jet and

the plastic region are both being O (ε). These scalings can affect the scalings for r and

z in the tip region depending on how they match asymptotically into the tip and on how

they come down to zero there. We propose tip scalings resulting from geometric ideas.

When matching the slender region into the tip region, we expect the free-boundaries

to be locally parabolic. Hence, for the plastic region, say, to be O (ε) in the slender region,

we must have the free-boundaries coming into the tip region looking like R1 ∼ ε
√−z and

R2 ∼ ε
√−z+ ε. This tells us that the axial tip scaling for the plastic region is z ∼ O (1).

A similar argument holds for the jet region. The idea is perhaps best illustrated by

considering two similar wedges with small angle, one sliding into the other as in Fig. 3.6.

ε
ε

O (1)

ε

Figure 3.6: A schematic showing geometric ideas.

Another sensible scaling is to consider one, or indeed both, of the fluid and plastic

region being O (ε2). Thus when matching into the tip region from the slender region, the
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jet region, for example, has free-boundaries matching into the tip region like R0 ∼ ε
√−z

and R1 ∼ ε
√−z + ε2. Hence the appropriate axial tip scaling is z ∼ O (ε2) so that R1

goes to zero. This motivates considering the four possible scalings in Fig. 3.7.

O(1)O(1)O(ε)

O(ε)
O(ε)

O(ε)
O(ε)

(a) O (ε) slender fluid and plastic region

O(ε2) O(1)O(ε)

O(ε2)

O(ε2)
O(ε)

O(ε)

(b) O (
ε2

)
slender fluid region, O (ε) slender

plastic region

O(ε2)O(ε)

O(ε2)

O(ε2)

(c) O (
ε2

)
slender fluid and plastic region

O(1)

O(ε2)
O(ε)

O(ε)

O(ε)
O(ε2)

O(ε2)

(d) O (ε) slender fluid region, O (
ε2

)

slender plastic region

Figure 3.7: A schematic showing the jet and plastic regions for four possible different sce-

narios for scalings of the tip and slender regions. These are based on geometrical arguments

for an O (ε) cavity radius.

We have briefly outlined four possible scalings motivated by geometrical arguments.

With a little thought, it is clear that some of these scalings will lead to inner asymptotic

regions in the tip, since we are considering scenarios in which r and z scale differently.

This is because we will not be able to get a solution to Laplace’s equation in which the jet

flow turns back on itself unless we consider different asymptotic regions. This motivates

writing down four more possible tip scalings with associated slender scalings based on an

aspect ratio of unity in the tip regions. In doing so, the geometric-type arguments do not

necessarily hold and we need to consider the possibility that the free-boundaries can leave

the tip region tending to a constant value when matching into the slender region. Four

possibilities with r and z scaling similarly in each region in the tip are shown in Fig. 3.8.

Note that Fig. 3.7(c) and Fig. 3.8(c) are the same possible scalings.
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O(ε)

O(ε)

O(ε)

O(ε)

O(ε)

(a) O (ε)×O (ε) tip region

O(ε)

O(ε2)

O(ε)

O(ε2)

O(ε2)
O(ε2)

O(ε)

(b) O (
ε2

)×O (
ε2

)
jet tip region, O (ε)×

O (ε) plastic tip region

O(ε2)
O(ε2)

O(ε2)
O(ε2)

O(ε2)

O(ε2)O(ε)

(c) O (
ε2

)×O (
ε2

)
tip region

O(ε)

O(ε)

O(ε2)
O(ε)

O(ε2)

O(ε2)

O(ε)

(d) O (
ε2

)×O (
ε2

)
jet tip region, O (ε)×

O (ε) plastic tip region

Figure 3.8: A schematic showing the jet and plastic regions for four possible different

scenarios for scalings of the tip and slender regions. These are based on the r and z scales

being identical in the tip region.



Chapter 4

Slender and outer analysis

We have briefly discussed possible slender scalings in the previous chapter. We start this

chapter by considering the slender scalings in Fig. 3.7(a), before utilising asymptotic tech-

niques to solve the equations. We will then pose the outer problem and match the solution

into the slender region. We develop a model where the jet has penetrated sufficiently far

away from the entry point of the target, so essentially we consider a jet penetrating into

an infinite target.

We initially develop a model in which the axial plastic velocity scale is significantly

smaller than the axial jet velocity U0. This simplifies the boundary condition (3.7) on

r = R1(z, t) to q.n = 0, and will be justified more fully in §4.1.2. We will then consider

travelling-wave solutions to the coupled system of equations, before considering the effects

of inertia when the plastic and fluid velocity scales are comparable. Eventually, we will see

that these models do not yield sensible solutions to the problem, indicating that further

modelling improvements are required.

4.1 Asymptotic analysis of nondimensional slender

equations

We firstly change to coordinates moving with the stagnation point, z = z1(t), by intro-

ducing the new variables

z′ = z − z1(t), (4.1)

t′ = t. (4.2)

44



4. Slender and outer analysis 45

Writing the velocity of the stagnation point as U(t) = dz1

dt
, the associated derivatives

become

∂

∂t
= −U(t)

∂

∂z′
+

∂

∂t′
, (4.3)

∂

∂z
=

∂

∂z′
. (4.4)

We are now in a position to nondimensionalise the equations in the three separate regions,

using data and the same notation as in §3.1.1.

4.1.1 Jet region

We can think of the slender jet region as flow through a slender annulus in the negative z

direction. Changing to coordinates moving with the stagnation point, z1(t), and scaling

z′ = Lz̄, r = rj r̄ and ϕ = U0Lϕ̄, where U0 is the velocity scale given by half the initial

velocity of the incoming jet (motivated by hydrodynamic models), (3.1) becomes

1

ε2
1

r̄

∂

∂r̄

(
r̄
∂ϕ̄

∂r̄

)
+
∂2ϕ̄

∂z̄2
= 0, (4.5)

where ε =
rj

L
¿ 1. Note that in performing this r scaling, we implicitly assume that

r = O (εL).

In writing down the Bernoulli equation (3.2) in an accelerating frame, we need to

remember that there will be a term concerned with the inertia of the frame. Thus, we

recall the derivation of Bernoulli’s equation and consider the momentum equation

∂q

∂t
+ (q.∇)q = − 1

ρj

∇p. (4.6)

We scale time as t′ = L
U0
t̄ and let ϕ̂ = ϕ̄− Ū(t̄)z̄ be a new potential, where U(t) = U0Ū(t̄).

Using (4.4), the velocity in the new frame is given by

q̂ = q̄ − (0, 0, Ū), (4.7)

where the fluid velocity has been scaled q = U0q̄. Nondimensionalising the pressure as

p = ρjU
2
0 p̄, the momentum equation becomes

(
−Ū ∂

∂z̄
+
∂

∂t̄

) (
q̂ + (0, 0, Ū)

)
+

(
(q̂ + (0, 0, Ū)).∇)

(q̂ + (0, 0, Ū)) +∇p̄ = 0, (4.8)

where ∇ is now the obvious nondimensional operator. Hence

∇
(
∂ϕ̂

∂t̄
+
dŪ(t̄)

dt̄
z̄ +

1

2
|q̂|2 + p̄

)
= 0. (4.9)
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We integrate this to obtain a ‘modified’ Bernoulli equation involving an arbitrary function

of nondimensional time G(t̄),

∂ϕ̂

∂t̄
+
dŪ(t̄)

dt̄
z̄ +

1

2
|q̂|2 + p̄ = G(t̄). (4.10)

A further simplification can be made by writing another new velocity potential

φ = ϕ̂−
∫ t̄

0

G(ξ)dξ, (4.11)

which gives, dropping the bars and hats,

∂φ

∂t
+
dU(t)

dt
z +

1

2

((
∂φ

∂z

)2

+
1

ε2

(
∂φ

∂r

)2
)

+ p = 0. (4.12)

Note that since ∂2φ
∂z2 = ∂2ϕ̄

∂z2 , φ also satisfies Laplace’s equation, (4.5).

Nondimensional boundary conditions

Scaling the free boundary R0(z, t) with rj, the zero pressure on the inner cavity condition

(3.3) becomes

p̄ = 0 on r̄ = R0(z̄, t̄). (4.13)

The normals to the free boundaries become

n =

(
1, 0,−ε∂Rj(z̄, t̄)

∂z̄

)
, j = 0, 1, (4.14)

whilst the velocity in the inviscid fluid is now
(

U0

ε
∂ϕ̄
∂r̄
, 0, U0

∂ϕ̄
∂z̄

)
. Hence, balancing the

normal component of the fluid velocity on the boundary r̄ = R0(z̄, t̄) with the velocity of

the boundary, (3.7) becomes

1

ε

∂ϕ̄

∂r̄
− ε

∂R0

∂z̄

∂ϕ̄

∂z̄
= ε

(
∂

∂t̄
− U(t̄)

∂

∂z̄

)
R0(z̄, t̄) on r̄ = R0(z, t). (4.15)

Substituting φ for ϕ̄ so that the velocity potential is in the moving frame and dropping

bars, we find that the boundary condition becomes

∂φ

∂r
− ε2∂R0

∂z

∂φ

∂z
= ε2∂R0

∂t
on r = R0(z, t). (4.16)

Assuming that the plastic velocity scales are significantly smaller than the jet velocity,

the boundary condition on r = R1(z, t) simplifies to q.n = 0 in the rest frame. In the

moving frame, it becomes

∂φ

∂r
− ε2∂R1

∂z

(
∂φ

∂z
+ U(t)

)
= 0 on r = R1(z, t). (4.17)
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Asymptotic expansion

We now take advantage of the small parameter in the equations and perform an expansion

in ε. From the equations, the natural expansion for φ is in powers of ε2, hence

φ(r, z, t) ∼ φ0(r, z, t) + ε2φ2(r, z, t) +O (
ε4

)
. (4.18)

Substituting this expansion into (4.5) and looking at O (1) and O (ε2) leads to the follow-

ing:

O(1) :
1

r

∂

∂r

(
r
∂φ0

∂r

)
= 0; (4.19)

O(ε2) :
1

r

∂

∂r

(
r
∂φ2

∂r

)
= −∂

2φ0

∂z2
. (4.20)

The boundary conditions become

O(1) :
∂φ0

∂r
= 0 on r = R0(z, t) and R1(z, t); (4.21)

O(ε2) :
∂R0

∂t
=
∂φ2

∂r
− ∂R0

∂z

∂φ0

∂z
on r = R0(z, t), (4.22)

∂φ2

∂r
− ε2∂R1

∂z

(
∂φ0

∂z
+ U(t)

)
= 0 on r = R1(z, t). (4.23)

Integration of (4.19) gives

φ0(z, t) = A(z, t) log r +B(z, t). (4.24)

Applying the two boundary conditions (4.21), we find that A(z, t) = 0 and so

φ0 = φ0(z, t). (4.25)

We now integrate the O (ε2) equation, (4.20), to get an expression for φ2(r, z, t):

φ2(r, z, t) = C(z, t) log r +D(z, t)− ∂2φ0

∂z2

r2

4
. (4.26)

The O (ε2) boundary conditions (4.22)-(4.23) thus give us

C(z, t) =
1

2

∂

∂t
(R2

0) +
1

2

∂

∂z

(∂φ0

∂z
R2

0

)
(4.27)

=
1

2

∂

∂z

((
∂φ0

∂z
+ U(t)

)
R2

1

)
. (4.28)

Eliminating C(z, t), we arrive at a ‘conservation of mass’ equation

− ∂

∂t
(R2

0) +
∂

∂z

( (
∂φ0

∂z
+ U

)
R2

1 −
∂φ0

∂z
R2

0)
)

= 0. (4.29)
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We are left with Bernoulli’s equation (4.12). Using the expansion (4.18) and expanding

the velocity U ∼ U (0) + ε2U (2) + . . .,

p = −
(
∂φ0

∂t
+

1

2

(
∂φ0

∂z

)2

+
dU (0)

dt
z

)

−
(
∂φ2

∂t
+

1

2

(
∂φ2

∂r

)2

+

(
∂φ0

∂z

)(
∂φ2

∂z

)
+
dU (2)

dt
z

)
ε2 + . . . . (4.30)

Use of the boundary condition (4.13) tells us that

∂φ0

∂t
+

1

2

(
∂φ0

∂z

)2

+
dU (0)

dt
z = 0 on r = R0. (4.31)

This expression, however, is independent of r, so must be zero everywhere. To obtain the

pressure on r = R1, after some algebra, we get

p(R1)− p(R0) =
{∂C
∂t

(
log

R0

R1

)
− 1

4

∂3φ0

∂z2∂t
(R2

0 −R2
1)

+
1

2

(
C(z, t)2

( 1

R2
0

− 1

R2
1

)
+

1

4

(∂2φ0

∂z2

)2

(R2
0 −R2

1)
)

+
∂φ0

∂z

(∂C
∂z

(
log

R0

R1

)
− 1

4

∂3φ0

∂z3
(R2

0 −R2
1)

)}
ε2, (4.32)

where C(z, t) is as in (4.27). In the case where U(t) is constant, we can differentiate the

‘eikonal’ equation (4.31) to simplify this expression as

p(R1)− p(R0) =
{∂C
∂t

(
log

R0

R1

)
− 3

8

(
∂2φ0

∂z2

)2

(R2
1 −R2

0)

+
1

2
C(z, t)2

( 1

R2
0

− 1

R2
1

)
+
∂φ0

∂z

(∂C
∂z

(
log

R0

R1

))}
ε2. (4.33)

To avoid confusion with the hydrostatic pressure in either plastic or elastic regions, we

will write this ‘inflation pressure’ as P . We aim to match P into the plastic region, which

we now consider.

4.1.2 Plastic region

Much akin to the jet region, we think of the plastic region as flow of target material

through an annulus. This flow is driven by material from the tip region, plasticised by

the very high pressure in the jet. A good comparison to make for both the plastic and

the elastic region is to compare it to the expansion of a slowly-varying gun-barrel under

applied pressure P (z, t), where P (z, t) is great enough to induce yield.

We start nondimensionalising the model by scaling all stresses with the yield stress,

σY . The yield condition becomes

max(|σrr − σzz|, |σrr − σθθ|, |σθθ − σzz|) = 1, (4.34)



4. Slender and outer analysis 49

where the stresses are now nondimensional. As in models for expansion of a cylinder

under applied pressure, [36, 13], we assume that σzz is the intermediate stress. This can

be shown to be correct a posteriori and also by numerical models [58]. Thus

|σrr − σθθ| = 1. (4.35)

We now turn our attention to the flow law. In the previous chapter, we wrote down

Reuss’s equations for plastic flow (3.9). These relate the components of the plastic part of

the strain tensor in terms of the deviatoric stresses. As hinted at in the previous chapter,

we make a simplification by neglecting the elastic part of the strain rate tensor so that

the total stress is dominated by the plastic stress, ε̇ij ≈ ε̇
(p)
ij . In doing so, we recover the

Lèvy-Mises equations for plastic flow,

Λε̇ij = σ′ij. (4.36)

This simplifies the equations significantly. However, we must give the caveat that in

certain circumstances, neglecting the elastic part of the strain rate leads to significant

errors and also to discontinuities in the stress over the elastic-plastic boundary [36, 37].

This is apparent when considering expansion of a thin cylinder under constant internal

pressure when the elastic part of the stress can be important. Nevertheless, as we are

looking at a semi-infinite elastic region with an O (ε) plastic region, this approximation

is a good one [35].

We can now write down the deviatoric stresses in terms of the velocities, which are

written down with respect to the inertial frame. To do so, we need an appropriate scale for

the plastic velocities. At first glance, we might scale the velocities with the only velocity

scales available to us in the slender region, i.e. the jet-velocity scalings. This would say

that the plastic and jet velocities are comparable in the slender region. However, the

scales for the plastic velocities should really be determined by the matching into the tip

region, as the jet imposes no significant shear (whereas the confinement of the cavity

leads the slender jet scale to be on a par with the velocity scale of the incoming jet).

We anticipate that this velocity scale is significantly smaller than the jet velocity in the

slender region, and so initially scale the axial plastic velocity ẇ = δU0
¯̇w where δ is a small

nondimensional parameter. The radial plastic velocity is rescaled u̇ = εδU0
¯̇u. The extra

factor of ε arises from the radial lengthscale being O (ε). A schematic of the relative

velocities is shown in Fig. 4.1. In this formulation, we are viewing the jet in the slender

region as plasticising the target to allow material to be excavated. It is possible, albeit

more unlikely, that the plastic velocity scale is comparable to the jet velocity. This will

be considered in §4.4
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Fast-moving jet

Slow-moving plastic material

Figure 4.1: A figure showing a section of the slender region in which the magnitude of the

plastic velocity is significantly lower than the magnitude of the jet velocity.

Scaling Λ = σY L
δU0

Λ̄, and dropping the bars, the leading-order deviatoric stresses are

σ′rr = Λ
∂u̇

∂r
, (4.37)

σ′θθ = Λ
u̇

r
, (4.38)

σ′zz = Λ
∂ẇ

∂z
, (4.39)

σ′rz =
Λ

2ε

∂ẇ

∂r
. (4.40)

As we are assuming axisymmetry, we know that the other stress and deviatoric stress

components must satisfy

σrθ = σzθ = σ′rθ = σ′zθ = 0. (4.41)

Further, since there can be no θ-dependence in the velocities,

v̇ = ε̇rθ = ε̇zθ = 0. (4.42)

In view of the flow law, we now consider the incompressibility condition (3.10) in terms

of the velocities to get
∂u̇

∂r
+
u̇

r
+
∂ẇ

∂z
= 0. (4.43)

A typical timescale for the plastic flow is t ∼ L/(δU0). We can thus introduce the

nondimensional ratio α = ρtU
2
0/σY and rescale time in such a manner as to obtain the

nondimensional force-balance equations in the inertial frame:

∂σrr

∂r
+ ε

∂σrz

∂z
+
σrr − σθθ

r
= αε2δ2∂u̇

∂t
, (4.44)

∂σrz

∂r
+ ε

∂σzz

∂z
+
σrz

r
= αεδ2∂ẇ

∂t
. (4.45)

We will comment on the size of the nondimensional coefficients after consideration of the

boundary conditions.
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4.1.2.1 Nondimensional boundary conditions

The nondimensional unit normal and unit tangent to the elastic-plastic boundary R1(z, t)

are

n =

(
−1, 0, ε

∂R1

∂z

)
, (4.46)

t =

(
ε
∂R1

∂z
, 0, 1

)
, (4.47)

which gives the traction vector

σ.n =

(
−σrr + σrz

∂R1

∂z
ε, 0,−σrz + σzz

∂R1

∂z
ε

)
. (4.48)

Hence, the nondimensional leading-order stress balances (3.4) and (3.13) become

σrr = −αP on r = R1(z, t), (4.49)

σrz = 0 on r = R1(z, t), (4.50)

where P is the nondimensional pressure from the fluid region given in (4.33). Recall

that we are regarding the plastic region as being a result of (radial) stress from the

jet. Ergo, for this model to be valid, the pressure P must be great enough to induce

plastic yield (i.e. satisfy the yield condition). Hence, as P ∼ O (ε2), the model is only

valid if αε2 ∼ O (1). From Table 3.1, we can estimate ε ∼ 5 × 10−3/0.5 ∼ 10−2 and

α ∼ 9 × 103 × (4 × 103)2/σY ∼ 1011/σY . The all-important coefficient thus has order

of magnitude 107/σY , and so our proposed model is only valid for softer targets such as

concrete or softer metals1.

Such a parameter-regime has consequences for equations (4.44)-(4.45), in that we can

neglect the inertial effects in the slender plastic region if δ is suitably small (δ2 ¿ ε is

sufficient). Furthermore, it suggests a large plastic region in the tip, as the nondimensional

jet pressure is order unity in the tip. This is consistent with the geometric ideas of Fig.

3.7. Inertial terms must hence play an important role in the plastic region in the tip, as

the plastic velocity in the tip is comparable to the jet velocity. Tip equations will thus be

hyperbolic in both plastic and inner elastic regions, resulting in waves. From Table 3.1, we

can see that the penetration velocity and elastic wave speeds are, typically, comparable.

Thus, we expect the waves generated in the tip region to leave the tip at finite angle

and dissipate in the outer bulk (Fig. 4.2), not interfering with the motion in the slender

region. This is another signpost for neglecting inertia in the plastic region and developing

a quasistatic plasticity model.

1The classical elastic-plastic analysis of a cylindrical cavity under applied pressure P [36] shows that
the dimensional pressure needs to be greater than σY /2 for plastic flow. This will be considered in more
detail in a later chapter.
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Slender region
Tip region

O(U0)

Elastic/plastic waves

O(U0)

O(U0)

Outer elastic region

Figure 4.2: Elastic/plastic waves generated from the tip at finite angle are dissipated into

the outer bulk.

Concerning the elastic-plastic boundary conditions in this model, nondimensionali-

sation of the normal force balances (3.22)-(3.23) gives us two jump conditions on the

elastic-plastic boundary,

[
σrr − 2σrz

∂R2

∂z
ε+ σzz

(
∂R2

∂z

)2

ε2

]+

−
= 0, (4.51)

[
−σrr

∂R2

∂z
ε+ σrz

∂R2

∂z
ε2 − σrz + σzz

∂R2

∂z
ε

]+

−
= 0. (4.52)

Clearly, we write the nondimensional continuity of displacement as

[u]+− = 0, (4.53)

as in (3.16). The nondimensional version of the condition (3.30) on the velocities is

u̇− ∂R2

∂z
ẇ = 0 on r = R2, (4.54)

whereas the nondimensional kinematic condition is

u̇− ∂R1

∂z
ẇ =

∂R1

∂t
on r = R1. (4.55)
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Asymptotic expansion

We now expand the plastic velocities and stresses in powers of ε:

u̇ ∼ u̇(0) +O (ε) , (4.56)

ẇ ∼ ẇ(0) +O (ε) , (4.57)

σrr ∼ σ(0)
rr +O (ε) , (4.58)

σθθ ∼ σ
(0)
θθ +O (ε) , (4.59)

σrz ∼ σ(0)
rz +O (ε) . (4.60)

At leading order, the quasistatic force balances in the plastic medium in a frame moving

with the stagnation point are

∂σrr

∂r
+
σrr − σθθ

r
= 0, (4.61)

∂σrz

∂r
+
σrz

r
= 0. (4.62)

We immediately see from the second equation that

σ(0)
rz =

f(z, t)

r
. (4.63)

However, the boundary condition (4.50) on r = R1(z, t) gives that f(z, t) = 0. Note

that even if we tried an expansion for σrz starting at O (
1
ε

)
as hinted at by (4.40), the

boundary condition would quickly show that σrz was again zero at leading-order.

Turning again to (4.40), we see that ∂ẇ(0)

∂r
= 0, thus

ẇ(0) = ẇ(0)(z, t). (4.64)

We can now integrate the incompressibility condition (4.43) with respect to r to obtain

u̇(0) = −1

2

∂ẇ(0)

∂z
(z, t)r +

g(z, t)

r
, (4.65)

for some unknown function g(z, t). Substituting this into the boundary conditions (4.54)

and (4.55) gives us that

g(z, t) =
1

2

∂

∂z
(R2

2ẇ
(0)). (4.66)

Further, we also obtain the plastic ‘conservation’ of mass (c.f. (4.29)),

∂

∂t
(−R2

1) +
∂

∂z
(ẇ(0)(R2

2 −R2
1)) = 0. (4.67)

In using the yield condition (4.35), we need to know which of σrr and σθθ is greater.

Again, we appeal to the cylinder-expansion literature [36] or to numerical simulations,
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which tell us that σrr < σθθ. Hence using (4.37), (4.38) with (4.65), we see that the

Lagrange multiplier is

Λ(r, z, t) =
r2

∂
∂z

(R2
2ẇ

(0))
. (4.68)

Note that if both R2 and ẇ(0) are not functions of z, there will be no radial flow (it is

constrained by the boundary R2) and we just have a uniform axial flow. Substituting the

yield condition into (4.61) gives

∂σ
(0)
rr

∂r
=

1

r
. (4.69)

Integrating this and using the boundary condition (4.49) leads to

σ(0)
rr = −αP + log

(
r

R1

)
. (4.70)

Using the expressions for u̇(0), Λ and g(z, t), we can write down the deviatoric stresses

as

σ′rr = −1

2

(
1 +

∂ẇ(0)

∂z
∂
∂z

(R2
0ẇ

(0))
r2

)
, (4.71)

σ′θθ =
1

2

(
1−

∂ẇ(0)

∂z
∂
∂z

(R2
0ẇ

(0))
r2

)
, (4.72)

σ′zz =
∂ẇ(0)

∂z
∂
∂z

(R2
0ẇ

(0))
r2. (4.73)

The hydrostatic pressure is hence given as

p = σ′rr − σrr

= αP − log
r

R1

− 1

2

(
1 +

∂ẇ(0)

∂z
∂
∂z

(R2
0ẇ

(0))
r2

)
. (4.74)

The other unknown stresses are written

σθθ = −αP + 1 + log
r

R1

, (4.75)

σzz = −αP + log
r

R1

+
1

2

(
1 +

3∂ẇ(0)

∂z
∂
∂z

(R2
0ẇ

(0))
r2

)
. (4.76)

The unknown functions will be determined by matching into the elastic region.

4.1.3 Inner elastic region

The stresses in the elastic region are generated from the plastic stresses. Hence, we again

nondimensionalise the components of the stress tensor by scaling with σY . In order to
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choose the correct scale for the elastic displacements, we recall the principal radial stress

component

σrr = (λ+ 2µ)
∂u

∂r
+ λ

u

r
+ λ

∂w

∂z
. (4.77)

Hence, scaling z ∼ L and r ∼ rj motivates scaling u ∼ σY rj

λ+2µ
and w ∼ σY L

λ+2µ
. Thus, in a

frame moving with the stagnation point, Navier’s equations for elasticity (3.28) and (3.29)

become
(

∂2u

∂r2
+

∂

∂r

(u

r

))
+

(
λ + µ

λ + 2µ

)
∂2w

∂r∂z
+

µ

λ + 2µ

(
∂2u

∂z2

)
ε2 = ε2M2

p

(
∂

∂t
− Ũ

∂

∂z

)2

u, (4.78)

µ

λ + 2µ

(
1
r

∂

∂r

(
r
∂w

∂r

))
+

(
λ + µ

λ + 2µ

)
1
r

∂2(ur)
∂r∂z

ε2 +
∂2w

∂z2
ε2 = ε2M2

p

(
∂

∂t
− Ũ

∂

∂z

)2

w. (4.79)

Mp is the Mach number with respect to the primary wave speed c2p = (λ+ 2µ)/ρ, defined

by

Mp =
U0

cp
. (4.80)

From Table 3.1, we see that this is O (1) and so inertia does not play a leading role in the

inner elastic region.

Nondimensional boundary conditions

The nondimensional boundary conditions on r = R2(z, t) are (4.54), continuity of dis-

placement and the traction balances (4.51)-(4.52). We also have boundary conditions

arising from matching with the outer elastic region.

Asymptotic expansion

Expanding the displacements

u ∼ u(0) +O (ε) , (4.81)

w ∼ w(0) +O (ε) , (4.82)

with corresponding stresses

σrr ∼ σ(0)
rr +O (ε) , (4.83)

σθθ ∼ σ
(0)
θθ +O (ε) , (4.84)

σzz ∼ σ(0)
zz +O (ε) , (4.85)

σrz ∼ σ(0)
rz +O (ε) , (4.86)

the rescaled Navier equations become, at leading order,
(
∂2u(0)

∂r2
+

∂

∂r

(
u(0)

r

))
+

(
λ+ µ

λ+ 2µ

)
∂2w(0)

∂r∂z
= 0, (4.87)

∂2w(0)

∂r2
+

1

r

∂w(0)

∂r
= 0. (4.88)
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Integrating the second equation,

w(0) = Ae(z, t) log r +Be(z, t), (4.89)

and hence

u(0) = Ce(z, t)r +
De(z, t)

r
−

(
λ+ µ

λ+ 2µ

)
1

4

∂Ae

∂z
r(2 log r − 1). (4.90)

Using these expressions for displacement, we can write down the stresses via (A.15)-

(A.18). We start by writing down

σrz = µ

(
ε
∂u(0)

∂z
+

1

ε

∂w(0)

∂r
.

)
(4.91)

At leading order, we only get the contribution

µ
∂w(0)

∂r
= µ

Ae(z, t)

r
. (4.92)

However, the leading-order term from the tangential component of the traction boundary

condition (4.52) tells us that σrz(R2) = 0. Hence Ae(z, t) = 0 and

w(0) = w(0)(z, t). (4.93)

Before performing further matching with the plastic region, we move to the outer elastic

problem.

4.2 Outer region

The outer region is far away from where the penetration is taking place, and sees the inner

region as a slender body. Although inertia will undoubtedly play a role in this region in the

form of waves from the tip, we will initially consider solutions to the quasistatic equations

of elasticity in order to gain intuition. These solutions will be matched asymptotically

into the inner slender region, as in classic slender body theory (§1.2.4). We will then

attempt to generalise the matching to the full hyperbolic equations of elasticity.

4.2.1 Quasistatic outer region

The crucial observation in attaining a solution is the assumption of axisymmetry; the

displacement is the same in all planes through the axis of symmetry and so there exists

a stress function, χ, which satisfies the biharmonic equation,

∇4χ = 0. (4.94)
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All of the unknown quantities (C.2)-(C.7) can be expressed in terms of it. Recall that we

term this the Love stress function, as in §1.2.1.4. Ultimately, we will need to reformulate

the inner elastic region in terms of the Love stress function so that we can match the

outer χ and its derivatives into the inner region.

From the point of view of the outer solution, we could consider the cavity as a series

of holes. These holes can be modelled by considering singularities of the incompatibility

tensor (the tensor we get when applying the curl operator to the rows and columns of

the strain tensor). This is currently being investigated [57]. We adopt an approach

using classic potential theory. This dictates that we can write the outer solution using

a Green’s function representation. We introduce the outer coordinates x = (R, θ, z) and

ξ = (0, θ, z′), where x is a vector for a point outside the slender body and ξ is a point on

the slender body. By considering ∇4Gbih(x, ξ) = δ(x − ξ), the Green’s function for the

biharmonic operator is found to be

Gbih = |x− ξ| =
√
R2 + (z − z′)2. (4.95)

Noting that any harmonic solution is automatically biharmonic, we write our Love stress

(potential) function in terms of the biharmonic Green’s function and a contribution from

the Laplace Green’s function,

Glap =
1

|x− ξ| =
1√

R2 + (z − z′)2
. (4.96)

Hence

χ(R, z, t) =

∫

∂S

Gbih(R, z, z
′)f(z′, t)dz′ +

∫

∂S

Glap(R, z, z
′)g(z′, t)dz′ (4.97)

=

∫

∂S

√
R2 + (z − z′)2f(z′, t)dz′ +

∫

∂S

g(z′, t)dz′√
R2 + (z − z′)2

, (4.98)

where f(z, t) and g(z, t) are unknown functions to be determined by boundary conditions

and matching, and ∂S is the free boundary determining cavity shape. For completeness,

we could include other integral terms involving the derivatives of the Green’s functions.

However, we know from the inner elastic solution for the displacements that there are no

singularities as r → 0 other than those in (4.95) and (4.96).

Scaling z′, r ∼ L, χ ∼ L3σY , f ∼ LσY and g ∼ L3σY , we obtain a nondimensional

version where all the terms are now O (1). In this representation, the cavity is regarded as

a line of point sources (of some unknown nature), where f(z, t) and g(z, t) are a measure

of the strength of these sources with respect to the biharmonic and Laplace’s equation,

respectively. We now parameterize the cavity as a line a < z′ < b, where a is taken to be

sufficiently large and negative. We note that in writing this formulation down, we have
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implicitly included the boundary conditions of zero stress at infinity as the stress is given

in terms of the derivatives of χ. Bearing this in mind, we calculate the derivative

∂χ

∂R
=

∫ b

a

Rf(z′, t)dz′

(R2 + (z − z′)2)
1
2

−
∫ b

a

Rg(z′, t)dz′

(R2 + (z − z′)2)
3
2

. (4.99)

In order to match this to the inner solution, we briefly reformulate the inner solution in

terms of the Love stress function.

4.2.1.1 Inner elastic solution via Love stress function

The inner scalings from §4.1.3 are

r = rj r̄, z = Lz̄, σ = σY σ̄, u =
σY rj

λ+ 2µ
ū, w =

σYL

λ+ 2µ
w̄. (4.100)

From (C.2) and noting that µ
λ+2µ

∼ O (1), we see that the inner scaling for the Love stress

function is

χ = r2
jLσY χ̄. (4.101)

Dropping hats, and recalling the boundary conditions (4.51)-(4.52), the inner problem

becomes
(

1
r

∂

∂r

(
r

∂

∂r

)
+ ε2

∂2

∂z2

)2

χ = 0 for r ≥ R2(z, t), (4.102)

∂

∂z

(
λ

2(λ + µ)

(
1
r

∂

∂r

(
r
∂χ

∂r

)
+ ε2

∂2χ

∂z2

)
− ∂2χ

∂r2

)
= σ(p)

rr (R2(z, t)) on r = R2(z, t), (4.103)

∂

∂r

(
λ + 2µ

2(λ + µ)

(
1
r

∂

∂r

(
r
∂χ

∂r

)
+ ε2

∂2χ

∂z2

)
− ε2

∂2χ

∂z2

)
= 0 on r = R2(z, t). (4.104)

Instead of using the boundary condition (4.103), it may be more convenient mathemat-

ically to use the fact that the material on the elastic-plastic boundary is at yield, and

hence say that

1 =
∂

∂z

(
∂2χ

∂r2
− 1

r

∂χ

∂r

)
on r = R2. (4.105)

We also observe that, by virtue of the yield condition, continuity of σrr over the elastic-

plastic boundary tells us that σθθ is automatically continuous.

The natural expansion for χ is in powers of ε2 and so we expand

χ ∼ χ0(r, z, t) + χ2(r, z, t)ε
2 +O (

ε4
)
. (4.106)

At leading order, (
1

r

∂

∂r

(
r
∂

∂r

))2

χ0 = 0. (4.107)

Integrating this with respect to r, we find that

χ0(r, z, t) = α0(z, t) log r + β0(z, t) + γ0(z, t)r
2 + δ0(z, t)r

2 log r, (4.108)
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for some unknown functions α0(z, t), β0(z, t), δ0(z, t) and γ0(z, t). The leading-order

nondimensional inner displacements and stresses can now be written as follows:

u = −σY

2µ

(
1

r

∂α0

∂z
+

(
2
∂γ0

∂z
+
∂δ0
∂z

)
r + 2

∂δ0
∂z

r log r

)
, (4.109)

w =
2σY

µ

(3µ+ λ)

(λ+ 2µ)
(γ0 + δ0 + δ0 log r) , (4.110)

σrr =
∂

∂z

(
2λ

λ+ µ
(γ0 + δ0)− 3δ0 − 2µ

λ+ µ
δ0 log r +

α0

r2

)
, (4.111)

σθθ =
∂

∂z

(
2λ

λ+ µ
(γ0 + δ0)− δ0 − 2µ

λ+ µ
δ0 log r − α0

r2

)
, (4.112)

σzz =
λ+ 2µ

2(λ+ µ)

∂

∂z
(γ0 + δ0 + δ0 log r) , (4.113)

σrz =
1

ε

λ+ 2µ

2(λ+ µ)

δ0
r
. (4.114)

At O (1), equation (4.104) gives us that

δ0(z, t)

a
= 0, (4.115)

and so δ0(z, t) = 0, simplifying (4.109)-(4.114). Similarly, if we were to consider the next-

order expansion, we would find that δ1 = 0, in the obvious notation. The continuity of

normal stress equation (4.103) now reduces to

∂

∂z

(
4νγ0(z, t) +

α0(z, t)

r2
+ 2γ0(z, t)

)
= σ(p)

rr on r = R2. (4.116)

4.2.1.2 Matching

We now write the outer derivative ∂χ
∂R

in inner variables, considering each integral in (4.99)

individually as R→ 0. Firstly, consider the Laplace term

∫ b

a

εrg(z′, t)dz′

(ε2r2 + (z − z′)2)
3
2

. (4.117)

The main contribution to this integral will be when z − z′ = O (ε), the resultant integral

being O (
1
εr

)
. We thus approximate g(z′, t) ∼ g(z, t) and split the integral into a local

region of size δ around z′ = z, where ε ¿ δ ¿ 1, assuming that z is not within O (ε) of

the endpoints (which we may do, as the tip z′ = b is not in the slender region, and a is

sufficiently negative):

∫ b

a

εrg(z′, t)dz′

(ε2r2 + (z − z′)2)
3
2

∼ εrg(z, t)

(∫ z−δ

a

+

∫ z+δ

z−δ

+

∫ b

z+δ

) (
dz′

(ε2r2 + (z − z′)2)
3
2

)
.

(4.118)
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Rescaling z − z′ = εZ, the second (local) integral becomes

εrg(z, t)

∫ δ
ε

− δ
ε

εdZ

(ε2r2 + ε2Z2)
3
2

=
rg(z, t)

ε

[
Z

r2
√
r2 + Z2

] δ
ε

− δ
ε

=
2g(z, t)

εr

δ
ε√

r2 + δ2

ε2

. (4.119)

Expanding in terms of ε
δ
¿ 1, this becomes

2g(z, t)

εr

1√
1 +

(
εr
δ

)2
∼ 2g(z, t)

εr
− g(z, t)

εr

δ2
. (4.120)

The first “non-local” term of (4.118) is

εrg(z, t)

∫ z−δ

a

dz′

(ε2r2 + (z − z′)2)
3
2

= −εrg(z, t)
[

z − z′

ε2r2
√
ε2r2 + (z − z′)2

]z−δ

a

= −g(z, t)
εr

(
δ√

ε2r2 + δ2
− z − a√

ε2r2 + (z − a)2

)

∼ 1

2
g(z, t)

εr

δ2
− 1

2
g(z, t)

εr

(z − a)2
. (4.121)

We get a similar expression for the third term of (4.118) and sum the three terms to arrive

at ∫ b

a

εrg(z′, t)dz′

(ε2r2 + (z − z′)2)
3
2

=
2g(z, t)

εr

(
1− (εr)2

4

(
1

(z − a)2
+

1

(b− z)2

))

∼ 2g(z, t)

εr
+O (εr) . (4.122)

Hence the Laplace contribution to ∂χ
∂r

is locally determined by z and, at leading order,

independent of the endpoints.

We now turn our attention to the biharmonic part of ∂χ
∂r

. To assess the relative sizes

of the global and local contributions, we again split up the range of integration as
∫ b

a

εrf(z′, t)dz′

(ε2r2 + (z − z′)2)
1
2

∼ εr

(∫ z−δ

a

+

∫ z+δ

z−δ

+

∫ b

z+δ

) (
f(z′, t)dz′

(ε2r2 + (z − z′)2)
1
2

)
, (4.123)

where 0 ≤ ε ¿ δ ¿ 1. The (second) local part of the integral is dominated when

z − z′ ∼ O (ε), and so we rewrite z − z′ = εZ. Thus f(z′, t) ∼ f(z, t) and the integral

becomes

εrf(z, t)

∫ δ
ε

− δ
ε

dZ√
r2 + Z2

= 2εrf(z, t)
[
log(Z +

√
r2 + Z2)

] δ
ε

0

= 2εrf(z, t)

(
log

(
1 +

√
1 +

ε2r2

δ2

)
− log

(εr
δ

))

∼ 2εrf(z, t)

(
log

(
1

εr

)
+ log

1

δ
+
ε2r2

4δ2

)
(4.124)
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The main contributions from the first and third integrals are [38]

−εrf(z, t)

(
log

1

δ
+O (1)

)
, (4.125)

in both cases, and so

∫ b

a

εrf(z′, t)dz′

(ε2r2 + (z − z′)2)
1
2

∼ 2εrf(z, t)

(
log

1

ε
+O (1)

)
. (4.126)

Putting these two together, our outer solution as R→ 0 is

∂χ

∂R
∼ 2Rf(z, t)

(
log

1

R
+O (1)

)
+

2g(z, t)

R
. (4.127)

We need to match this to the inner expression for ∂χ
∂r

, which is given by (4.108) as

∂χ

∂r
=
α0(z, t)

r
+ 2rγ0(z, t). (4.128)

Introduce the intermediate variable

s =
R

εj
= ε1−jr, (4.129)

where 0 < j < 1. This leads to the following expressions for the outer and inner radial

derivative of χ:

Outer:
∂χ

∂R
= 2f(z, t)sεj

(
− log s + j log

1
ε

+O (1)
)

+
2ε−jg(z, t)

s
. . . (4.130)

Inner: ε
∂χ0

∂r
=

α0(z, t)
s

ε2−j + 2sεjγ0(z, t) + . . . , (4.131)

where we multiply the inner expression by ε to match as we have an r derivative. Matching

at leading order, we immediately see that the leading-order term in g(z, t) dominates

everything, with nothing to match to in the inner expansion. Hence g(z, t) is zero at

leading order, which leads us to pose

g(z, t) ∼ 0 + ε2g2(z, t) +O (
ε3

)
. (4.132)

Continuing with the matching,

2g2(z, t) = α0(z, t). (4.133)

Expanding f(z, t) ∼ f0(z, t) +O (ε), matching the logarithmic term tells us that

f0(z, t) = 0, (4.134)

and hence

γ0(z, t) = 0. (4.135)
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We observe that these latter two coefficients are nonzero if δ0 is nonzero in the inner

expansion (4.108) for χ. i.e. nonzero if the shear stress in the plastic region, σrz, is nonzero

on the elastic-plastic boundary2. The inner function β0(z, t) is still undetermined, but not

important when writing down expressions for stress and displacement as derivatives with

respect to r need to be taken.

The boundary condition (4.116) now yields

∂α0

∂z
= σ(p)

rr (R2, t)R
2
2 = 2

∂g2

∂z
. (4.136)

Hence we can now give the physical interpretation of the way that the outer solution views

the inner solution; the outer sees the inner as a line of point pressure sources, where the

pressure is given from the plastic region. Similarly, the canonical fully-elastic problem

would have an outer solution which viewed the inner as a line of point pressure sources

with strength related to the cavity pressure P .

Continuing the analysis, we elect to use the yield condition (4.105) on the boundary

R2(z, t) and discover that
∂α0

∂z
= −1

2
R2(z, t)

2. (4.137)

Thus the nondimensional leading-order stresses and displacements in the inner elastic

region become:

u =
σYR

2
2

4µr
, (4.138)

w = 0, (4.139)

σrr = −R2
2

2r2
= −σθθ, (4.140)

σrz = 0 = σzz. (4.141)

This is the solution we would get if we considered plane-stress elastic-plastic expansion of

a radially-symmetric cavity under internal pressure.

4.2.2 Matching with a fully inertial outer region

In the quasistatic case, the inner solution for the Love stress function is

χ0 ∼ α0(z, t) log r + β0(z, t) + γ0(z, t)r
2. (4.142)

When searching for an outer solution, we considered a Green’s function representation

in which the stress decayed at infinity. Matching these solutions together gave us that

2Indeed, if there is a nonzero plastic shear stress, we would match f0 = −δ0 by looking at the coefficient
of εj log 1

ε . Performing further matching, we would discover that f0 is actually smaller than we thought,
and should be rescaled f0 = 2γ0

1+2 log 1
ε

∼ γ0
log 1

ε

(
1− 1

2 log 1
ε

+ . . .
)

.
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γ0(z, t) = 0, and so we effectively recovered a two-dimensional solution in the inner. We

could perhaps have seen this with little work. The outer solution for χ must satisfy

χr → 0 as r → ∞, and χr must match with the inner. The γ0(z, t)r
2 in the inner is the

dominant term when matching into the outer giving the boundary condition on the outer

that χr ∼ 2γ0(z, t)r as r → 0. Since (unlike the log terms), such a condition gives no

singularity in the biharmonic equation, the outer solution is γ0 = 0 by uniqueness.

A similar argument applies if waves are present. Consider, as a paradigm, the wave

equation outside a slender body:

∇2φ =
1

c2
∂2φ

∂t2
, (4.143)

with boundary condition

φ→ 0 as r →∞, (4.144)

and an inner slender solution of

φ0 ∼ A(z, t) +B(z, t) log r, (4.145)

for some arbitrary functions A(z, t) and B(z, t). We assume that all waves are outgoing.

Suppose that there are no singularities in the wave-field, so that B(z, t) = 0. Uniqueness

of solutions to the wave equation on a domain with no singularities then tells us that the

only solution is the zero solution.

The same idea holds in the case of the full Navier equations. Equation (4.142) still

holds in the inner elastic region, even with inertia. Assuming that there is no incoming

radiation and given that the outer is dominated by the γ0(z, t)r
2 and sees no singularities,

we can use the principle of reciprocity (as the Green’s functions are self-adjoint) and

uniqueness of solutions to the Navier equations to determine that γ0 = 0. Hence, the

analysis of the previous section is still valid, and we can now match between the inner

plastic and elastic regions. Note that we have not solved the outer problem; we have

merely used decaying stress, matching and uniqueness to set an inner coefficient to zero.

4.2.2.1 Matching between different regions

Using continuity of the radial stress (4.70) over the elastic-plastic boundary, R2, we can get

an expression for the position of the free boundary in terms of the fluid-plastic boundary,

R1, viz:

R2(z, t) = R1(z, t) exp

(
αP − 1

2

)
. (4.146)

Using this in conjunction with the plastic mass flux equation (4.67), we obtain

∂

∂z

(
ẇR2

1(exp(2αP − 1)− 1)
)

=
∂

∂t
R2

1. (4.147)
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In order to fully determine the plastic velocities and displacements, we need to consider

the axial stresses in both plastic and elastic regions, as discussed in detail by Hill [36].

In a finite gun-barrel problem, say a0 < r < b0, these are determined via an axial force

balance. We suppose that a longitudinal force L is applied on each end of the barrel, so

that the force balance becomes

L =

∫ 2π

θ=0

∫ b0

r=a0

σzzrdrdθ. (4.148)

The parameter L can depend on whether the ends of the gun-barrel are open (L =

0, which corresponds to plane-stress), closed (L = πa2
0) or whether some intermediate

mathematically-convenient rule such as plane-strain is chosen. In the case of a partially-

plastic gun-barrel, we can see that this integral will have a plastic contribution and an

elastic contribution for the axial stress. Hence, as σzz should really be determined by

Reuss’ equations, it must depend on the strain-history. On applying Reuss’ equations

and changing to coordinates following an element, one can derive a hyperbolic system

of equations. The boundary conditions for these equations are continuity of σzz and

continuity of velocity (following a particle) on the elastic-plastic boundary. Alas, the

hyperbolic system can rarely be solved explicitly and one often needs to resort to numerical

methods. Fortunately, approximations can be made when considering the expansion of a

cavity into an infinite elastic medium. In transpires that using the Lèvy-Mises equations

with the aforementioned boundary conditions does not lead to significant errors in this

case. This is discussed in detail in [35, 36, 37]. Hence we apply continuity of σzz over

R2(z, t) and, using (4.146), we see from (4.76) that

1

2

∂ẇ(0)

∂z
∂
∂z

(R2
0ẇ

(0))
R2

2 = 0. (4.149)

Thus the plastic axial velocity satisfies, at leading order,

ẇ(z, t) = Ẇ (t). (4.150)

This velocity must be determined by matching into the tip region.

In summary, dropping numeric superscripts which denoted leading order, the elastic

displacements and stresses are given by (4.138)-(4.141), whilst the plastic displacements
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and stresses are

ẇ(p) = Ẇ (t), (4.151)

u̇(p) =
Ẇ (t)

2r

∂

∂z
(R2

2) =
Ẇ (t)

2r

∂

∂z

(
R2

1 exp(2αP − 1)
)
, (4.152)

σ′rr = −1

2
= −σ′θθ, (4.153)

σ′zz = 0, (4.154)

σ(p)
rr = −αP + log

r

R1

, (4.155)

σ
(p)
θθ = −αP + 1 + log

r

R1

, (4.156)

σ(p)
zz = −αP +

1

2
+ log

r

R1

, (4.157)

where P is the pressure from the fluid region. We observe from this that σzz is indeed the

intermediate principal stress and so the solution is self-consistent.

4.2.3 Comments

We have derived a model for penetration far from the tip, valid when the slender plastic

velocities are small compared to the jet velocity. Analysis of the fluid region yielded a

conservation of mass equation (4.29), an ‘eikonal’ equation (4.31), and an expression for

the pressure on the free boundary r = R1(z, t), (4.33). These equations are written in

terms of the unknowns φ0(z, t), R0(z, t), R1(z, t), U(t) and P (z, t). Matching into the

plastic region furnished us with an evolution-equation, (4.147), for the free boundary

r = R1(z, t) in terms of the axial plastic velocity component, whilst matching into the

inner and outer elastic regions revealed that the axial component of plastic velocity is a

constant function of time, sadly unknown. Hence we have four coupled equations and six

unknowns. The extra conditions must come from matching with the intricate tip region.

Indeed, we expect tip matching to provide equations for the leading-order fluid velocity

potential and the axial component of the plastic velocity. Such analysis is highly non-

trivial. However, we can gain some intuition regarding the behaviour of our system of

equations by considering the possibility of travelling-wave solutions.

4.3 Travelling-wave solution

In this section, we attempt to find a travelling-wave solution to the system of the equations

in which the tip moves with constant velocity. This velocity must be the same order of

magnitude as the plastic axial velocity by conservation of mass, as the target material

is excavated on the same timescale as the penetration occurs. Hence, we introduce a
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travelling wave variable

ξ = z − δUt, (4.158)

where z and t are with respect to the original frame, and δ ¿ ε
1
2 is a scale for the

travelling-wave velocity. We nondimensionalise the axial scale with L, time with L/(δU)

and velocity with U , so that the derivatives become

∂

∂t
= −δ d

dξ
, (4.159)

∂

∂z
=

d

dξ
. (4.160)

Mirroring the analysis of the jet, we introduce a nondimensional potential function in the

travelling-wave frame, defined by

ψ(r, ξ, t) = φ(r, z, t)− δξ. (4.161)

The boundary condition (3.7) on R0(z, t) and (4.17) on R1(z, t) thus become, at leading

order,

∂ψ

∂r
− ε2∂R0

∂ξ

∂ψ

∂ξ
= 0 on r = R0, (4.162)

∂ψ

∂r
− ε2∂R1

∂ξ

(
∂ψ

∂ξ
+ δ

)
= 0 on r = R1. (4.163)

Expanding this in powers of ε2, we again find from Laplace’s equation that ψ0 = ψ0(ξ, t),

and so the O (ε2) boundary conditions on r = R0 and r = R1 give the modified mass

conservation (c.f. (4.29))
∂

∂ξ

(
∂ψ0

∂ξ
(R2

1 −R2
0)

)
= 0. (4.164)

Recall Bernoulli’s equation in the rest frame, (3.2). In nondimensional travelling-wave

variables, this becomes

−δ ∂
∂ξ

(δξ + ψ) + p+
1

2

(
1

ε2

(
∂ψ

∂r

)2

+

(
δ +

∂ψ

∂ξ

)2
)

= G. (4.165)

We quickly substitute the asymptotic expansion for ψ and apply the boundary condition

p(R0) = 0 to discover, at leading order,

1

2

(
∂ψ0

∂ξ

)2

= G. (4.166)

We determine G by considering the far-field solution. Consider, in the rest frame, the

incoming jet with nondimensional velocity V̄ = V/U with corresponding nondimensional

penetration velocity δ (moving with the stagnation point). Changing to a frame moving
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with the stagnation point and dropping bars, the incoming jet has relative velocity V −
δ ∼ V . By applying steady-Bernoulli to the inner free boundary on which the pressure

p = 0, we see that the returning jet must have speed V at leading order in the negative

z−direction. Thus, in our travelling wave formulation, the velocity for large negative ξ

must be −V and so, up to an additive constant, ψ = −V ξ for large negative ξ. Thus

G =
1

2
V 2. (4.167)

We can now solve for ψ, and, taking the negative root to satisfy the flow for large negative

ξ, we see that

ψ0(ξ) = −V ξ + constant, (4.168)

and so we have plug flow. Substituting into the mass conservation equation (4.164) tells

us that

R2
1 = A+R2

0, (4.169)

where A is a positive constant. Continuing with the analysis, the O (ε2) correction to

velocity potential is given by (c.f. (4.26))

ψ2(ξ, r, t) = C(ξ, t) log r +D(ξ, t). (4.170)

Applying the O (ε2) boundary conditions (4.162)-(4.163) determines

C(ξ, t) =
1

2

∂

∂ξ
(V R2

0) =
1

2

∂

∂ξ
(V R2

1). (4.171)

Hence the O (ε2) pressure equation gives the inflation pressure for the plastic region as

p(R1)− p(R0) = −ε
2

2

[(
∂ψ2

∂r

)2

+ 2
∂ψ0

∂ξ

∂ψ2

∂ξ

]R1

R0

=

(
1

2
C(ξ, t)2

(
1

R2
0

− 1

R2
1

)
+ V

∂C

∂ξ
log

(
R1

R0

))
ε2, (4.172)

We now eliminate R0, letting R2
1(ξ) = f(ξ). The inflation pressure thus becomes

p(R1) =
V 2ε2

8

(
Af ′2

f(f − A)
+ 2 log

(
f

f − A

)
f ′′

)
. (4.173)

When coupling the jet equations with the elasto-plastic analysis, we expect that the

nondimensional travelling-wave speed δ will play a more prominent part in the plastic

region. Indeed, the mass equation (4.67) becomes

−δ ∂
∂ξ

(−R2
1) +

∂

∂ξ
(δẇ(R2

2 −R2
1)) = 0. (4.174)
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Recall that the nondimensional axial velocity is constant, W , say, in the rest frame. For

a physical solution, this constant must be negative or zero, as any plastic flow will be

driven by back-flow from the tip. On integration, we discover that

(1−W )R2
1 +WR2

2 = Q, (4.175)

for some constant Q.

We initially consider the case of W = 0. This gives that R2
1 = Q, and so, using

(4.171), C(ξ, t) = 0. From equation (4.172), we deduce that the fluid pressure p(R1) ∼
O (ε4), which is insufficient to yield the surrounding target material. This contradicts the

assumption of a plastic region in our model, and so we must consider W < 0.

The crucial observation for W < 0 is that the plastic region cannot terminate. This is

because the plastic normal velocity at this termination point is still finite and so cannot

equal the zero normal velocity in the elastic region (and so the termination point is a

singularity). This will be discussed in a later chapter. Differentiation of (4.175) gives

(1−W )R1R
′
1 +WR2R

′
2 = 0, (4.176)

and so the signs of R′1 and R′2 are the same. From the previous paragraph, we know that

C(ξ, t) = 0 corresponds to the termination of the plastic region at some point, which is not

physically permissible. However, equation (4.176) tells us that if either of the derivatives

of R1 and R2 is zero, then so is the other. We can see from equation (4.171) that this

would lead to C(ξ, t) = 0, and thus deduce that all the free boundaries must be strictly

monotonic. Furthermore, we can see that the free boundaries must be monotonically

decreasing. This is because all free boundaries tend to zero for sufficiently large negative

z if the derivatives are positive, corresponding to the termination of both jet and plastic

regions.

Rearranging (4.175), we see that

R2
2 −R2

1 = − 1

W
(R2

1 −Q), (4.177)

thus R2
1 > Q. After some algebra, equation (4.146) gives

P =
1

2α

(
1 + log

(
1

β
+

Q

Wf

))
, (4.178)

where β = −W/(1−W ) > 0 and the logarithmic term is well-defined. Coupling this with

(4.173) results in the following nonlinear second-order equation:

2f ′′ log

(
f

f − A

)
+

Af ′2

f(f − A)
= γ

(
1 + log

(
1

β
+

Q

Wf

))
, (4.179)
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Introducing X(ξ) = f(ξ) and Y (ξ) = f ′(ξ), the second-order equation decomposes into

the following system of two first-order equations:

X ′ = Y, (4.180)

Y ′ =
1

2 log X
X−A

(
γ

(
1 + log

(
1

β
+

Q

WX

))
− AY 2

X(X − A)

)
. (4.181)

From equation (4.169) we note that, for a physical solution, X > A and so Y ′ is well-

defined. The equilibrium point (Xc, Yc) is given by

Xc =
Qe

e−W (e− 1)
, (4.182)

Yc = 0. (4.183)

Note that |Xc| < |Q|. We linearise the system about this point and discover that the

eigenvalues of the linear system are determined by the roots of

λ2 +
γQe

2(−W )X2

(
log

(
Xc − A

Xc

))−1

= 0. (4.184)

The nullclines are given by

Y = 0 and Y = ±
√
γ

A
X(X − A)

(
1 + log

(
1

β
+

Q

WX

))
. (4.185)

We are hence presented with four possible phase planes, depending on the relative sizes

of Q, Xc and A. However, we can make deductions about the system without detailed

analysis of these phase planes and without determination of the equilibrium point by

arguing as follows. Suppose that a trajectory starts from (X0, Y0). Firstly, we know that

Y0 < 0 as the derivatives of the free boundaries are negative. Secondly, from (4.177), we

must have that X0 > Q for existence of the plastic region. Hence, any physical trajectory

must start with X0 > Q and Y0 < 0. Such trajectories, shown in Fig. 4.3, will always

travel along paths with decreasing X. There are three separate possibilities:

� A trajectory meets Y = 0 before reaching X = Q or X = A and then moves with

increasing X in the upper-half plane;

� A trajectory meets X = Q for some Y < 0 (if Q > A);

� A trajectory meets X = A for some Y < 0 (if Q < A).

The first case corresponds to the termination of the plastic region (zero pressure), which we

know cannot happen owing to the mismatch in velocities at the termination point. From

equation (4.177), we deduce that the second possibility results in R2 → R1, and so is again

invalid owing to the termination of the plastic region. Finally, using equation (4.169), we

discover that the third possibility results in the jet region terminating, again physically

unacceptable and so, ineluctably, the travelling-wave formulation fails for W < 0.
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Y

X

(X0, Y0)

X = A or X = Q

Figure 4.3: A schematic phase-plane of possible trajectories from (X0, Y0).

4.4 Inertial effects

We have considered a parameter regime in which the plastic velocities in the slender region

were significantly smaller than the jet velocity. This was motivated by supposing that the

plastic velocity matching from the tip to the slender region was small. In this section, we

allow the slender plastic velocity-scale to be comparable to the jet velocity.

4.4.1 Modified inertial equations

Most of the slender jet equations are unchanged; the only difference is that there is no

longer a mismatch in velocity scales over r = R1(z, t), so the kinematic boundary condition

on r = R1(z, t) in the moving frame is (c.f. (4.16))

∂φ

∂r
− ε2∂R1

∂z

∂φ

∂z
= ε2∂R1

∂t
on r = R1(z, t). (4.186)

This results in (4.27)-(4.28) being replaced by

C(z, t) =
1

2

∂

∂t
(R2

j ) +
1

2

∂

∂z

(
∂φ0

∂z
R2

j

)
, j = 0, 1. (4.187)

Conservation of mass is thus given by

∂

∂t
(R2

1 −R2
0) +

∂

∂z

(∂φ0

∂z
(R2

1 −R2
0)

)
= 0. (4.188)

Note that we could have obtained this expression directly by considering mass flux through

the annulus R0(z, t) ≤ r ≤ R1(z, t) via the relation

∂

∂t

∫ 2π

0

∫ R1

R0

rdrdθ +
∂

∂z

∫ 2π

0

∫ R1

R0

(∂φ0

∂z

)
rdrdθ = 0. (4.189)



4. Slender and outer analysis 71

The Bernoulli equation (giving (4.31)) and expression for the pressure P on the boundary

r = R1(z, t) are unchanged, albeit with C(z, t) given by (4.187).

The plastic region beholds more significant changes. Firstly, recall that we need to

assume that ε2α ∼ O (1) for the material by the cavity to be plastic, where α = ρtU
2
0/σY .

Writing this parameter as α∗, the nondimensional force-balance equations (4.44)-(4.45)

become

∂σrr

∂r
+ ε

∂σrz

∂z
+
σrr − σθθ

r
= α∗

∂u̇

∂t
, (4.190)

∂σrz

∂r
+ ε

∂σzz

∂z
+
σrz

r
=

α∗
ε

∂ẇ

∂t
. (4.191)

The flow law (4.37)-(4.40) is unchanged. The second of the force-balance equations, in

addition to (4.40), indicates that the shear stress should have the expansion

σrz =
1

ε
σ(−1)

rz +O (1) . (4.192)

The leading-order force-balance equations now become

∂σrr

∂r
+
∂σ

(−1)
rz

∂z
+
σrr − σθθ

r
= α∗

∂u̇

∂t
, (4.193)

∂σ
(−1)
rz

∂r
+
σ

(−1)
rz

r
= α∗

∂ẇ

∂t
. (4.194)

The boundary conditions on the inner boundary r = R1(z, t) remain as (4.49)-(4.50),

whereas inertial terms now need to be included on the elastic-plastic boundary r =

R2(z, t). These are written nondimensionally as

[u̇n]+− = 0, (4.195)[
σ

(−1)
in − ρt

ρj

α∗(u̇n − ∂R2

∂t
)u̇i

]+

−
= 0. (4.196)

We can rearrange the flow law to obtain

2σ
(−1)
rz

∂ẇ
∂r

= Λ =
1

u̇
r
− ∂u̇

∂r

. (4.197)

Thus we have the following three nondimensional equations for ẇ, u̇ and σ
(−1)
rz :

1

r

∂

∂r
(ru̇) +

∂ẇ

∂z
= 0, (4.198)

2
∂

∂r

(
u̇

r

)
rσ(−1)

rz +
∂ẇ

∂r
= 0, (4.199)

1

r

∂

∂r
(rσ(−1)

rz ) =
∂ẇ

∂t
. (4.200)
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The remaining components of the stress tensor decouple and are given by the yield con-

dition, which we write as

σθθ − σrr = 1, (4.201)

and
∂σrr

∂r
+
∂σ

(−1)
rz

∂z
=

1

r
+ α∗

∂u̇

∂t
. (4.202)

We can eliminate σ
(−1)
rz from the system (4.198)-(4.200) to reach

∂ẇ

∂t
= −1

r

∂

∂r

(
1

2 ∂
∂r

(
u̇
r

) ∂ẇ
∂r

)

= − 1

2r

(
ẇrr

(u̇/r)r

− ẇr

((u̇/r)r)2

(
u̇

r

)

rr

)
. (4.203)

Using (4.198), this can be rewritten as an equation for ẇ(r, z, t) as

ẇt = f(r, u̇, u̇r, ẇz)ẇrr + g(r, u̇, u̇r, ẇz)ẇrz, (4.204)

for some functions f and g. This equation has two real characteristics in space, and can

be transformed to an equation of the form

∂ẇ

∂t
= f̃

∂2ẇ

∂r2
− g̃

∂2ẇ

∂z2
, (4.205)

for some f̃ and g̃ such that f̃ g̃ > 0. We could attempt to solve this novel partial differential

equation using a travelling-wave variable. However, we can think of this rather nasty

equation as forward diffusion in one spatial variable, and backward diffusion in the other.

Thus it is likely to be ill-posed3.

4.5 Comments on elastic-plastic modelling

We have developed elastic-plastic models based on the traditional Birkhoff impact models

(see §2.1.1). Initially, we considered a model in which the scales for the plastic velocities

were significantly smaller than the velocity scale for the returning jet. The result of this

was a quasistatic model, with a partial solution in need of information from matching

with the tip. We attempted a travelling-wave solution, even though it would predict an

infinite cavity-depth. This was to gain intuition into the penetration. Sadly, this approach

failed, suggesting that either the free boundary R0 → 0 (unphysical) or the termination

of the plastic region (R2 → R1). Attempts at a model in which the plastic velocities were

3We could try this plastic velocity-scale with constant ẇ. This remedies the problem with the equation
being ill-posed, but the matching conditions into the inner elastic region are still inertial, leading to
another non-trivial problem.
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comparable to the jet velocity also had limited success. We discovered that the effects

of inertia in the plastic region now became important, but the equations resulted in an

ill-posed partial differential equation. This suggests we were correct in neglecting plastic

inertia, although warrants further investigation. Finally, our estimate on the size of αε2

shows that the pressure is insufficient to induce plasticity in the slender region unless the

yield stress of the target is sufficiently low. This indicates that the plasticity should be

confined to a region near the tip for a more realistic yield stress.

We could embark on several routes to a solution. For example, we could construct a

model in which the plastic region has finite extent (Fig. 4.4), as suggested by the earlier

travelling-wave formulation and the previous comment. Depending on the extent of the

Plastic region ends

Finite plastic regionJet

Elastic region

Cavity

Figure 4.4: Penetration with finite plastic region.

plastic region, this could lead to two slender regions, one with a plastic zone and one

without, separated by some transition region. We could also try a similarity solution or

numerical solutions for different scalings of both the radii of the separate regions and for

different velocity scales (recall Fig. 3.7 and Fig. 3.8). However, before wading in with

detailed analysis, it is prudent to make some important observations:

� Neglecting any spall effects, there is no apparent mass loss in the target material

after penetration [93]. More explicitly, this means that little or no target material

gets ejected from the point of entry.

� Before penetration, the target is pristine. The jet exerts a high pressure on the

target on impact and as it penetrates. This applied pressure, however, returns to

zero as the penetration terminates. Hence, in view of the previous observation, use

of a linear elasticity model4 predicts that the cavity radius must return to zero!

4Linear elasticity cannot be responsible for the initial opening of the cavity in the target either. It
is likely that the target is immediately plastic on impact, although nonlinear elasticity effects could be
partially responsible for the initial excavation of the cavity.
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� When looking at a penetrated target block, we observe that all four unpenetrated

sides have bowed. This adds weight to the previous observation, and is shown in

Fig. 4.5.

Bowed edges

Figure 4.5: A photograph of a penetrated block, showing clear bowing of the edges.

These three observations all indicate that accurate modelling will require some method

of ‘locking in’ residual stresses and displacements after the penetration has finished.

Clearly, this cannot be a result of linear elasticity theory and must occur as a result

of the severe deformation in the plastic region. This suggests that we need to carefully

consider the paradigm cavity expansion problem in more detail.



Chapter 5

Gun-barrel mechanics

When a gun is fired, its barrel is put under high stress by high-pressure gases. Eventually,

this will lead to fatigue in the gun-barrel, which will ultimately be rendered useless. It was

known at least as early as the second world war that by cyclically loading and unloading

the gun-barrel, one can introduce beneficial residual stresses which considerably improve

the fatigue life of the gun-barrel [90]. This process is known as autofrettage, literally

meaning “self-hooping”. The basic idea is that the cavity pressure is increased so that

the material yields, and then increased further past the yield limit. When the pressure is

eventually released, some of the material will have been plastic and some of the material

was always elastic. It is in the former that we “lock in” plastic stress and displacement.

Thus, when returning the cavity pressure to zero, we have introduced some residual

stresses. This process is also of great importance in high pressure pump cylinders and

other vessels that are subjected to high pressures.

The theory of finite autofrettaged cylinders has been studied with various plasticity

models, such as perfect plasticity with the Bauschinger effect [80], Hencky’s equations [101]

and a constitutive power-law with Bauschinger effect [48]. Numerical solutions have also

been investigated [66]. Our slender model of the previous chapter essentially treated the

returning jet as a pseudo-pressure source to enable a two-dimensional, radially-symmetric,

elastic-plastic expansion of the target material. We implicitly assumed that the same equa-

tions would hold irrespective of the history of the position of the elastic-plastic boundary

and of whether the plastic region region is expanding (Ṗ > 0) or contracting (Ṗ < 0). In

this chapter, we wish to write down a model that allows us to lock in plastic stress, thus

taking into account some history. To do this, we consider the paradigm two-dimensional,

radially-symmetric cavity expansion problem in an infinite elastic medium in some de-

tail. We will start by considering infinitesimal displacement of the inner cavity, using

the equations of linear elasticity. We will then use the linear model as a mould for a

nonlinear model and attempt to reconcile it with Fig. 4.5 to formulate a better theory

75
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for penetration, before considering simple asymmetric problems.

5.1 Linear elastic perfect-plastic cavity model

5.1.1 Elastic expansion

Consider a circular cavity of radius a in an infinite linear elastic medium. We let the

internal cavity pressure be P (t), so that the internal boundary condition is

σrr(a) = −P (t). (5.1)

We also impose zero stress at infinity (so zero displacement). By virtue of the inherent

radial symmetry, we can immediately write down σrθ = 0. If P (t) is not sufficiently large

to induce yield, the medium remains elastic, and the remaining nonzero components of

the stress tensor are well-known to be [49]

σrr = −a
2P (t)

r2
, (5.2)

σθθ =
a2P (t)

r2
. (5.3)

The corresponding displacements are

u =
a2P (t)

2µr
, (5.4)

v = 0. (5.5)

5.1.2 Elastic-plastic expansion

We now increase the pressure so that the material yields. We will again use the Tresca

yield condition for the plastic region,

|σθθ − σrr| = σY . (5.6)

From (5.2)-(5.3), it is clear that the maximum of σθθ − σrr = 2a2P
r2 occurs on the inner

boundary r = a and so the elastic medium yields from the centre. We denote the elastic-

plastic free boundary by r = c(t), shown in Fig. 5.1, and will use superscripts ‘p’ and ‘e’

to denote ‘plastic’ and ‘elastic’, respectively.

5.1.2.1 Plastic Region

In addition to the Tresca yield condition, we use an incompressible flow law to represent

plastic flow,

σ′ij = Λε̇ij, (5.7)
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Figure 5.1: Expansion of a gun-barrel under applied pressure P (t).

so that conservation of mass is
∂u̇

∂r
+
u̇

r
= 0. (5.8)

The usual quasistatic radial force balance is

∂σ
(p)
rr

∂r
+
σ

(p)
rr − σ

(p)
θθ

r
= 0. (5.9)

The boundary conditions are

σ(p)
rr (a) = −P (t), (5.10)

σ
(p)
rθ (a) = 0, (5.11)

[σrr]
r=c+
r=c− = 0, (5.12)

[u̇]r=c+
r=c− = 0, (5.13)

[u]r=c+
r=c− = 0. (5.14)

We can immediately solve for the stresses and see that the nonzero components of the

plastic stress tensor are

σ(p)
rr = −P (t) + σY log

(r
a

)
, (5.15)

σ
(p)
θθ = −P (t) + σY

(
log

(r
a

)
+ 1

)
. (5.16)

Before looking at the flow law, we need to gain some information from the elastic region.

5.1.2.2 Elastic Region

In the elastic region r > c(t), we again solve the quasistatic versions of (B.1)-(B.2). Apart

from the continuity conditions (5.12)-(5.14), we impose zero stress at infinity. Solving the
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equilibrium equations, we obtain the usual Lamé solution

u(e) = Ar +
B

r
, (5.17)

with corresponding nonzero components of stress

σ(e)
rr = 2(λ+ µ)A− 2µB

r2
, (5.18)

σ
(e)
θθ = 2(λ+ µ)A+

2µB

r2
. (5.19)

Use of the boundary conditions gives us A = 0, B = σY c(t)2

4µ
and hence

u(e) =
σY c(t)

2

4µr
, (5.20)

σ(e)
rr = −σY c(t)

2

2r2
, (5.21)

σ
(e)
θθ =

σY c(t)
2

2r2
. (5.22)

Note that continuity of stress also allows us to express the position of the free boundary

r = c(t) in terms of the inflation pressure P (t), namely1

c(t) = a exp

(
P (t)

σY

− 1

2

)
. (5.23)

5.1.2.3 Flow law in plastic region

We can now use the flow law (5.7) to calculate the plastic velocities and the associated

displacement. The deviatoric stresses are given as

σ′rr = Λ
∂u̇

∂r
, (5.24)

σ′θθ = Λ
u̇

r
. (5.25)

The hydrostatic pressure is

p = −1

2
(σ(p)

rr + σ
(p)
θθ ). (5.26)

Using the flow law (5.7), mass conservation (5.8) and the yield condition in the form

σ′θθ − σ′rr = σY , (5.27)

we arrive at an explicit expression for Λ, given in terms of the radial velocity:

Λ
u̇

r
=
σY

2
. (5.28)

Note that in the expansion phase, we expect u̇ > 0 for a physical solution and so Λ > 0.

This will be shown shortly. We also note that the characteristics of the mass conservation

(5.8) are r = constant and t = constant, and so we can visualise the expansion phase for

the plastic displacements in the r − t plane, shown in Fig. 5.2.

1Normally, when doing a finite gun-barrel expansion model, one would get a transcendental equation
for the position of the free boundary, c(t).
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Figure 5.2: An r−t graph showing elastic and plastic regions for expansion of a gun-barrel

for some applied pressure P (t). The inner surface of the gun-barrel yields at time t = tY .

Integrating the mass equation (5.8) with respect to r, the radial velocity in the plastic

region is

u̇(p) =
D(t)

r
. (5.29)

We now integrate this equation with respect to time between the time when the material

was first plastic, c−1(r), and the current time, t, to arrive at

u(p) =
1

r

∫ t

c−1(r)

D(τ)dτ + f(r), (5.30)

for some function f(r), which will be determined by using continuity of u on r = c(t).

The velocity of the elastic part on the boundary c(t) is given from (5.20) as

u̇(e)(r) =
σY cċ

2µr
, (5.31)

which fixes

D(t) =
σY

4µ

d

dt
(c2). (5.32)

This is positive for Ṗ > 0 and so both u̇ and Λ are strictly positive in the expansion

phase, as expected. Continuing with the analysis with knowledge of D(t), we obtain

u(p) =
σY

4µr
(c(t)2 − r2) + f(r). (5.33)

Finally, using continuity of u across r = c(t) we see that

f(c(t)) = u(e)(c(t)) =
σY c(t)

4µ
, (5.34)

thus

u(p) =
σY

4µr
(c2 − r2) +

σY r

4µ
=
σY c

2

4µr
= u(e). (5.35)
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From the expression for the radial plastic velocity, we see that there is only plastic

‘flow’ when the free boundary r = c(t) is moving. This will only happen (when talking

about expansion) when the cavity pressure is increasing. This is intuitively obvious, as

we have imposed conservation of mass along with radial symmetry. We might expect to

get some plastic flow in the azimuthal direction for fixed cavity pressure if our symmetry

restriction is relaxed.

5.1.3 Simple plastic contraction with no residual stress

We now release the cavity pressure gradually for the previous elastic-plastic model. Sup-

pose the cavity pressure reached P∗ > σY /2 at time t∗, say, and let c∗ = c(t∗). If we naively

apply the flow-law and assume that the material in r < c∗ is still behaving plastically, we

would see that the Lagrange multiplier Λ becomes infinite when u̇ = 0. Furthermore, in a

similar manner to the expansion phase, we would easily find that, using incompressibility,

the radial plastic flow is

u̇ =
σY c̃

2µr

dc̃

dt
, (5.36)

where c̃ is the new position of the elastic-plastic boundary, given by

c̃ = a exp

(
P̃

σY

− 1

2

)
. (5.37)

Here P̃ is the decreasing cavity pressure, satisfying 0 ≤ P̃ ≤ P∗ = P̃ (t∗) = P (t∗). Hence

c̃ is decreasing, so that u̇ < 0 for strictly decreasing pressure. Using the flow law and

incompressibility,

Λ =
σY

u̇
r
− ∂u̇

∂r

=
σY µr

2

c̃ ˙̃c
< 0. (5.38)

This is unphysical (equivalent to a negative viscosity when modelling a viscous fluid), and

so this model for ‘plastic contraction’ is incorrect. This observation, in addition to the

fact that plastic strain is not recoverable, suggests that we need some condition which

allows us to “lock in” the plastic stress and displacement. It is not immediately obvious

how we do this, as there are various possibilities.

5.1.4 A possible model for cavity-contraction permitting a resid-

ual stress

At first sight, it might seem that we need to proceed in a manner similar to a melding or

welding process, where the elastic-plastic boundary is analogous to a solid-liquid bound-

ary that represents a melting-setting front. To model a liquid material setting to form
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a solid, one can consider the equations of hypo-thermo-elasticity2[33]. These equations

are, basically, the time derivatives of the thermoelasticity equations. The boundary con-

ditions on the setting front that one uses and, indeed, expects are continuity of velocity,

displacement, a Stefan condition and continuity of normal stress. However, by integrating

the elasticity equations with respect to time, we gain a new unknown function of space

for which we need another boundary condition. This function (equivalent to our locked

in stress) is determined by arguing that the stress at the front is purely hydrostatic, so

the whole stress tensor is continuous. However, in doing the elastic-plastic problem, we

already know that the whole stress tensor is continuous as continuity of normal stress and

the Tresca yield condition automatically give us continuity of the hoop stress and so we

must consider a different condition or idea.

One obvious approach is to divide the problem into five different regions, shown in Fig.

5.3 and permit the possibility of locking in stress from the plastic region during inflation.

We shall see that this approach fails, but give the analysis to see why it is incorrect. In
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Figure 5.3: A schematic r− t graph showing elastic and plastic regions for expansion and

a possible idea for contraction of a gun-barrel for some applied pressure P (t).

this set-up, regions I and II are those already considered in the expansion phase. Region

III is a new plastic region; region IV is an elastic region in which there is a residual plastic

stress and displacement; region V is elastic and knows nothing of the initial plasticity

in r < c∗. The boundary conditions are continuity of total normal displacement, total

2Hypoelasticity models are used to model nonlinear stress-strain relations where the strain is infinites-
imal. Essentially, the plastic flow law of an elastic-plastic material is replaced by a nonlinear elastic law
in this regime. The ‘thermo’ part just refers to the usual temperature dependence in thermoelasticity.
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normal stress and of normal velocity between these regions.

Region III

Applying the plasticity equations in region III, we get the ‘usual’ solution in terms of

logarithm and the inflation pressure, P̃ , thus

σ(p)
rr = −P̃ + σY log

(r
a

)
, (5.39)

σ
(p)
θθ = −P̃ + σY

(
1 + log

(r
a

))
. (5.40)

The radial velocity is, by incompressibility,

u̇ =
D̃(t)

r
, (5.41)

for some D̃(t), determined by matching over the elastic-plastic boundary r = c̃(t) into

region III.

Region IV

Region IV is the elastic region confining the plastic region III. The difference between

this region and region II is that the initial state is now unknown in advance. Thus we

try splitting up the displacement in region IV into an elastic part and a “locked-in”,

spatially-dependent plastic part,

u(r, t) = up(r) + ue(r, t). (5.42)

We decompose the stress in the same manner. The residual part of the displacement is

the displacement when the material was last plastic,

up(r) = u(p)(r, c̃−1(r)), (5.43)

with corresponding residual stresses

σp
rr(r) = −P̃ (c̃−1(r)) + σY log

(r
a

)
, (5.44)

σp
θθ(r) = −P̃ (c̃−1(r)) + σY

(
1 + log

(r
a

))
. (5.45)

The elastic part of the stresses and displacement are the classical Lamé solutions, thus

ue(r, t) = F̃ r +
G̃

r
, (5.46)

σe
rr = 2(λ+ µ)F̃ − 2µG̃

r2
, (5.47)

σe
θθ = 2(λ+ µ)F̃ +

2µG̃

r2
, (5.48)
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for unknown constants F̃ and G̃. Now, on the boundary r = c̃(t), the total stress must

satisfy the yield condition. Hence

σe
θθ − σe

rr = σY − (σp
θθ − σp

rr) = 0, (5.49)

and so G̃ = 0 and the total stress satisfies σθθ − σrr = σY everywhere in region IV. We

can also use continuity of (total) σrr and (total) u over r = c̃(t), giving the boundary

conditions

ue(c̃(t), t) = σe
rr(c̃(t), t) = 0. (5.50)

Hence F̃ = 0, and so the elastic part in region IV is zero. This means that all of the

material in this region has zero velocity, and thus applying continuity of velocity into

region III gives, from (5.41), that D̃(t) = 0 and hence the velocity in the plastic region

III is zero. The flow law and yield condition lead to the expression (5.38), from which

we conclude that Λ is infinite (equivalent to an infinite viscosity if we were considering

a viscous fluid). This is our contradiction. Furthermore, it suggests that the material

should be treated as elastic unless we are forced to do otherwise by the yield condition,

and so we now consider elastic contraction with residual stresses from plastic expansion.

5.1.5 “Elastic contraction”

We wish to write down a model in which the plastic stress is locked in immediately after

the elastic-plastic free boundary has passed through it. This is perhaps best visualised

by supposing that we increase the cavity pressure beyond the pressure needed to yield

the material, and then hold it constant. Whilst the pressure is constant, the material

in the plastic region is static. Hence, it will effectively behave like an elastic material if

the pressure is relaxed, with an initial state of stress given by the plastic stress we had

from expansion. We will term this material as plasticised, as it was at one time a plastic,

but on contraction, is elastic. This is described for a finite gun-barrel in [12]. Indeed, at

t = t∗, the information that pressure is decreasing is carried along the horizontal constant

t characteristics. This suggests that the elastic-plastic boundary c(t) immediately goes

back to zero.

Thus, we once more assume that the the cavity pressure is increased up to a pressure

P = P∗ >
σY

2
at time t∗ with corresponding “elastic-plastic boundary” at c∗ = c(t∗).

We then slowly release the pressure. For the moment, we assume that the material only

behaves elastically when the pressure is released. Using linearity of the stresses, the

solution in r ≥ c∗ is

σrr = −σY c
2
∗

2r2
+
a2(P∗ − P̃ )

r2
, (5.51)

σθθ =
σY c

2
∗

2r2
− a2(P∗ − P̃ )

r2
. (5.52)
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with the same notation as in the previous section. The corresponding solution for the

stresses in a < r < c∗ is

σrr = σY

(
log

r

c∗
− 1

2

)
+
a2(P∗ − P̃ )

r2
, (5.53)

σθθ = σY

(
log

r

c∗
+

1

2

)
− a2(P∗ − P̃ )

r2
. (5.54)

The first term is the solution for the stresses from the elastic-plastic expansion, whereas

the second term is the classical Lamé solution for the contraction. Similarly for r ≥ c∗, the

first terms in (5.51)-(5.52) can be regarded as the elastic response to the residual plastic

stress. When the internal cavity pressure P̃ reaches zero, we thus obtain the residual

stresses. When this happens, there will be a corresponding residual displacement. We

can write down an expression for the displacement using linearity of the displacements

from expansion/contraction. Hence

u =
σY c

2
∗

4µr
− a2(P∗ − P̃ (t))

2µr
. (5.55)

This will hold everywhere, as the solution for the displacements is the same in both elastic

and plastic regions during expansion. Rewriting c∗ in terms of P∗ via (5.23), the final

residual displacement is given by

ures =
σY a

4µ

(
exp

(
2P∗
σY

− 1

)
− 2P∗

σY

)
. (5.56)

5.1.5.1 A note on incremental expansion

We have just argued that the material should be considered as elastic unless the yield

condition dictates otherwise. We have shown that this results in a consistent solution

when considering elastic-plastic expansion followed by an elastic contraction. In this brief

section, we will show that our model for expansion in §5.1.2 is consistent within this

framework. We thus suppose that we increase the cavity pressure up to a constant P∗,

say, where P∗ > σY , with corresponding elastic-plastic boundary c∗. The material is thus

plasticised in a < r < c∗. We then hold the pressure constant, before increasing it again

to P∗+ P̄ . We suppose, for a contradiction, that the plastic stress we had before is locked

in, and all of the applied stress contributes to an elastic response, i.e.

σrr =

{
σp

rr(r) + σ
(e)
rr (r, t) a ≤ r ≤ c∗,

−σY c2∗
4µr

+ σ
(e)
rr (r, t) r ≥ c∗.

, (5.57)

with similar expressions for σθθ and u. Note that the elastic response is the same for

a < r < c∗ and r > c∗ as it satisfies the same equations and both displacement and
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normal stress are continuous over r = c∗. Using bounded stress at infinity and continuity

of normal stress and displacement over r = c∗, we thus obtain the classical Lamé solution

σ(e)
rr = −a

2P̄

r2
, (5.58)

which results in

σθθ − σrr =

{
σY + 2a2

r2 P̄ a ≤ r ≤ c∗,
σY c2∗

r2 + 2a2

r2 r ≥ c∗.
. (5.59)

In r < (c2∗ + 2a2/σY )
1
2 , the yield condition is exceeded (giving us our contradiction), and

so we must treat this region as plastic rather than elastic. This will modify the elastic

response, so that we need to consider where the yield condition is exactly met given an

inner plastic solution, which will then determine the new elastic-plastic boundary, exactly

as we did in §5.1.2. Iteration of this procedure for increasing P gives us the position of

the elastic-plastic boundary at time t.

This analysis may seem trivially obvious given the work of the previous section. How-

ever, we shall see in §5.4 a more complicated situation of which this trivial analysis is the

simplest example.

5.1.6 Elastic-plastic contraction

The model for elastic contraction in the previous section is not the end of the story, as

we have assumed that the material will always behave elastically when the pressure is

released. This may not necessarily be true, as indicated by the expression

σθθ − σrr =

{
σY c2∗

r2 − 2a2(P∗−P̃ )
r2 r ≥ c∗,

σY − 2a2(P∗−P̃ )
r2 a < r ≤ c∗.

(5.60)

Clearly, if P∗ is suitably large, the yield condition |σθθ − σrr| = σY can again be satisfied

as P̃ decreases to zero. As the maximum of |σθθ − σrr| occurs on the inner surface r = a,

the material will again yield on the inner surface. Some quick algebra reveals that

P∗ − P̃ > σY ⇒ σθθ − σrr < −σY . (5.61)

Thus, as P̃ ∈ (0, P∗), the material re-yields3 when P∗ ≥ σY at time t = tRY , say, when

P̃ = P∗−σY . In such a case, we will get another plastic region once P̃ decreases sufficiently

far enough. Hence the previous analysis gives us the solution for P∗ < σY , whereas we

need to consider a more complicated set-up for P∗ > σY . We denote the new elastic-

plastic boundary by r = d(t). This is shown graphically in Fig. 5.4. Regions I and II are

3This is sometimes called reverse yielding, as the yield condition takes the opposite sign to the normal
one.
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Figure 5.4: An r−t graph showing elastic and plastic regions for expansion and contraction

of a gun-barrel for some applied pressure P (t). The inner surface yields once on expansion,

then again when the cavity pressure is being decreased.

just the usual elastic and plastic regions during expansion as in §5.1.1. Region III is the

region that now has residual plastic stresses locked in, over which we superimpose elastic

stresses and displacements, as in (5.51)-(5.52). Region IV is, and always has been, elastic

and so will have some classic Lamé solution. Region V is the new plastic region, with the

reference stress state including the locked-in plastic stress from expansion.

In order to calculate the stresses and displacements in each region, we split the to-

tal stress into two components, one arising solely from the expansion and one from the

contraction,

σ = σexp + σcon. (5.62)

In the plastic region V, the total stress satisfies σθθ − σrr = −σY whilst the locked in

component from plastic expansion must satisfy σexp
θθ − σexp

rr = σY . Hence the new pseudo-

yield condition for σcon is

σcon
θθ − σcon

rr = −2σY . (5.63)

Using the boundary condition σrr(a) = −P̃ for the total stress, and “initial” condition

σexp
rr (a) = −P∗ at time t∗, we see that

σcon
rr (a) = −P̃ (t) + P∗. (5.64)

Treating −2σY as some kind of pseudo-yield stress, the stresses in the plastic region are
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given by

σcon
rr = −P̃ (t) + P∗ − 2σY log

(r
a

)
, (5.65)

σcon
θθ = −P̃ (t) + P∗ − 2σY

(
log

(r
a

)
+ 1

)
. (5.66)

Region III should really be subdivided further into two regions. Firstly, for t∗ <

t < tRY , we recover the stresses in (5.51)-(5.54) with the corresponding displacement

(5.52). For t > tRY , we have a new elastic-plastic boundary, r = d(t), to worry about.

For r > d(t), the material is behaving as an elastic, some with locked in plastic stress

(d(t) < r < c∗) and some without (r > c∗). The stress components purely from the

contraction phase are again given by Lamé’s solution (applying zero stress at infinity), so

σcon
rr =

σY d(t)
2

r2
, (5.67)

σcon
θθ = −σY d(t)

2

r2
. (5.68)

Continuity of the total normal stress σrr over r = d(t) (and hence of σθθ using the yield

condition) and continuity of the locked-in components of the stress (from the expansion

phase) tells us that σcon must be continuous over r = d(t), and so we can solve for d(t),

namely

d(t) = a exp

(
−P̃ + P∗

2σY

− 1

2

)
. (5.69)

From this, we see that, as expected, the position of the free boundary d(t) increases as

the cavity pressure, P̃ , decreases from P∗ to zero. Note that when the cavity pressure, P̃ ,

returns to zero, the final location of the boundary is

df = a exp

(
P∗
2σY

− 1

2

)
< c∗. (5.70)

Using this expression for d(t), we can rewrite the stresses in a < r < d(t) in a simpler

form as

σcon
rr = σY

(
1 + log

(
d2

r2

))
, (5.71)

σcon
θθ = σY

(
−1 + log

(
d2

r2

))
. (5.72)

Armed with these formulae, we can now solve for the total stresses in each of the regions

in Fig. 5.4 in the contraction phase (namely a < r < d(t), d(t) < r < c∗ and r > c∗) using

linearity of the stresses. In the plastic region V for t > tRY (and automatically r < d(t)),
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the stresses are given by

σrr = −P̃ (t) + P∗ − 2σY log
(r
a

)
− P∗ + σY log

(r
a

)

= −P̃ (t)− σY log
(r
a

)
, (5.73)

σθθ = −P̃ (t) + P∗ − 2σY

(
log

(r
a

)
+ 1

)
− P∗ + σY

(
log

(r
a

)
+ 1

)

= −P̃ (t)− σY

(
log

(r
a

)
+ 1

)
. (5.74)

For the elastic part of region III with t > tRY , we have d(t) < r < c∗, and the stresses are

σrr =
σY d

2

r2
− P∗ + σY log

(r
a

)
, (5.75)

σθθ = −σY d
2

r2
− P∗ + σY

(
log

(r
a

)
+ 1

)
. (5.76)

With the obvious notation, the corresponding displacements are

u = uexp
(p) + ucon

(e)

=
σY

4µr
(c2∗ − 2d(t)2). (5.77)

In the elastic region r > c∗ and t > tRY , the stresses are

σrr =
σY d(t)

2

r2
− σY c

2
∗

2r2
, (5.78)

σθθ = −σY d(t)
2

r2
+
σY c

2
∗

2r2
, (5.79)

with displacement

u =
σY

4µr

(
c2∗ − 2d(t)2

)
. (5.80)

This is the same as in (5.77) as the residual component of the stress is the same.

To work out the displacement in the plastic region V, we once more use a flow-law

and use incompressibility. Since we know that the locked-in part of the stress is already

continuous throughout this region, the incompressibility condition is, once more,

∂u̇con

∂r
+
u̇con

r
= 0 (5.81)

and so4

u̇con =
C(t)

r
. (5.82)

Considering (5.80), continuity of velocity over d(t) leads to

u̇con = −σY

2µ

d

dt
(d(t)2). (5.83)

4The Lagrange multiplier Λ is still positive, as effective yield stress and velocity are now both negative.
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Integrating with respect to time,

ucon =
1

r

∫ t

d−1(r)

−σY

2µ

d

dτ
(d(τ)2)dτ + g(r). (5.84)

By computing the integral and matching the displacements over d(t), we eventually end

up with a total displacement in the plastic region of

u =
σY

4µr
(c2∗ − 2d(t)2). (5.85)

Thus the residual displacement is given by

u(a) =
σY

4µa

(
c2∗ − 2d2

f

)

=
σY a

4µ

(
exp

(
2P∗
σY

− 1

)
− 2 exp

(
P∗
σY

− 1

))
. (5.86)

As P∗ > σY , this expression is positive.

A schematic diagram to summarise the solutions for stresses, displacements and ve-

locities for each of the regions during the expansion and contraction phases, equivalent

to Fig. 5.4, is shown in Fig. 5.5, with the physical effect on the gun-barrel shown in Fig.

5.6.

5.1.7 Cyclic loading-unloading

An interesting, albeit academic, observation from this analysis is what happens when if

the cavity pressure is increased and decreased several times. Suppose we increase the

cavity pressure past the yield condition and stop at some pressure P∗ at time t∗. If we

then decrease the pressure so that the material behaves only elastically, then increase back

up to P∗ at time t∗∗. As the expansion for t ∈ (t∗, t∗∗) is purely elastic, we recover the

elastic stress that has just been generated. Thus the stress tensor and and displacement is

just the same as it was at t = t∗, the system ‘forgetting’ about the motion for t ∈ (t∗, t∗∗).

Further, if we raise the pressure past P∗, the system ‘remembers’ where it was before, and

continues expanding plastically. Once again, this is best illustrated graphically, shown in

Fig. 5.7.
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2
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r2
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r2 − P∗ + σY (log r
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(
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Figure 5.5: An r − t graph showing the stresses and displacements when cavity pressure

is increased up to P∗ > σY
2 , leading elastic expansion of the medium ( 1O) and then elastic-

plastic expansion ( 2O). When the cavity pressure is decreased, the medium firstly contracts

elastically ( 3O). For P∗ > σY , there is elastic-plastic contraction until P̃ = 0 ( 4O). For any

P∗ > σY
2 , there are residual stresses and displacements.
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Figure 5.6: A schematic of gun-barrel expansion/contraction. The two different paths

depend on the relative sizes of P∗ and σY , thus allowing the possibility of the gun-barrel

reyielding on contraction.
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Figure 5.7: Four diagrams depicting different quantities during repeated expansion and

contraction of a gun-barrel, produced from MATLAB. We take µ = 1, σY = 1 and a = 1.

The colours correspond to the shaded regions in Fig. 5.6. Note that the maximum cavity

pressure is greater than the yield stress, and so the material re-yields on contraction.
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5.2 A nonlinear problem

Up until now, we have demonstrated that applying a radial pressure to a circular cavity

then releasing it again will lead to residual displacements and stresses if plastic flow has

occurred. These residual displacements are infinitesimal as a result of the linear-elasticity

theory used. It it likely that there are residual displacements and stresses if a finite-

displacement elasticity theory is used in place of the linear theory. Indeed, it was hinted

at the end of the last chapter that we may need to consider nonlinear elasticity, as linear

elasticity cannot be a good model for the opening of the initial cavity. Hence, using

the theory outlined in §1.2.1.5, we emulate the previous analysis using finite-(nonlinear)-

elasticity. We expect that the calculations will be significantly messier and may mean

that numerical solutions are needed to complete the problem. However, with the goal of

applying this paradigm to the shaped-charge problem, we only need to demonstrate that

the concept works for such a framework5.

Suppose a vector X in the undeformed reference frame is deformed to a vector x in

the deformed frame, so that x = X +u(X). In cylindrical polars, we let x = (r, θ, z) and

X = (R,Θ, Z). Noting that a small arc-length dS in undeformed coordinates satisfies

(dS)2 = (dR)2 + (rdΘ)2 + (dZ)2, (5.87)

we may write

u(X) =
(
u,
v

R
,w

)
, (5.88)

and relate the two frames via dx = FdX, where Fij = ∂xi

∂Xj
is the deformation tensor.

Owing to radial symmetry, we can write this tensor as

F =




1 + ∂u
∂R

0 0

0 1 + u
R

0

0 0 1


 . (5.89)

Note that F is diagonal, so that F = F T . Motivated by the fact that for radial displace-

ments in the linear elastic model considered previously it turns out that ∇.u = 0, we

assume for simplicity that the elastic material is incompressible. Thus detF = 1, and so

∂u

∂R
= − u

u+R
. (5.90)

5It is possible to modify the previous linear-elastic-perfect-plastic model by changing the inner bound-
ary condition to σrr(a+u(a)) = −P . In doing so, we would find similar explicit expressions for stress and
displacement, obtained by solving a quadratic. This analysis is not, however, consistent with the equa-
tions of linear elasticity, where we have already neglected quadratic terms, and so is not mathematically
justifiable.



5. Gun-barrel mechanics 94

We integrate this expression with respect to R to give

u = −R±
√
R2 + α(t), (5.91)

for some unknown α(t), to be determined. For large R,

u ∼ −R±R

(
1 +

α(t)

2R2

)
. (5.92)

Thus, for finite displacement at infinity, we take the positive root, giving

u(R, t) = −R +R

√
1 +

α(t)

R2
. (5.93)

We define the reference configuration by A ≤ R < ∞ and 0 ≤ Θ < 2π, with current

(Eulerian) configuration a ≤ r <∞ and 0 ≤ θ < 2π. By definition, r = u(R) +R, and so

R2 = r2 − α(t). (5.94)

This gives the displacement

u = r −
√
r2 − α. (5.95)

To determine the stresses, we need to introduce a strain-energy function, W . The simplest

such representation is to assume that the material is Neo-Hookean, hence

W =
µ

2
(I1 − 3), (5.96)

where I1, the first invariant of the Green’s deformation tensor C = F T F , is

I1 = tr(F T F ). (5.97)

We recall that the constraint of incompressibility leads us to express the first Piola-Kirchoff

stress tensor S as

S =
∂W

∂F
− p(F−1)T , (5.98)

where p, termed the hydrostatic pressure, is the Lagrange multiplier for the constraint.

The true stress tensor σ is given by

σ = SF T =
∂W

∂F
F − pI, (5.99)

where I is the identity tensor. Substituting for I1 and using tensor identities [39], we find

that

σ = µF 2 − pI. (5.100)

Thus

σrr = µ

(
1 +

∂u

∂R

)2

− p =
µR2

R2 + α
− p = µ

(
r2 − α

r2

)
− p, (5.101)

σθθ = µ
(
1 +

u

R

)2

− p = µ
(
1 +

α

R2

)
− p = µ

(
r2

r2 − α

)
− p. (5.102)
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5.2.1 Elastic expansion

We have seen that the elastic stresses are (5.101)-(5.102), with radial displacement (5.93).

The unknown pressure p(r, t) is determined by the usual quasistatic, radially-symmetric

force-balance equation
∂σrr

∂r
+
σrr − σθθ

r
= 0, (5.103)

whence

p(r, t) =
µ

2
log

(
r2

r2 − α(t)

)
− µα(t)

2r2
+ β(t), (5.104)

for some β(t). The unknown functions α(t) and β(t) are determined by imposing the

boundary conditions

σrr(a) = −P (t), (5.105)

where a = u(A) + A is unknown, and

σrr, σθθ → 0 as r →∞. (5.106)

The second boundary condition reveals that β(t) = µ, whilst the first tells us that the

function α(t) must satisfy some transcendental equation. Without writing this down, we

can still deduce, properties of A(t) from the large r expansion of σrr:

σrr = −µα(t)

2r2
+
µ

2
log

(
1− α(t)

r2

)
∼ −µα(t)

r2
. (5.107)

As we are applying a stress to the inner boundary, the elastic body must be in compression

(radially), hence α(t) > 0.

5.2.2 Elastic-plastic expansion

We now suppose that the inflation pressure is great enough to yield the material, resulting

in an inner plastic annulus surrounded by elastic material. With the usual analysis, the

plastic stresses and plastic radial velocity are

σ(p)
rr = −P (t) + σY log

(r
a

)
, (5.108)

σ
(p)
θθ = −P (t) + σY

(
1 + log

(r
a

))
, (5.109)

u̇(p)(r, t) =
D(t)

r
. (5.110)

Recall, once more, the general elastic solution given by (5.95), (5.101) and (5.102). Con-

tinuity of the radial velocity over the elastic-plastic boundary r = c(t) gives

D(t) =
α̇

2
√

1− α(t)
c(t)2

. (5.111)
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We now need to apply continuity of stress. We can do so without explicitly using the

expression (5.104) for p(r, t), as the material on the elastic-plastic boundary must satisfy

the yield condition. Thus,

µ

(
c(t)2

c(t)2 − α(t)
− c(t)2 − α(t)

c(t)2

)
= σY , (5.112)

eventually leading to

α(t) =


1 +

σY

2µ
−

√
1 +

σ2
Y

4µ2


 c(t)2, (5.113)

where the negative square root is taken so that D(t) is well-defined. Substituting into the

expression for D(t) yields

D(t) =
1 + σY /(2µ)−

√
1 + σ2

Y /(4µ
2)

2
√√

1 + σ2
Y /(4µ

2)− σY /(2µ)

d

dt
(c2) = E

d

dt
(c2), (5.114)

say, where E is defined in the obvious manner. We now directly match the radial stress

across the elastic-plastic boundary. Using (5.104),

−µ
2

log

(
c2

c2 − α

)
− µα

2c2
= −P + σY log

( c
a

)
. (5.115)

After substituting for α(t) from (5.113), we see that the left-hand side is independent of

c(t), and so

µ

2


log




√
1 +

σ2
Y

4µ2
− σY

2µ


− 1− σY

2µ
+

√
1 +

σ2
Y

4µ2


 + P − σY

2
= σY log

(
c(t)
a

)
, (5.116)

thus determining c(t) in terms of the unknown a = A + u(A), which is calculated by

evaluation of u(p)(a). To do so, we integrate the plastic velocity, giving

u(p) =

∫ t

c−1(r)

D(τ)

r
dτ + f(r) =

E

r
(c2 − r2) + f(r), (5.117)

where E is given in (5.114). To determine f(r), we use continuity of displacement on

r = c(t). Thus, substituting for α(t) in (5.95),

f(c(t)) = c(t)


1−




√
1 +

σ2
Y

4µ2
− σY

2µ




1
2


 . (5.118)

The plastic displacement can now be written

u(p)(r, t) =
Ec2

r
− Er + r


1−




√
1 +

σ2
Y

4µ2
− σY

2µ




1
2


 . (5.119)

Using a = A+ u(a), we can calculate u(a), and substitute into (5.115). This results in a

quadratic for c(t). This can be solved to give a rather messy explicit expression for c(t)

and hence for the whole system.
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5.2.3 Contraction with no re-yielding

We now suppose that we have increased the cavity pressure to P∗ at time t∗, say, and

now slowly decrease it. We firstly assume that the inner boundary does not reyield, as in

§5.1.5. We will use tildes to denote the particular variables with respect to the reference

state at time t∗, and start by decomposing the displacements as

u(r, t) =

{
up

res(r) + ũe(r, t) ã < r ≤ c∗,

ue
res(r) + ũe(r, t) r ≥ c∗.

(5.120)

We denote the position of the elastic-plastic boundary at time t∗ by c∗, and the position of

the inner boundary by ã = A+ũ(A). The residual displacement up
res(r) is the displacement

when the material was last plastic, given by (5.119) (with c = c∗), whereas the elastic

response to the residual displacement is given by (5.93), where α(t∗) = α∗, say, is known

in terms of c∗. The new component of displacement ũe(r, t) is the displacement relative

to the new reference state of stress and displacement at time t∗, and hence

ũe(r, t) = r −
√
r2 − α̃(t). (5.121)

We decompose the stresses in the same manner, so that the locked in radial stresses are

σrr(r, t) =

{
−P∗ + σY log( r

a∗
) + σ̃e

rr(r, t) ã < r ≤ c∗,

−µ
2
(log( r2

r2−α∗
) + α∗

r2 ) + σ̃e
rr(r, t) r ≥ c∗.

(5.122)

Similar expressions for σθθ are also easy to write down. The unknown part of the stress

from contraction σe
rr(r, t) must satisfy (c.f. (5.107))

σ̃e
rr(r, t) = −µ

2

(
log

(
r2

r2 − α̃(t)

)
+
α̃(t)

r2

)
. (5.123)

To determine α̃(t), we use the boundary condition (for total stress)

σrr(ã, t) = −P̃ (t), (5.124)

or, in terms of the locked in plastic stress and recoverable elastic part from contraction,

−P∗ + σ̃e
rr(ã, t) = −P̃ (t). (5.125)

Thus

σ̃e
rr(ã, t) = −P̃ (t) + P∗. (5.126)

This gives an implicit expression for α̃(t) in terms of ã,

−P̃ + P∗ = −µ
2

(
log

(
ã2

ã2 − α̃(t)

)
+
α̃(t)

ã2

)
, (5.127)

resulting in two equations for unknowns α̃(t) and ã which have to be solved numerically.

Finally, the residual displacement at the cavity when the applied pressure returns to zero

(and residual stresses) can be calculated by setting P̃ = 0.
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5.2.4 Contraction with further plastic flow

As was the case with the linear theory, we observe that the material can yield again on

contraction. This is apparent when considering the difference of total stresses on the

cavity boundary:

σθθ − σrr = (σp
θθ − σp

rr) + (σ̃e
θθ − σ̃e

rr) (5.128)

= σY − µα̃

(
1

r2 − α̃
+

1

r2

)
. (5.129)

Hence, if α̃ is sufficiently large enough, we can have σθθ − σrr ≤ −σY , leading to further

yielding. Based on our analysis with linear elasticity and on (5.127), we see that α̃

depends on P∗, and so it is again likely that the criterion for reyielding is directly related

to a critical value of P∗ (c.f. (5.61)). Hence, we have a model similar to that of Fig.

5.5. To write down a full solution, we firstly decompose the stresses and displacement in

a manner similar to (5.120). After this point, the material re-yields at some P̃ , and we

need to consider solutions of the form

u(r, t) =





up
res(r) + ũp(r, t) ã ≤ r ≤ d(t),

up
res(r) + ũe(r, t) d(t) ≤ r ≤ c∗,

ue
res(r) + ũe(r, t) r > c∗.

(5.130)

with corresponding expressions for the stresses. The new plastic part ũp will have a form

similar to (5.119), with associated stresses

σ̃p
rr = P∗ − P̃ (t) + σY log

(r
ã

)
, (5.131)

σ̃p
θθ = P∗ − P̃ (t) + σY

(
1 + log

(r
ã

))
. (5.132)

The elastic part of the displacement ũe will have the form of (5.93), with stresses (5.101)-

(5.102). The boundary conditions are6 continuity of total stress and total displacement

over the elastic-plastic boundary r = d(t), continuity of total stress and total displacement

over r = c∗ and zero stress at infinity. Some of these quantities can be calculated explicitly,

whereas others have to be evaluated numerically. We omit this analysis, as it is just an

exercise in algebra.

5.2.5 Comment

The crux of this section is that a perfect-plastic-nonlinear-elastic model will also lead to

residual displacements and stresses after plastic expansion. In the linear model, these

displacements were (inherently) infinitesimal; we have shown that the idea still works for

finite-displacement elasticity.

6We have implicitly used σrr(ã) in the expressions for σ̃p
rr and σ̃p

θθ.
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5.3 Application to shaped-charge penetration

We have seen that both the linear theory and nonlinear theory predict residual stresses

and displacements after plastic flow. Recall the residual displacement predicted by the

linear elastic model, detailed in equations (5.56) and (5.86). We note that, even though

the predicted residual displacement is small in the linear theory, it may be significant if the

plastic region is large enough, since a displacement of O (ε) at r = c∗ gives a displacement

of O (εc∗/a) at r = a. Explicitly, we need c∗ ∼ a(µ/σY )
1
2 for the residual displacement

to be O (a). Using P∗ ∼ 1
2
ρt(V − U)2, order of magnitude estimates for the residual

displacement in equation (5.56) give unfeasibly large displacements (as 2P∗/σY ∼ 100).

However, we must remember that this estimate is based on the maximum pressure in the

tip, where there is a significant axial flow. Hence, we expect that the residual displacement

will always be overestimated if we use the maximum tip pressure. A detailed analysis of the

tip should provide an effective pressure P∗, thus furnishing us with residual displacements

and stresses and so giving an estimate for the cavity width.

We can now develop a model in which the cavity is considered as a series of two-

dimensional radially-symmetric gun-barrel problems, permitting residual stresses and dis-

placements. We model the jet as a pressure pulse moving from the tip to the rear of the

cavity. Each point in the target will thus experience an increase then decrease in cavity

pressure, resulting in residual displacements along the length of the cavity. In reality,

the pressure profile is a function of both position and time, but, in order to illustrate a

concept, we suppose that the pressure profile is a travelling-wave. This model thus con-

tains an extra boundary between the plasticised region (in which the applied pressure is

decreasing) and the plastic region (positive applied pressure gradient). This boundary is

a straight line, as we are effectively stitching two-dimensional slices together. We denote

this boundary by z = z∗ and provide a schematic of the model in Fig. 5.8. With the

pressure profile and z∗ given, we can write down the solution for z < z∗ based on previous

analysis, as all the material here is either elastic, plasticised-elastic, or plasticised-plastic

(if the material reyields), with known P∗. We observe that this model says that all of

the important mechanics takes place in the tip region where the plastic flow takes place.

The main problem with the model is that the tip region is not slender, and so cannot

be considered as a series of two-dimensional slices. Indeed, we expect that there will be

significant axial plastic flow near the tip. However, as we shall see in Chapter 6, this

model serves as a simple template for a far more complicated model.
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P = P∗

z z = z∗

P

(a) A possible pressure distribution along the
cavity. In the rest frame, this pulse moves
moves into the target along the z−axis, leav-
ing plasticised material in its wake.

z = z∗
Elastic material

Plastic material
Plasticised material

(b) A diagram showing plastic and plasticised
regions in the target, corresponding to the
pressure pulse in Fig. 5.8(a). Note the bound-
ary between plastic and plasticised region at
z = z∗, corresponding to the peak pressure .

Figure 5.8: Two schematic diagrams for modelling the penetration as a series of two-

dimensional gun-barrel problems.

5.3.1 Remarks

Normally, linear elasticity is used to model metal solids, as, if the applied traction is

sufficient, the metal will become plastic before nonlinear elasticity becomes important. In

the previous sections, we have discussed two possible mechanisms to explain the presence

of the bowed edges (evident in Fig. 4.5) and the size of the cavity. Either they are

a consequence of residual displacements from linear elasticity theory, in which case the

plastic region must be large enough so that the elastic residual displacements are O (a), or

they are a result of nonlinear residual displacements, in which case a smaller plastic region

is permissible. It is possible that a combination of nonlinear effects and the high pressure

in the jet are responsible for the initial opening of the cavity, before the extreme pressure

of the jet creates a large plastic region hence resulting in observable bowing via residual

displacements. So far, the notion of residual stresses and displacements has only been

applied to the problem of expansion/contraction of a two-dimensional radially-symmetric

gun-barrel. Our analysis shows that it is crucial to include these effects when developing

a full elastic-plastic model for the penetration. This will be discussed in Chapter 6.

Before doing so, we present more preliminary work on the gun-barrel as a paradigm to

tip-modelling.
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5.4 An asymmetric perturbation to the gun-barrel

problem

In order to model the tip, we wish to model the response of an elastic-plastic material to

a stress applied in a cavity with known geometry. This stress is mainly directed along

the z−axis. To gain some intuition about the response of the material to such a force, we

begin by considering the simplest non-symmetric configuration by perturbing the stress

applied on the inner surface for the classical gun-barrel expansion problem (as discussed

in §5.1.2). We assume that the gun-barrel has already yielded under application of a

radially-symmetric cavity pressure, which results in a plastic annulus. We now perturb

the cavity pressure, applying the following boundary conditions:

σrr(a) = −P (t)− εY (θ, t), (5.133)

σrθ(a) = 0. (5.134)

Here, we assume that the prescribed function Y (t, θ) is 2π-periodic and non-negative.

The latter means that the applied pressure is decreased nowhere around the cavity, and

so the initially plastic material will still behave plastically (recall the trivial example in

§5.1.5.1). Later, we will permit the sign of Y (t, θ) to depend on θ, which will result in a

plasticised region with residual stresses and a plastic region (still flowing). We again use

the linear theory so that the boundary conditions are applied at r = a. Ideally, we would

like to apply an O (1)-periodic perturbation. In doing so, we would find that a general

solution for the stress field is possible, although we would also discover that the position

of the elastic-plastic boundary must satisfy a transcendental equation and so the complete

problem can only be solved numerically. This will become apparent in solving the simpler

problem which has boundary conditions (5.133)-(5.134). To avoid confusion, we will

consistently use superscripts e and p to denote ‘elastic’ and ‘plastic’, respectively, and

superscripts 0 and 1 to refer to leading-order and first order corrections in an asymptotic

expansion, respectively, so that, for example, the principal radial component of the plastic

total stress will be written

σp
rr = σp0

rr + εσp1
rr +O (

ε2
)
. (5.135)

We start the analysis with the plastic region. As usual, we have the quasistatic stress

balances in the plastic region, written in terms of the total stresses as

∂σp
rr

∂r
+

1

r

∂σp
rθ

∂θ
+
σp

rr − σp
θθ

r
= 0, (5.136)

∂σp
rθ

∂r
+

1

r

∂σp
θθ

∂θ
+

2σp
rθ

r
= 0. (5.137)

Now, given the form of the boundary condition (5.133), we might expect that a nonzero

σrθ will affect the principal stresses and hence the yield condition. We thus consider the
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eigenvalues of the stress tensor by calculating

0 = det(λI − σ) =

∣∣∣∣∣
λ− σp

rr −εσp1
rθ − . . .

−εσp1
rθ − . . . λ− σp

θθ

∣∣∣∣∣ , (5.138)

and discover that they are given by

λ =
σp

rr + σp
θθ

2
± σp

rr − σp
θθ

2
+O (

ε2
)
. (5.139)

Hence the principal stresses are still σp
rr and σp

θθ (up to O (ε2)) and so the yield condition

is unchanged as

σp
θθ − σp

rr = σY . (5.140)

The final set of equations for the plastic region are given by the incompressible flow law,

σp
ij
′ = Λε̇p

ij. (5.141)

Meanwhile, in the elastic region, the stresses must satisfy the equilibrium equations

∂σe
rr

∂r
+

1

r

∂σe
rθ

∂θ
+
σe

rr − σe
θθ

r
= 0, (5.142)

∂σe
rθ

∂r
+

1

r

∂σe
θθ

∂θ
+

2σe
rθ

r
= 0. (5.143)

The elastic displacements ue = (ue, ve) are given via the relations

σe
rr = (λ+ 2µ)

∂ue

∂r
+ λ

(
ue

r
+

1

r

∂ve

∂θ

)
, (5.144)

σe
θθ = λ

∂ue

∂r
+ (λ+ 2µ)

(
ue

r
+

1

r

∂ve

∂θ

)
, (5.145)

σe
rθ = µ

(
∂ve

∂r
− ve

r
+

1

r

∂ue

∂θ

)
. (5.146)

Clearly, the leading-order solution is unchanged by the small perturbation, and so we can

write the elastic-plastic boundary as r = c0(t) + εc1(θ, t). The boundary conditions over

this boundary are continuity of traction, velocity and displacement. The elastic stress

must also satisfy the yield condition (5.140) here. The other boundary conditions are

(5.133)-(5.134) and zero stress at infinity.

We expand the stresses, velocities and displacements in powers of ε and find that

the leading-order solution is unchanged from §5.1.2. The first-order correction is found

by considering a linear combination of separable solutions for the stresses, velocities and

displacements. Expanding the plastic stresses as

σp
rr = σp0

rr + εσp1
rr + . . . , (5.147)

σp
θθ = σp0

θθ + εσp1
θθ + . . . , (5.148)

σp
rθ = εσp1

rθ + . . . , (5.149)



5. Gun-barrel mechanics 103

we can apply the boundary condition σp1
rθ (a) = 0 and hence, omitting much of the analysis,

the plastic first-order corrections can be written as

σp1
rr = D0 +

(
log

r

a
+ 1

)
(
B1

r
cos θ − A1

r
sin θ)− 2A0θ (5.150)

+
∞∑

j=2

(
sin(

√
j2 − 1 log

r

a
) + cos(

√
j2 − 1 log

r

a
)
√

j2 − 1
)

(
Dj

jr
cos jθ − Cj

jr
sin jθ),

σp1
rθ = (A1 cos θ + B1 sin θ)

1
r

log
r

a
+ A0(1− a2

r2
) +

∞∑

j=2

1
r

sin(
√

j2 − 1 log
r

a
)(Cj cos jθ + Dj sin jθ),

(5.151)

where Aj, Bj, Cj, Dj are constants, and, using the yield condition, σp1
θθ = σp1

rr . We note, by

linearity, this expansion would be valid at leading order had we tried anO (1) perturbation

to the inner boundary condition instead of the current O (ε) perturbation, providing that

the condition σθθ > σzz > σrr is still satisfied.

We now prescribe particular expressions for Y (θ, t). We consider the following two

separable forms in the following two subsections:

� Y (θ, t) = (1 + cos θ)Q(t),

� Y (θ, t) = (1 + cosNθ)Q(t),

where Q(t) is an increasing function with dimensions of pressure and N is an integer

greater than unity.

5.4.1 Perturbation εY (θ, t) = ε(1+cos θ)Q(t) to the cavity pressure

For such a Y (θ, t), we know by symmetry that σp1
rr must be an even function of θ whereas

σp1
rθ must be an odd function of θ. Using orthogonality, the higher harmonics must vanish

and we reach the following solution for the total plastic stresses:

σp
rr = −P (t) + σY log

(r
a

)
− ε

aQ(t)

r
cos θ

(
1 + log

r

a

)
− εQ(t), (5.152)

σp
θθ = −P (t) + σY + σY log

(r
a

)
− ε

aQ(t)

r
cos θ

(
1 + log

r

a

)
− εQ(t), (5.153)

σp
rθ = −εQ(t)a

r
log

(r
a

)
sin θ. (5.154)

We also expand the O (ε) elastic stresses in cosine and sine series and exploit the

symmetry. After much tortuous algebra and writing Q for Q(t), we arrive at the following
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expressions:

σe
rr = −σY c2

0

2r2
−

(
c2
0 log c0

a

r3
+

3µ + 2λ

2(λ + 2µ)r
+

c2
0µ

2(λ + 2µ)r3

)
εaQ cos θ − c2

0

r2
εQ, (5.155)

σe
θθ =

σY c2
0

2r2
+

(
c2
0 log c0

a

r3
+

µ

2(λ + 2µ)r
+

c2
0µ

2(λ + 2µ)r3

)
εaQ cos θ +

c2
0

r2
εQ, (5.156)

σe
rθ = −

(
c2
0 log c0

a

r3
− µ

2(λ + 2µ)r
+

c2
0µ

2(λ + 2µ)r3

)
εaQ sin θ. (5.157)

The position of the elastic-plastic boundary is determined by knowledge that the elastic

stresses on this boundary must satisfy the Tresca yield condition, thus

c(θ, t) ∼ c0 +
aQ(t) cos θ

σY

(
3µ+ λ

2(λ+ 2µ)
+ log

(c0
a

))
ε+

Qc0
σY

ε

= c0 +
aQ cos θ

σY

(
µ

2(λ+ 2µ)
+

P

σY

)
ε+

Q(t)c0
σY

ε. (5.158)

We expand the elastic displacements in powers of ε, thus

u =
σY c

2
0

4µr
+ εue1(r, θ, t), (5.159)

v = εve1(r, θ, t). (5.160)

To solve for the O (ε) correction, we try for solutions of the form

ue1(r, θ, t) = E0(r, t) +
∞∑

j=1

(Ej(r, t) cos jθ + Fj(r, t) sin jθ), (5.161)

ve1(r, θ, t) = G0(r, t) +
∞∑

j=1

(Gj(r, t) cos jθ +Hj(r, t) sin jθ), (5.162)

for unknown functions of space and time, Ej(r, t), Fj(r, t), Gj(r, t), Hj(r, t). After even

more messy algebra involving the equations of equilibrium, the unknown functions can be

determined to give general solutions. Firstly, the θ−independent terms are given by

E0(r, t) = α0(t)r +
β0(t)

r
, (5.163)

G0(r, t) = γ0(t)r, (5.164)

for unknown temporal functions α0(t), β0(t); E1(r, t), F1(r, t), G1(r, t), H1(r, t) have the

form

α1(t) + β1(t) log r + γ1(t)r
2 +

δ1(t)

r2
, (5.165)

for different α1(t), β1(t), γ1(t), δ1(t); for j ≥ 2, Ej(r, t), Fj(r, t), Gj(r, t) and Hj(r, t) are of

the form

αj(t)r
j+1 + βj(t)r

j−1 +
γj(t)

rj+1
+
δj(t)

rj−1
, (5.166)
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again, for different αj(t), βj(t), γj(t) and δj(t). We substitute these expressions into the

equations (5.144)-(5.146). Exploiting the orthogonality of the cos jθ and sin jθ and match-

ing into the plastic region, we arrive at the expressions

ue1 =
(
−E1(t) +

aQ(λ + µ)
4µ(λ + 2µ)

− (3µ + λ)aQ log r

4µ(λ + 2µ)
+

aQc2
0

8r2

(
1

λ + 2µ
+

2 log c0
a

µ

))
cos θ

+F1(t) sin θ +
c2
0Q

2µr
, (5.167)

ve1 = F1(t) cos θ +
(

E1(t) +
(3µ + λ)aQ log r

4(λ + 2µ)µ
+

aQc2
0

8r2

(
1

λ + 2µ
+

2 log c0
a

µ

))
sin θ.

(5.168)

The significance of the unknown functions E1(t) and F1(t) can explained as follows. Con-

sider a small displacement given by

δr = F1(t) sin θ − E1(t) cos θ, (5.169)

rδθ = F1(t) cos θ + E1(t) sin θ. (5.170)

Writing x = r cos θ and y = r sin θ, we can write these small displacements in Cartesian

coordinates:

δx = δr cos θ − rδθ sin θ, (5.171)

δy = δr sin θ + rδθ cos θ. (5.172)

We thus substitute for δr and rδθ and discover that

δx = −E1(t), (5.173)

δy = F1(t). (5.174)

Hence, these terms represent a shift of origin, and so we set them to zero without loss of

generality. The O (ε) corrections are now given in the slightly simpler form

ue1 =
(

aQ(λ + µ)
4µ(λ + 2µ)

− (3µ + λ)aQ log r

4µ(λ + 2µ)
+

aQc2
0

8r2

(
1

λ + 2µ
+

2 log c0
a

µ

))
cos θ +

c2
0Q

2µr
, (5.175)

ve1 =
(

(3µ + λ)aQ log r

4µ(λ + 2µ)
+

aQc2
0

8r2

(
1

λ + 2µ
+

2 log c0
a

µ

))
sin θ. (5.176)

Note that these expressions contain logarithmic terms in r, which are clearly unbounded

as r → ∞. This implies that the expansion is not valid for large r, and that an outer

region is required for a full asymptotic solution.

We now solve for the plastic velocities and so expand

u̇p =
σY

4µr

d

dt
(c20) + εu̇p1, (5.177)

v̇p = 0 + εv̇p1, (5.178)
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where

u̇p1 = α(r) + β(r) cos θ + γ(r) sin θ, (5.179)

v̇p1 = κ(r) + χ(r) cos θ + ψ(r) sin θ, (5.180)

Λ(r, t) ∼ Λ0(r, t) + εΛ1(r, t) +O (
ε2

)
. (5.181)

In the usual manner, the plasticity equations are incompressibility, the Tresca yield con-

dition, the associated flow law, and knowledge of σp
rθ
′ via (5.154). Incompressibility and

the flow law hence give that the O (ε) corrections to the plastic velocities must satisfy

∂u̇p1

∂r
+
u̇p1

r
+

1

r

∂v̇p1

∂θ
= 0, (5.182)

Λ0

2

(
∂v̇p1

∂r
+

1

r

∂u̇p1

∂θ
− v̇p1

r

)
= −Q(t)a

r
log

(r
a

)
sin θ. (5.183)

Use of the yield condition merely determines Λ1(r, t). Substituting the expansions for the

velocities and using continuity of velocity over the elastic-plastic boundary, we immedi-

ately reach γ = κ = χ = 0. We also obtain

α(r) =
1

2µr

d

dt
(c20Q), (5.184)

β(r) = K(t) log
r

a
+ L(t) +

aQ

4µr2

d

dt
(c20)

(
log

r

a
+ 1

)
, (5.185)

ψ(r) = −K(t)− L(t)−K(t) log
r

a
+

aQ

4µr2

d

dt
(c20) log

r

a
, (5.186)

where K(t) and L(t) are unknown functions of time, which we now fully determine by

further utilising continuity of velocity over the elastic-plastic boundary. After much toil,

the remaining unknown functions can finally be calculated:

K(t) = −a
(
Q̇

4µ

(
1 + 2 log

(c0
a

))
+

Qċ0
2(λ+ 2µ)c0

)
, (5.187)

L(t) = aQ̇

(
2λ+ 3µ

8µ(λ+ 2µ)
+

log
(

c0
a

)

2µ

(
1 + log

(c0
a

))
− (3µ+ λ) log c0

4µ(λ+ 2µ)

)

+
aċ0Q

4c0(λ+ 2µ)

(
2 log

(c0
a

)
− λ

µ
− 1

)
. (5.188)

To visualise the flow, we nondimensionalise the velocities, scaling all stresses and Lamé

constants with σY , and lengthscales with a. The resultant plots are shown in Fig. 5.9.

As expected, the main difference to the purely radial solution of the earlier section is that

the elastic-plastic boundary is perturbed. Indeed, given the form of (5.158), we could

have noticed earlier that this boundary would be circular with centre to the right of the

origin. This solution is not very illustrative of material being ‘squeezed’ in the azimuthal
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direction as we had hoped. However, we do observe the elastic-plastic boundary being

displaced as a result of the perturbation. This is a consequence of the confinement from

the surrounding elastic material. The other possible boundary condition involves a cosNθ

term (for integer N ≥ 2), and so should yield more interesting results.

5.4.2 Perturbation εY (θ, t) = ε(1+cosNθ)Q(t), N ≥ 2 to the cavity

pressure

We can quickly write down the plastic stresses using orthogonality and (5.150)-(5.151) as

σp
rr = −P + σY log

(r

a

)
− εQ (5.189)

− εQa√
N2 − 1

(
sin

(√
N2 − 1 log

r

a

)
+ cos

(√
N2 − 1 log

r

a

)√
N2 − 1

) cosNθ

r
,

σp
θθ = −P + σY + σY log

(r

a

)
− εQ (5.190)

− εQa√
N2 − 1

(
sin

(√
N2 − 1 log

r

a

)
+ cos

(√
N2 − 1 log

r

a

)√
N2 − 1

) cosNθ

r
,

σp
rθ = −ε

QaN√
N2 − 1

sin
(√

N2 − 1 log
r

a

) sinNθ

r
, (5.191)

After a significant amount of tedious algebra on equations (5.161)-(5.162) and on the

equations of equilibrium, the solutions for the elastic stresses that decay for large r are

σe
rr = −σY c

2
0

2r2
+

(
(N + 2)α− β

r2

)
cosNθ

rN
ε− c20

r2
εQ, (5.192)

σe
θθ =

σY c
2
0

2r2
+

(
−(N − 2)α +

β

r2

)
cosNθ

rN
ε+

c20
r2
εQ, (5.193)

σe
rθ =

(
Nα− β

r2

)
sinNθ

rN
ε, (5.194)

where the unknown constants are determined by matching with the plastic region as

α =
cN−1
0 Qa

2

(√
N − 1
N + 1

sin
(√

N2 − 1 log
c0

a

)
− cos

(√
N2 − 1 log

c0

a

))
, (5.195)

β = cN+1
0

QaN

2

(√
N + 1
N − 1

sin
(√

N2 − 1 log
c0

a

)
− cos

(√
N2 − 1 log

c0

a

))
. (5.196)

The O (ε) correction to the position of the elastic-plastic boundary can now be calculated

by using the yield condition on c0 + εc1,

0 =

(
−2Nα +

2β

c20

)
cosNθ

cN0
− 2c1

c0
+

2Q

σY

, (5.197)
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Inner boundary

Elastic-plastic boundary

(a) A vector plot of velocity at t = 0.15s.

Inner boundary

Elastic-plastic boundary

(b) A vector plot of velocity at t = 0.44s.

Figure 5.9: Vector plots of the nondimensional velocity from MATLAB. The colouring

represents the magnitude of the velocity. The nondimensional parameter values used were

ε = 0.2, µ = 70, λ = 32, Q = 1+3t and P = 1
2 +3t. The elastic-plastic boundary is denoted

by the outer dotted black line.
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thus

c1(θ, t) =
NaQ

2σY

sin
(√

N2 − 1 log
c0
a

) (√
N + 1

N − 1
−

√
N − 1

N + 1

)
cosNθ +

Q(t)c0
σY

=
NaQ

σY

√
N2 − 1

sin
(√

N2 − 1 log
c0
a

)
cosNθ +

Q(t)c0
σY

. (5.198)

The O (ε) corrections to the elastic displacements corresponding to the stresses (5.192)-

(5.194) are

ue1 =
(

β

2µ(N + 1)rN+1
− α

2(N − 1)rN−1

(
2

λ + µ
+

N

µ

))
cosNθ +

c2
0Q

2µr
, (5.199)

ve1 =
(

β

2µ(N + 1)rN+1
+

α

2(N − 1)rN−1

(
2

λ + µ
− N − 2

µ

))
sinNθ. (5.200)

In deriving these expressions, we have implicitly set the linear coefficients of cos θ and

sin θ to zero, as before. In contrast to the earlier perturbed solution, these displacements

are valid for large r and tend to zero as r →∞.

To solve for the O (ε) corrections for the plastic velocities, we once again look for

cosine and sine series solutions. These expansions must satisfy

∂u̇p1

∂r
+

1

r

∂v̇p1

∂θ
+
u̇p1

r
= 0, (5.201)

and

Λ0

2

(
∂v̇p1

∂r
+

1

r

∂u̇p1

∂θ
− v̇p1

r

)
= − QaN√

N2 − 1

sin(
√
N2 − 1 log r

a
)

r
sinNθ, (5.202)

where

Λ0 =
µr2

c0ċ0
. (5.203)

Bearing in mind the matching that has to be done with the elastic region and the equations

that the velocities must satisfy, we can deduce that the only terms in the expansions will

be those terms involving cosNθ, sinNθ and an arbitrary function of r. Hence we may

write

ue1(r, θ) = α1(r) + β1(r) cosNθ + γ1(r) sinNθ, (5.204)

ve1(r, θ) = χ1(r) + η1(r) cosNθ + ν1(r) sinNθ. (5.205)

Further work reveals that α1(r) = 1
2µr

d
dt

(c20Q), γ1 = χ1 = η1 = 0, and β1 satisfies

β1(r) = C1 cos Θ(r) + C2 sin Θ(r) +
2c0ċ0QaN

2

µ(N2 − 1)
(sin Θ(r)I1(r)− cos Θ(r)I2(r)) , (5.206)

where C1 and C2 are unknown constants,

Θ(r) =
√
N2 − 1 log(r/a), (5.207)
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and the remaining functions are given by the following integrals:

I1(r) =

∫
cos Θ(r) sin Θ(r)

r3
dr, (5.208)

I2(r) =

∫
sin2 Θ(r)

r3
dr. (5.209)

Fortunately, these integrals can be easily computed, eventually giving the plastic velocities

as

u̇p1(r, θ) =
d
dt

(c20Q)

2µr
+

(
C1 cos Θ(r) + C2 sin Θ(r)

+
Qac0ċ0
2µr2

(
sin Θ(r)√
N2 − 1

+ cos Θ(r)

) )
cosNθ, (5.210)

v̇p1(r, θ) =

(
NQac0ċ0 sin Θ(r)

2
√
N2 − 1µr2

+
1

4N

(
(C1

√
N2 − 1− C2) sin Θ(r)

−(C1 + C2

√
N2 − 1) cos Θ(r)

))
sinNθ, (5.211)

where C1 and C2 are determined using continuity of velocity with equations (5.199)-

(5.200). We omit explicit expressions for these constants owing to their inherent com-

plexity.

A vector plot of the material velocity is shown in Fig. 5.10. This shows an important

difference in the shape of the elastic-plastic boundary. Furthermore, if demonstrates the

expected result that the velocity of the material is significantly greater in the vicinity of

where the material is being pushed harder. This disturbance has a much smaller effect

on the elastic region owing to the 1/rN−1 decay of the elastic displacements.

5.4.3 Remarks

Our principal objective in perturbing the inner boundary condition was to investigate

its effect on the plastic flow of the material. Sadly, this result was not realised as the

perturbation was not strong enough, although our results did show the effect of the

perturbation on the position of the free elastic-plastic boundary. This motivates modifying

the form of the boundary condition (5.133) to

σrr(a) = −P −Q(cosNθ + 1). (5.212)

Indeed, we can obtain the same general solutions for stresses and for the elastic displace-

ment. Furthermore, we can derive explicit solutions for the plastic stresses (by merely

taking the O (ε) correction to be at leading order). However, when it comes to deter-

mining the position of the elastic-plastic boundary, c(θ, t), by exploiting the Tresca yield
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Elastic-plastic boundary

Cavity

Figure 5.10: A vector plot of nondimensional velocity at t = 0.15s for N = 2. The

colouring represents the magnitude of the velocity. The nondimensional parameter values

used were ε = 0.1, µ = 70, λ = 32, Q = 1+3t and P = 1
2 +3t. The elastic-plastic boundary

is denoted by the outer dotted black line.

condition on equations (5.155)-(5.156), it is clear that we obtain a transcendental equation

for c(θ, t), and so a numerical solution is needed for a full solution.

5.4.4 Effects of applying a non-radially-symmetric perturbation

with varying sign as a function of θ to a plasticised annulus

We have argued that residual stresses and displacements are of paramount importance

in shaped charge penetration. As a final stepping-stone to posing a tractable model, we

consider a similar set-up to the previous section, but allow the sign of the perturbation

to vary around the cavity. Little analytical progress has been made with this problem,

although we present numerical solutions using a finite-element formulation in FEMLAB.

We consider a cavity of radius unity centred at the origin in a steel material occupying

the grid −15 ≤ x, y ≤ 15. The yield stress of the steel is chosen to be 2× 108kg m−1 s−1.

We then divide the domain into 2668 finite elements and then, using a perfect-plastic-

elastic model, plasticise an annulus by applying zero traction on the outer boundaries,

zero shear stress on r = 1, and σrr = −3.5× 108kg m−1 s−1 on r = 1. The solution to

this symmetric problem is shown in Fig. 5.11 in a Von-Mises stress plot. To investigate
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Elastic-plastic boundary

Elastic material

Plastic materialCavity

Figure 5.11: Von-Mises stress contours from FEMLAB modelling plasticised steel.

unloading phenomena, we continue to increase the cavity pressure when x > 0, whilst

decreasing it for x < 0, thus introducing a Heaviside-discontinuity at θ = ±π/2. We

expect the response to the unloading in x < 0 to be elastic, whilst the plastic region will

extend further in x > 0, with some free boundary separating these regions. Furthermore,

we expect that if we unload sufficiently in x < 0 (assuming the initial inflation pressure

is sufficiently great, as in §5.1.6), then the steel will reyield. Indeed, choosing suitable

parameters, these observations can be realised, and are shown in Fig. 5.12 and Fig. 5.13.

Observe the position and shape of the elastic-plastic free boundary and the possibility of

reverse yielding.

5.4.5 Remarks

The results from FEMLAB emphasise the important role of residual stresses that arise

from loading and unloading. It is clear that, even when the radial cavity stress boundary

condition is a simple Heaviside discontinuity, the response of the material is complex and

only a numerical solution is sensible. However, we are now in a good position to exploit

the ideas from this chapter to formulate a model for shaped-charge penetration.
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New elastic-plastic boundary

Plasticised material

Elastic material

Figure 5.12: A Von-Mises plot from FEMLAB on the same scale as Fig. 5.11. The outer

boundary is stress-free, whereas the boundary conditions on the cavity are zero shear stress

and σrr = −3.78× 108kg m−1 s−1 for x > 0, σrr = −3× 108kg m−1 s−1 for x < 0.

Elastic/plastic boundary

Further plastic flow

Plasticised material reyields

Figure 5.13: A Von-Mises plot from FEMLAB on the same scale as Fig. 5.11, now

illustrating the possibility of reverse yielding. The cavity boundary conditions are σrθ = 0

and σrr = −3.78× 108kg m−1 s−1 for x > 0, σrr = −3× 107kg m−1 s−1 for x < 0, and the

outer boundary remains stress-free.



Chapter 6

Ideas for a full elastic-plastic model

In the previous chapter, we analysed, in some detail, the expansion and contraction of

a circular cavity under applied pressure. We discovered that ‘locking in’ plastic stresses

resulted in residual displacements and stresses and that asymmetric boundary conditions

lead to novel free boundary problems. In this chapter, we wish to write down a full

elastic-plastic model that takes the plastic history of the material into account, based on

the previous gun-barrel analysis. We will conclude this chapter by discussing a possible

mechanism of moving plastic material via a squeeze film analogy.

6.1 A full elastic-plastic model for the tip

Given the complexity of the elastic-plastic model developed for penetration with a slender

region far from the tip, it is likely that a full axisymmetric model will be impossible to

solve analytically. However, it is important to present such a model for completion and

to understand the intricate nature of the penetration.

Our proposed model is best viewed pictorially, and is shown in Fig. 6.1. As one might

expect, we consider the usual plastic, elastic and jet regions. The extra region is the

plasticised region. This is motivated by the work of the previous chapter, and is a region

containing residual stresses and displacements. We will thus split the stress into a residual

part and non-residual part in this region; it is the former component of the stress tensor

that accounts for the plastic history of the material. Based on the gun-barrel analysis,

there will be a free boundary separating the plasticised material from the surrounding

elastic material, and a free boundary with the plastic region where the yield condition is

satisfied and new plastic stress is still being created. Furthermore, we expect the radius

of the free boundary between plasticised material and purely elastic material to increase

towards the initial entry point of penetration. This is because the pressure at the tip

will decrease as the charge penetrates, resulting in a plastic zone decreasing in size with

114



6. Ideas for a full elastic-plastic model 115

Elastic

Plastic

Plasticised

Figure 6.1: The proposed elastic-plastic model showing jet, elastic, plastic and plasticised

regions of the penetration.

time around the tip. The geometry of the plastic-plasticised free boundary is not clear;

the analysis of Chapter 4 indicates that this boundary is near the tip for targets with a

high yield stress, as the plastic region cannot be maintained by the pressure of the jet

sufficiently far into the slender region. However, even for softer targets where we might

have expected the plastic region to extend further back towards the entry point of the

charge, we still expect this boundary to be in the vicinity of the tip. This is because the

stresses applied from the jet far from the tip, although great enough to induce yield on

virgin material, are significantly less than the large stresses that were exerted as the tip

passed this point. Thus they will contribute to the residual part of the stress, rather than

producing yield, an important point that was illustrated by Fig. 5.7.

We now write down the nondimensional equations in each region, essentially using

ideas from Chapter 4 without the small parameter. Again, we assume that the penetration

has already begun so that we can ignore the difficult initial impact problem.

6.1.1 Tip jet region

Making the usual assumptions about incompressibility and of an irrotational flow, the

equations governing the motion of the jet are Laplace’s equation and Bernoulli’s equation.

We write the velocity potential as ϕ, then change to a frame moving with the stagnation

point which has new velocity potential φ. With the notation of Chapter 3, we scale

q ∼ U0, z, r ∼ rj, t ∼ rj/U0 and p ∼ ρjU
2
0 and thus obtain the following nondimensional

equations:

1

r

∂

∂r

(
r
∂φ

∂r

)
+
∂2φ

∂z2
= 0, (6.1)

p+
∂φ

∂t
+ U̇z +

1

2

((
∂φ

∂z

)2

+

(
∂φ

∂r

)2
)

= 0. (6.2)
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We again write the inner free boundary as r = R0(z, t) and the outer free boundary

as r = R1(z, t), so that the nondimensional boundary conditions in a frame moving with

the tip are

p = 0 on r = R0(z, t), (6.3)

and,
∂Rj

∂t
=
∂φ

∂r
− ∂φ

∂z

∂Rj

∂z
on r = Rj, j = 0, 1. (6.4)

Sufficiently far away from the tip, the boundary condition on r = R1 may have to change to

a zero normal flow (if the plastic velocities are significantly smaller than the jet velocities).

Also, different asymptotic regions may be needed depending on how near the turnaround

point the flow is. Possibilities for such regions will form the backbone for the next chapter.

The final condition is a matching condition from knowledge of the initial radius and

velocity V of the incoming jet.

6.1.2 Plastic region

The extreme pressure from the jet leads to a plastic region near the tip. Whilst this

applied pressure is increasing, we are locking in plastic stress. For consistency, we use

the Tresca yield condition, and a perfect-plastic flow law. Scaling all the stresses with

the yield stress and lengthscales with rj, the nondimensional equations are, in the initial

frame,

max(|σrr − σθθ|, |σrr − σzz|, |σzz − σθθ|) = 1, (6.5)

σ′ij = Λε̇ij, (6.6)

in addition to the inertial force-balance equations

∂σrr

∂r
+
∂σrz

∂z
+
σrr − σθθ

r
=

∂u̇

∂t
, (6.7)

∂σrz

∂r
+
∂σzz

∂z
+
σrz

r
=

∂ẇ

∂t
. (6.8)

Numerical analysis of a point force moving into a solid medium [57] suggests that the

intermediate stress is σrr, so that the yield condition in the tip is σθθ − σzz = 1.

As well as being important in the force balance equations, inertia must now be included

in the boundary conditions. Firstly, continuity of traction on r = R1(z, t) is written

n.(σ.n) = −ρjU
2
0

σY

p, t.(σ.n) = 0 on r = R1(z, t), (6.9)

where p is the nondimensional pressure from the jet. The other condition on this boundary

is kinematic, so

u̇− ∂R1

∂z
ẇ =

∂R1

∂t
on r = R1(z, t). (6.10)
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We denote the elastic-plastic boundary by r = R2(z, t). Again, the normal velocity must

be continuous on this non-material boundary, so that

u̇− ∂R2

∂z
ẇ = 0 on r = R2(z, t), (6.11)

whereas the nondimensional traction vector satisfies (3.21), i.e.

[
σin − ρtU

2
0

σY

(u̇n − V )u̇i

]+

−
= 0, (6.12)

which can be simplified in line with (6.11). We defer writing down the boundary condition

with the plasticised region until we have described the region’s equations.

6.1.3 Elastic region

The nondimensional Navier equations for the displacements in a frame moving with the

stagnation point, similar in nature to (4.78)-(4.79), are

(
∂2u

∂r2
+

∂

∂r

(u

r

))
+

(
λ + µ

λ + 2µ

)
∂2w

∂r∂z
+

µ

λ + 2µ

(
∂2u

∂z2

)
= M2

p

(
∂

∂t
− U

∂

∂z

)2

u, (6.13)

µ

λ + 2µ

(
1
r

∂

∂r

(
r
∂w

∂r

))
+

(
λ + µ

λ + 2µ

)
1
r

∂2(ur)
∂r∂z

+
∂2w

∂z2
= M2

p

(
∂

∂t
− U

∂

∂z

)2

w, (6.14)

whereMp is the Mach number with respect to the primary wave speed. The elastic stresses

are given via the relations (3.25). In addition to the boundary conditions with the plastic

region already mentioned, we also have

σij → 0 as r →∞, (6.15)

and we impose a radiation condition of no incoming waves. There is also some matching

condition with the plasticised region, which will be described in the next section.

6.1.4 ‘Plasticised’ elastic region

Recall that the plasticised region arises when the applied pressure starts decreasing. In

this region, we split the total stress and the total displacement into a plastic residual part

from the expansion and an elastic part for the contraction, viz:

σ = σp(r, z) + σe
con(r, z, t), (6.16)

u = up(r, z) + ue
con(r, z, t). (6.17)

The elastic parts of the stress and displacement satisfy the usual force balance equations

and Navier equations, as in the fully elastic region above. The residual part of the stress

is the stress field from when the material was last plastic, which occurred whilst the
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plastic region was increasing in size (equivalent to the applied pressure gradient being

positive in the radially-symmetric gun-barrel problem). Similarly, the residual part of the

displacement is the displacement of the material when it was last plastic1. These residual

parts are calculated whilst the region is still plastic (“∂P
∂t
> 0”).

We denote the free boundary of this region with the fully-elastic region as r = R3(z, t)

and the part in contact with the plastic region as r = R4(z, t). The nondimensional

boundary conditions over the plasticised-elastic–elastic boundary r = R3(z, t) are thus

[n.(σ.n)]+− = 0, (6.18)

[t.(σ.n)]+− = 0, (6.19)

[u]+− = 0, (6.20)

[u̇]+− = 0. (6.21)

The boundary r = R4(z, t) is an elastic-plastic boundary, so has boundary conditions

[u̇.n]+− = 0, (6.22)[
σin − ρtU

2
0

σY

(u̇n − v̇n)u̇i

]+

−
= 0, (6.23)

where σij is the total stress, ui is the total displacement and v̇n is the normal velocity

of the free boundary. We can of course simplify these boundary conditions knowing that

σ(e) = 0 on r = R4(z, t), as this is the boundary where material stops getting locked in

and any change in stress occurs in the (recoverable) elastic part.

6.1.5 Remarks

We have written down a novel model with four free boundaries. This model is nontrivial

and it is likely that it can only be solved numerically. Furthermore, depending on the

parameter regime, it is possible that a fifth free boundary is needed to include the effect

of reyielding (as P∗ À σY ), shown in Fig. 6.2. The equations for this region are no harder

to write down than for the ‘plasticised elastic’ region; all we need to do is decompose

the stress into a residual part (known from the plastic history when the plastic region

was still advancing) and a new plastic part, σ̃p(r, t). The latter must satisfy the usual

associated flow law, force balances and yield condition with suitable boundary conditions,

1Note that we could split the stresses and displacements into residual (i.e. elastic response to residual
plastic) and elastic parts in the elastic region, as we did in the gun-barrel expansion-contraction. However,
since both elastic and residual parts satisfy the same governing equations, we can just solve for the total
stress. In the case of the gun-barrel, this is apparent by noting that both residual and elastic parts of
the stress have general solution σrr = A(t)/r2.
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Figure 6.2: A modification to the previous figure (Fig. 6.1), permitting residual stresses

and including reyielding effects.

and occurs when the total stress satisfies the yield condition (see §5.1.6). We can now

summarise the determination of the stress tensor as

σ(r, t) =





σe(r, t) if Y(σ(r, t)) < σY and max
t>0

Y(σ(r, t)) < σY ,

σp(r, t) if Y(σ(r, t)) = σY and and σe
con = 0,

σp(r, tc) + σe
con(r, t) if Y(σ(r, t)) < σY , and max

0<t<tc
Y(σ(r, t)) = σY ,

σp(r, tc) + σ̃p(r, t)
if Y(σ(r, t)) = σY , max

0<t<tc
Y(σ(r, t)) = σY ,

and Y(σp(r, tc + δt)) < σY .

Here, we write Y(σ) to denote that σ satisfies one of the nonlinear yield conditions (1.38),

δt for some small time, and tc to denote the last time at which the material was plastic

on expansion. Using the notation “Nσ = 0” to mean that σ satisfies Navier’s equations

of linear elasticity and “Pσ = 0” to mean that σ satisfies the quasistatic equations of

perfect-plasticity, the equations for the stresses are thus

N (σe) = 0, (6.24)

N (σe
con) = 0, (6.25)

P(σp) = 0, (6.26)

P̃(σ̃p) = 0, (6.27)

where the operator P̃ in the final equation means that σ̃p satisfies the plasticity equations

with modified yield condition (see §5.1.6).

Our model views the final cavity as being held open by residual stresses, a consequence

of the plastic deformation it underwent during penetration. It is clear that the motion of
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the tip is of major importance, as the residual stress is locked in where the pressure from

the jet peaks, i.e. in the vicinity of the jet. However, we saw that even with the relatively

simple geometry in §5.4.4, the resultant stress field is complex, and so a full solution to the

penetration model can only be numerical. On a positive note, the model is successful in

providing an explanation for the observed bowed edges, namely, that they are the elastic

response to the residual stresses and displacements in the plasticised region.

6.2 Squeeze film analogy

We have just seen the high degree of complexity involved in an elastic-perfect-plastic

model for penetration, even with the presence of a small parameter in the slender region.

In this section, we develop a simpler model in order to visualise the plastic flow field and

to see how the applied pressure affects the size of the plastic region. We initially consider

a two-dimensional elastic-plastic squeeze film between two flat plates under a horizontal

tension to see how the plastic flow evolves under some applied pressure P . We will then

consider the similar set-up of when the block is under horizontal compression to model the

confinement of the target. We will then cultivate this model, briefly discussing the case

when the upper plate is slowly varying, before considering a squeeze film with no fixed

base in general curvilinear coordinates. Our aim is to see the effect of a pressure P over a

fixed interval on the height of the plastic region. Note that this is not directly applicable

to the flow in the target, as, in doing a squeeze film, we assume that the elastic part of

the squeeze film is free to move horizontally; in reality, it is part of the target, and so is

confined by the surrounding elastic material. In addition to evaluating the flow field, we

also wish to investigate the possibility of solutions in which the height of the squeeze film

goes to zero. This represents the termination of the plastic region, as in Fig. 6.1. Before

embarking upon such a voyage, we outline the analysis for a simple viscous squeeze film.

6.2.1 Viscous squeeze film

Consider a two-dimensional squeeze film on −L < x < L. We fix the lower surface y = 0

and a prescribe the upper surface y = εh(x, t), where 0 < ε ¿ 1 is the ratio of a typical

vertical lengthscale to a typical horizontal lengthscale (say L). A spatially-constant force

F (t) > 0 is applied on the upper surface. This is shown in Fig. 6.3. We use the Navier-

Stokes equations and incompressibility to model the viscous fluid. Writing u = (u, v)

for the fluid velocity, we nondimensionalise these equations, summarised in (D.2). As in

classic boundary-layer theory, ε ¿ 1 motivates us to rescale y = εy′ and the vertical

velocity v = εv′. By also assuming that the “reduced Reynold’s number”, Rε2 ¿ 1
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Figure 6.3: A viscous squeeze film.

(where R is the Reynold’s number), we can neglect inertia in the momentum equation.

We rescale p = 1
ε2p

′ to avoid the trivial solution and hence, at leading order, we recover

the lubrication equations (dropping dashes):

0 = −∂p
∂x

+
∂2u

∂y2
, (6.28)

0 = −∂p
∂y
, (6.29)

∂u

∂x
+
∂v

∂y
= 0. (6.30)

The boundary conditions are zero flow on the bottom plate and that the only nonzero

component of the velocity on the upper plate is the normal velocity, which must balance

the velocity of the upper surface. We also know that the external force imposed must

balance the force from the fluid. Thus

u = v = 0 on y = 0, (6.31)

u = 0, v =
∂h

∂t
on y = h(x, t), (6.32)

∫

top

p(x, t)dx = F (t). (6.33)

Briefly, we integrate the vertical component of the momentum equation to get that p =

p(x, t) and hence, by integrating the horizontal momentum balance, we find that

u =
1

2

∂p

∂x
y(y − h). (6.34)

Finally, integration of the mass conservation equation between 0 and h(x, t) leads us to

∂h

∂t
=

∂

∂x

(
h3

12

∂p

∂x

)
. (6.35)

Using incompressibility along with the boundary conditions for v and (6.33), we can find

v in terms of p(x, t), h(x, t) and hence F (t).
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6.2.1.1 Solution for h = h(t)

In the case where h is a function of time only, we can write down explicit solutions for

bounded F (t). Suppose that the squeeze film is on the nondimensional interval −1 < x <

1 (and that the two plates are also described by −1 < x < 1). We can integrate (6.35)

with respect to x and use p(±1, t) = 0 (taking atmospheric pressure to be zero) to obtain

p(x, t) =
6

h3

dh

dt
(x2 − 1), (6.36)

and, on using (6.33),

F (t) = − 8

h3

dh

dt
= 4

d

dt

(
1

h2

)
. (6.37)

We denote h(0) = h0, and so the top-boundary is given by

h(t) =
1√∫ t

0
F (τ)

4
dτ + 1

h2
0

. (6.38)

Note that, for monotonic, bounded F (t), h(t) remains finite and so the two plates do not

meet in finite time. The corresponding velocities are

u =
3F

4
y(y − h)x, (6.39)

v =
3F

4
y

(
y2

3
− hy

2

)
. (6.40)

6.2.2 Elasto-plastic squeeze film under horizontal tension

We now wish to develop a plastic equivalent to the viscous squeeze film. Before looking

at a direct analogy with the viscous squeeze film, we quickly outline the circumstances

in which a plastic squeeze film may arise. The problem concerning the compression of

an elastic block between two rough plates is discussed by Hill [36]. Initially, he considers

compression in which the plates are not as wide as the width of the block being compressed,

and so there is an overhang. He assumes the experimentally observed fact, namely that

the elastic block begins to yield at the four sharp edges, and then spreads inwards as the

pressure on the block is increased (Fig. 6.4). Note that the overhang must always remain

elastic as it satisfies a stress-free boundary condition. The bug-bear of solving this kind of

system is that the block does not remain geometrically similar and so the rheology must

be tracked as time progresses.

The equations can be simplified when the (finite) block is a lot wider than it is tall.

Hill argues that the slip-lines must become uniform far from the edge, and essentially

solves the leading-order problem for the stresses (but not velocities) sufficiently far away

from the overhang. The resulting solution (involving a coefficient of friction for the rough

blocks) is known as Prandtl’s cycloid solution.
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Lower plate

Upper plate

Applied pressure P (t)

Elastic overhang
Plastic region

Elastic material

Figure 6.4: Hill’s squeeze film [36]. Observe that the plasticity spreads from the four sharp

corners into the middle, and that the overhang is elastic.

This solution motivates us to consider a thin material initially lying in −L < x < L

and 0 < y < h0, where h0 is known and h0 ¿ L. We apply sufficient pressure P (t) > 0 on

the upper surface for |x| ≤ 1, so that the material in |x| ≤ 1 is plastic, where LÀ 1. Thus

we allow the upper surface y = hp(x, t) to vary with space and time in this plastic region.

This initial set-up is shown in Fig. 6.5. Given suitable applied pressure and horizontal

F (t) F (t)

P (t)

ElasticPlastic y = 0

y = h0
y = hp(t)

Figure 6.5: A simple plastic squeeze film under tension.

tensile force F (t) > 0, the material in |x| < 1 will remain plastic and neck, whilst the

remaining elastic material will move horizontally as a rigid body. The necked part of

the material in |x| > 1 that was once plastic will have residual stresses. As the material

is thin, we can assume that all the horizontal components of displacement, velocity and

stress will be independent of y. We hence denote the boundary between the plasticised

region and the elastic region as x = ±c(t), and present a schematic diagram in Fig. 6.6.

Note the analogy with cold-rolling [54]. Our aim is to solve for the height hp(x, t) and

the displacement, velocity and stress in each region for a given initial profile and with

prescribed F (t) > 0 and P (t) > 0. We will assume that all of the surfaces are shear-free2.

Rescaling the y−component of the plastic velocity with ε (to avoid the trivial solution),

2To allow for a rough surface, Hill uses the boundary condition σxy(εh) = mk on y = εhp(t), for
0 ≤ m ≤ 1 (m = 1 being a completely rough surface), where k = σY /2 for the Tresca yield condition and
k = σY /

√
3 for Von-Mises’ yield condition.
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F (t)F (t)

Unstable plasticised
Elastic

x = −1 x = 1

x = −c(t) x = c(t)

region necks
Plastic

P (t)

Figure 6.6: Necking of the unstable plastic squeeze film. The curved part of the elastic

region is determined by the height when it was last plastic.

the boundary conditions in the plastic region are

v(x, 0, t) = 0, (6.41)

σxy(x, t) = 0, (6.42)

n.(σ.n) = −P (t) on y = hp(x, t), (6.43)

t.(σ.n) = 0 on y = hp(x, t), (6.44)

v̇(x, hp, t) =
∂hp

∂t
(x, t), (6.45)

u̇(±1, t) = ±ċ(t). (6.46)

and continuity of traction over |x| = 1. In writing the last boundary condition down, we

assume that the elastic displacement is small compared with the rigid body displacement

in both the elastic and plasticised regions. In the usual manner, we decompose the stress

and displacement in the plasticised region 1 < |x| < c(t) as

σxx(x, t) = σp
xx(x, τ(x)) + σe

xx(x, t), (6.47)

and so on for the remaining stress and displacement components, where τ(x) is the time at

which the material at x was last plastic. Denoting the height of this region by y = he(x, t),

the boundary conditions are

v(x, 0, t) = 0, (6.48)

σxy(x, 0, t) = 0, (6.49)

n.(σ.n) = 0 on y = he(x, t), (6.50)

t.(σ.n) = 0 on y = he(x, t), (6.51)

σxx(±c(t), t) = σE
xx(±c(t), t), (6.52)

σxy(±c(t), y, t) = σE
xy(±c(t), y, t), (6.53)
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along with continuity of traction into the elastic region |x| > c(t). The superscripts ‘E’

refer to the elastic region, which has boundary conditions

vE(x, 0, t) = 0, (6.54)

σE
xy(x, 0, t) = 0, (6.55)

σE
xy(x, h0, t) = 0, (6.56)

σE
yy(x, h0, t) = 0, (6.57)

σE
xx(±L, t) = F (t) > 0, (6.58)

σE
xy(±L, y, t) = 0. (6.59)

Note that we have deferred writing down the traction continuity conditions explicitly –

this will be remedied when we have exploited the thinness of the medium.

Plastic region |x| < 1

We are looking for a quasistatic solution, and so the equations for the plastic region are

the equations of equilibrium,

∂σxx

∂x
+
∂σxy

∂y
= 0, (6.60)

∂σxy

∂x
+
∂σyy

∂y
= 0, (6.61)

a yield condition,
1

4
(σxx − σyy)

2 + σxy
2 = k2, (6.62)

where k = σY /2 for the Tresca yield condition and k = σY /
√

3 for Von-Mises’ yield

condition, and a flow law,

σ′ij = Λε̇ij, (6.63)

where Λ(x, y, t) is an unknown Lagrange multiplier for the yield constraint, which we

assume to be O (1) a priori. This flow law automatically implies incompressibility, which

is written in terms of the deviatoric stresses as

σ′xx + σ′yy = 0. (6.64)

We nondimensionalise the components of the yield stress with 2k, the horizontal length-

scale with L, the vertical height with h0 and the horizontal force with 2kh0. Writing the

ratio h0/L = ε¿ 1, the equilibrium equations become

∂σxx

∂x
+

1

ε

∂σxy

∂y
= 0, (6.65)

∂σxy

∂x
+

1

ε

∂σyy

∂y
= 0. (6.66)



6. Ideas for a full elastic-plastic model 126

We expand the plastic stresses as an asymptotic series in ε, so

σxx = σ(0)
xx +O (ε) , (6.67)

σyy = σ(0)
yy +O (ε) , (6.68)

σxy = σ(0)
xy + εσ(1)

xy +O (
ε2

)
. (6.69)

At leading order, the equations of equilibrium (6.65)-(6.66), along with the boundary

conditions (6.41)-(6.43), give that

σ(0)
yy = −P̄ (t) (6.70)

and

σ(0)
xy = 0. (6.71)

The yield condition now gives

σ(0)
xx = 1− P̄ (t), (6.72)

where P̄ = P/2k is the nondimensional pressure. This must hold everywhere in the plastic

region. At O (ε), (6.65) gives a horizontal force balance, which we integrate to

∫ hp

0

∂σ
(0)
xx (t)

∂x
dy = −σ(1)

xy (x, hp, t). (6.73)

However, we know that the left-hand side is zero, and that, from (6.44),

−∂h
∂x
σ(0)

xx + σ(1)
xy +

∂h

∂x
σ(0)

yy = 0 on y = hp(x, t). (6.74)

Hence hp = hp(t).

To calculate the flow field, we use incompressibility (6.64) and the yield condition in

the nondimensional form

σ(0)
xx − σ(0)

yy = 1, (6.75)

and find that

σ′xx =
1

2
, (6.76)

σ′yy = −1

2
. (6.77)

Recalling that v̇ has been rescaled by ε, the incompressibility condition (6.64) becomes,

at leading order,
∂u̇

∂x
+
∂v̇

∂y
= 0. (6.78)

The flow law yields
∂u̇

∂x
=

1

2Λ(x, y, t)
= −∂v̇

∂y
. (6.79)
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The flow law also gives that

0 = σxy = σ′xy =
Λ

2

(
1

ε

∂u̇

∂y
+ ε

∂v̇

∂x

)
, (6.80)

so that, at leading order, u̇ = u̇(x, t). In terms of the velocities, the yield condition is

Λ(x, y, t)

(
∂u̇

∂x
− ∂v̇

∂y

)
= 1. (6.81)

However, the incompressibility condition (6.78) now tells us that ∂v̇
∂y

= ∂v̇
∂y

(x, t), and hence

Λ = Λ(x, t). We now integrate (6.79) to obtain

v̇ = − y

2Λ(x, t)
, (6.82)

where we have used no flow on y = 0 to fix the constant of integration to zero. The other

boundary condition on the vertical velocity gives that

Λ(t) = − hp(t)

2ḣp(t)
. (6.83)

This is positive for ḣp < 0, and so the material is only plastic whilst the film is getting

thinner. The velocity field can be written as

u̇ = − ḣp(t)

hp(t)
x, (6.84)

v̇ =
ḣp(t)

hp(t)
y, (6.85)

where we have fixed the constant of integration in the horizontal velocity to be zero by

symmetry. This is stagnation flow.

Elastic region |x| > c(t)

Firstly, we note that, by arguing as we did in the plastic region, the rescaled equations of

equilibrium give us the leading-order stresses

σE
yy = 0 = σE

xy. (6.86)

Instead of integrating the equilibrium equations further, we exploit the plane-stress elas-

ticity and introduce the Airy stress function, A(x, y, t), which is biharmonic. Nondimen-

sionally, the biharmonic equation becomes

∂4A

∂y4
= 0, (6.87)
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and so the leading-order solution is

A0(x, y, t) =
α(x, t)y3

6
+
β(x, t)y2

2
+ γ(x, t)y + δ(x, t). (6.88)

The stresses are determined via σE
xx = Ayy, σ

E
yy = Axx and σE

xy = −Axy. We already know

that σE
xy = 0, and so α and β are functions of t only. The boundary condition (6.58) is

independent of y, and so, using

σE
xx(y, t) = α(t)y + β(t), (6.89)

we must have that α(t) = 0. The final unknown component of the stress tensor is hence

σE
xx(t) = F (t). (6.90)

The horizontal force balance into the plasticised region is now

σxx(±c(t), t) = F (t). (6.91)

Plasticised region 1 < |x| < c(t)

Recall that we decompose σ and u into a plastic residual part and an elastic part. The

plastic parts of the stress are determined by the plastic analysis (which is independent of

y) as

σp
xy = 0, σp

xx = 1− P (τ(x)), σp
yy = −P (τ(x)), (6.92)

where τ(x) is the time at which the material at x was last plastic. From (6.48)-(6.53),

the leading-order boundary conditions on the elastic parts of the stress are now

σe
yy(x, he(x, t), t) = P (τ(x)), (6.93)

σe
xy(x, 0, t) = σe

xy(x, he(x, t), t) = ve(x, 0, t) = 0. (6.94)

By arguing as we did in the plastic region, the rescaled equations of equilibrium give us

the leading-order stresses

σe
yy = P (τ(x)), σe

xy = 0, (6.95)

and so the (total) stress σyy = 0.

We can now draw conclusions from the system without further analysis of the plas-

ticised region by performing a global horizontal force balance; using continuity of the

horizontal force throughout the plasticised region, we have

hp(t)(1− P (t)) = h0F (t). (6.96)

This determines the velocity field (6.84)-(6.85), from which we deduce the velocity of the

rigid body at |x| = 1 and hence the height he and stress σe
xx everywhere in the elastic
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region. This solution works if F (t) = 1−P (t). However, we suppose that F (0) = 1−P (0),

and then slowly increase F (t) whilst holding P constant. The height of the plastic region

cannot increase, as the Lagrange multiplier Λ becomes negative. Also, if the pressure

P > 1, the predicted height becomes negative. Clearly, this solution is unphysical – if we

pull harder at the ends, the plastic region should get thinner. We deduce that there is no

quasistatic plasticity solution for this set-up – the stress exerted by the elastic region is

too great for the plastic region, and so the motion of the plastic region is unstable, leading

to necking. A similar result will also hold if we apply a variable pressure in the plastic

region, allowing the upper boundary to be slowly-varying as the leading-order stress field

is unchanged. This analysis is omitted.

6.2.3 Elastic-plastic squeeze film under horizontal compression

We now consider a similar squeeze-film, but now under horizontal compression. This is

motivated by the fact that the plastic region is under confinement from the surrounding

target. The only change to the boundary conditions from before is that (6.58) must now

be replaced by

σE
xx(±L, t) = −F (t), (6.97)

where F (t) > 0. This now gives that σE
xx = −F (t). A global force-balance now leads to

hp(t) = − h0F (t)

1− P (t)
, (6.98)

from which we can derive expressions for the plastic velocities from (6.84)-(6.85). Using

the boundary condition (6.46) and initial conditions on c(t) and hp(t), we deduce that

c(t) = 1− log

(
hp(t)

h0

)
. (6.99)

The elastic part of the stress in the plasticised region and hence the height he(x, t) can now

be calculated using continuity of height and total stress into the different regions. This

analysis is omitted. For this solution to make sense, we must have P (t) > 1 for the plastic

region to be at yield. We suppose that this is true, and then increase the magnitude of

F to F + δ for constant P and small, positive δ. The difference σxx− σyy < 1, and so the

material is elastic everywhere. This tells us that the higher the confining stress, the greater

the pressure we have to apply for the material to remain plastic. Conversely, suppose that

we hold F constant and increase the magnitude of P . We can easily see that the material

in |x| < 1 is still at yield, and the height of the plastic region decreases according to

(6.98). This solution is consistent with the Lagrange multiplier for the flow law being

positive and makes sense physically. Thus we have derived a simple relationship between
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the height of the plastic region and the applied pressure P (t) for a constant confining

pressure. Furthermore, observe the similarity with the viscous squeeze-film; the height of

the material cannot go to zero for finite applied pressure P (t).

6.2.4 Elasto-plastic squeeze film under compression, with known,

varying base

We wish to incorporate the curvature of the tip in to a squeeze film model and so consider

a thin plastic squeeze film in which the lower surface is a known fixed function of space

under compression. We elect to use the curvilinear coordinate system (s, n) defined by

x = X0(s) + nn, (6.100)

where X0(s) is the lower curved-surface, s is arc-length, and n is the unit normal from

the surface X0(s). We suppose that the upper surface is initially given by n = h0, and

that the body is symmetric about the horizontal axis. We again suppose that all of the

surfaces are shear-free, and that the thinness of the medium allows us to assume that the

s−components of the unknowns are independent of n. Following the analysis of Chapman

et al [13], we can write the derivatives as

∂x

∂s
= (1 + κn)t, (6.101)

∂x

∂n
= n, (6.102)

where κ is the curvature of the boundary X0(s). The equations of equilibrium in these

orthogonal curvilinear coordinates become

∂

∂s
σss +

∂

∂n
((1 + κn)σns) +

(
∂

∂n
(1 + κn)

)
σns = 0, (6.103)

∂

∂s
σns +

∂

∂n
((1 + κn)σnn)−

(
∂

∂n
(1 + κn)

)
σss = 0. (6.104)

To mimic the flat squeeze-film problem, we assume that the inner boundary is symmetric

about s = 0, without loss of generality, and apply sufficiently great normal stress on the

inner boundary so that the material in |s| < 1 is plastic. The boundary conditions for

|s| < 1 are

σnn(s, 0, t) = −P (t), (6.105)

u(s, 0, t) = 0, (6.106)

σns(s, 0, t) = 0 (6.107)

th.(σ.nh) = 0 on n = hp(s, t), (6.108)

v̇(s, h, t) = ḣp(t), (6.109)
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along with suitable continuity conditions over |s| = 1. Here, we write v̇(s, n) for the

normal component of the plastic velocity, nh(s, t) for the normal to h(s, t) and th(s, t)

for tangent to h(s, t). The medium will again neck, a result of the plasticity, resulting in

a plasticised region, 1 < |s| < c(t), say, and an elastic region, |s| > c(t). The boundary

conditions for the plasticised region are continuity of traction over the boundaries |s| = 1

and |s| = c(t), and

σnn(s, 0, t) = 0, (6.110)

u(s, 0, t) = 0, (6.111)

th.(σ.nh) = 0 on n = he(s), (6.112)

nh.(σ.nh) = 0 on n = he(s), (6.113)

u̇(±c(t), t) = ±ċ(t), (6.114)

where we again assume that the elastic displacement is small compared with the plastic

velocity and rigid body displacement. Finally, the boundary conditions in the elastic

region |s| > c(t) are

σnn(s, 0, t) = 0, (6.115)

u(s, 0, t) = 0, (6.116)

th.(σ.nh) = 0 on n = he(s), (6.117)

nh.(σ.nh) = 0 on n = he(s), (6.118)

σss(±L, t) = −F (t), (6.119)

σns(±L, n, t) = 0, (6.120)

where F (t) >0. This is shown in Fig. 6.7.

Plastic region

We nondimensionalise the stresses and applied pressure with the yield stress, scale the

normal distances with h0, and tangential distances with L, where 0 < h0/L = ε ¿ 1.

Writing the nondimensional normal distance as ρ, the equations of equilibrium become

∂σss

∂s
+ (1 + κερ)

1

ε

∂σns

∂ρ
+ 2κσns = 0, (6.121)

∂σns

∂s
+ (1 + κερ)

1

ε

∂σnn

∂ρ
+ κ(σnn − σss) = 0. (6.122)

Expanding the stresses in powers of ε gives the following leading-order nondimensional

equations:

∂σ
(0)
ns

∂ρ
= 0,

∂σ
(0)
nn

∂ρ
= 0. (6.123)
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We integrate these expressions and use the boundary conditions to recover the leading-

order stresses

σ(0)
nn = −P, (6.124)

σ(0)
ns = 0. (6.125)

We write the nondimensional Tresca yield condition with respect to the principal stresses

as

|σnn − σss| = 1, (6.126)

so that

σ(0)
ss = −P (t) + 1, (6.127)

where the sign of the yield criterion is chosen so that the material is in tension in the

x−direction immediately prior to yielding.

Considering the velocities, the flow law is

σ′ij = Λε̇ij, (6.128)

for some unknown multiplier Λ(ρ, s, t). Using expressions for the strains from Hill [36],

σ′nn =
Λ

ε

∂v̇

∂ρ
, (6.129)

σ′ss = (1 + εκρ)
∂u̇

∂s
, (6.130)

σ′ns = (1 + εκρ)
∂v̇

∂s
+

(
1

1 + εκρ

)
1

ε

∂

∂ρ
((1 + εκρ)u̇). (6.131)

nn

Elastic material

F

F

n = h0

Plastic material necks

n = hp(s, t)

n = he(s)

Plasticised material

s = c(t)

s

X0(s)

Figure 6.7: A curved squeeze film parametrised with arc length, s and normal distance,

n, from the lower surface.
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Incompressibility σ′ii = 0 dictates that the normal velocity v̇ needs to be rescaled with ε,

so that
∂v̇

∂ρ
+
∂u̇

∂s
= 0, (6.132)

at leading order. The expression for σns hence gives that

u̇ = u̇(s, t), (6.133)

We now use the velocity boundary conditions and find that

u̇ = −∂hp

∂t

s

hp

, (6.134)

v̇ =
∂hp

∂t

ρ

hp

, (6.135)

where hp(s, t) will be determined by the horizontal force balance with the elastic region

and we have used symmetry about s = 0 to set a constant of integration to zero.

Elastic and plasticised regions

The stresses in the elastic region and the unknown elastic part of the stress in the plasti-

cised region are once more determined by solving the rescaled biharmonic equation

∂4A

∂ρ4
= 0. (6.136)

The analysis is identical to the flat-bottomed squeeze film, and so, omitting much of the

analysis, we use a global force balance in the s−direction (which again holds throughout

the plasticised region) to relate the plastic and elastic heights via

hp(t) = − h0F (t)

1− P (t)
, (6.137)

thus determining the plastic velocities (6.134)-(6.135), elastic stress and the profile of the

medium for given F (t) and P (t).

6.2.5 Remarks

Equation (6.137) gives us an idea of how the plastic region behaves as a result of con-

finement. Of course, the whole squeeze-film in Fig. 6.7 is really surrounded by elastic

material, which confines both the thin elastic region and the thin plastic region. This must

restrict the inner thin elasto-plastic layer, and so our results are at most qualitative. This

observation, however, leads us to comment on mass conservation in the plastic region. In

a frame moving with the stagnation point, the plastic region moves through the target. If

the elastic response is small by comparison to the cavity radius a, then to leading order,
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the flow of material into/out of the plastic region is Ui.n at the interface between elastic

and plastic regions. Since there is no flow of material through the plastic-jet boundary,

more material enters the plastic region than leaves it, as shown in Fig. 6.8. We could

Jet
Finite plastic region

Elastic region

Cavity

Figure 6.8: A diagram illustrating a problem with mass conservation in incompressible

plasticity and infinitesimal elasticity.

recover from this contradiction by introducing compressibility into the plastic region, al-

though this would mean that the tip region is getting more and more dense as the charge

penetrates, which seems unlikely. Alternatively, we need the elastic displacement around

the boundary of the plastic region to be finite and O (a/c∗), where c∗ is the radius of the

plastic region. Note that this is the same scale that we required in §5.3.



Chapter 7

Paradigm tip models for the jet

We have seen the Gordian nature of a full elastic-plastic model in the previous chapter.

In this chapter, we wish to derive tractable models to represent the flow of the jet in

the tip. We motivate the geometry of the jet in the tip by the arguments of Chapter 3

In particular, for the scalings shown in Fig. 3.7(a) and Fig. 3.7(d), the tip region has

a radial scale of ε and an axial scale of O (1). Performing a naive rescaling of r with

ε and solving Laplace’s equation for the flow in the jet will lead to problems. This is

because the incoming jet is in the positive z-direction, whilst the outgoing jet flows in

the negative z-direction and hence, when we get an equation like (4.24), we will arrive at

a contradiction. For non-trivial solutions of Laplace’s equation, the r and z coordinates

must scale the same way and so the fluid of the jet has to turn back on itself over a

region of O (ε). Indeed, Peregrine et al. [67] consider such flows when modelling cliff

erosion (and when investigating so-called “cleaning flows”). The basic idea in modelling

cliff erosion is that a violent jet enters a crevice and starts to fill it. The jet, which

nearly fills the cross-section of the cavity, then rapidly turns back on itself (“flip-around”)

when it reaches the end of the cavity, causing a much thinner jet to flow back out of

the cavity. This is known as a filling flow and is depicted in Fig. 7.1. Observe that the

flip-around of the jet produces a free boundary between the fluid and the air. Clearly, for

such a flow, some of the incoming fluid will go into filling the cavity, whereas some will

be rapidly turned around and expelled as the cavity fills and the free boundary moves

in the opposite direction of the incoming jet. This gives birth to a stagnation point in a

frame moving with the jet turnaround point and a dividing streamline. We note that if we

reverse the signs of the velocities, we have an “emptying-flow”, in which the turnaround

point now moves deeper into the cavity.

135
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Figure 7.1: A schematic of a filling flow.

7.1 Simple two-dimensional filling-flow models for the

jet

In order to develop a model for the jet region of shaped-charge penetration, we briefly

outline the analysis of Peregrine [67], and initially consider a two-dimensional flow between

two parallel plates. It is assumed that the violence of the flow dominates any gravity

effects, and that the flow is incompressible with density ρ (although compressible effects

are considered in [68]), steady, and impacts a fluid at rest with pressure P . We introduce

the following notation:

Height of incoming jet: hj,

Height of returning jet: hr,

Cavity height: H,

Velocity of incoming jet: V,

Velocity of returning jet: Vr,

Position of the “turnaround point”: X0(t),

Velocity potential: φ,

Nondimensional parameter: k2 =
hj

H
,

where we will find that 1
2
≤ k < 1. We consider global balances representing conservation

of mass, a force balance and steady Bernoulli’s equation over the region. In doing so, we

will find that the velocity of the turnaround point Ẋ0 is undetermined. Changing to a

frame moving with the turnaround point X0(t), mass conservation becomes

hj(V − Ẋ0) = hr(Vr + Ẋ0)− Ẋ0H. (7.1)

The force on the region must equal the rate of change of momentum. Hence, as the

pressure on the cavity is zero, only the fluid filling the cavity upstream of the stagnation
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point exerts a force, and so the force balance is

PH = ρ
(
(V − Ẋ0)

2hj + (Vr + Ẋ0)
2hr − Ẋ2

0H
)
. (7.2)

Finally, use of Bernoulli’s condition gives

P

ρ
=

1

2
(V − Ẋ0)

2 − 1

2
Ẋ2

0 . (7.3)

In order to represent a filling flow rather than an emptying flow, we must impose V > Ẋ0

so that the incoming flow velocity has positive sign in the moving frame (note that Ẋ0 < 0

for a filling flow). The boundary conditions are no normal flow on the walls, and p = 0

on the free boundary. This set-up is shown in Fig. 7.2. Using Bernoulli’s condition on
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Figure 7.2: A filling flow in a frame moving with the turnaround point X0(t).

the free streamline along with the boundary conditions immediately tells us that

Vr + Ẋ0 = V − Ẋ0. (7.4)

This simplifies our balances and allows us to rearrange the three global balances above

to give solutions for Vr, Ẋ0, hr and P in terms of H, k and V . These solutions can also

be obtained by using complex variable techniques (as in [67]) akin to the hydrodynamic

fluid-fluid impact in §2.1.1 (e.g. using a Schwarz-Christoffel transform). This will give us

an explicit equation for the free boundary, although it loses some of the physical intuition.

Note that the physical balances can also be used for an axisymmetric filling flow (whereas

the complex variable methods using conformal mappings cannot).

7.1.1 A filling flow in a channel with constant height with vari-

ous end-conditions

We will construct some very simple models in attempt to apply the ideas from two-

dimensional filling flows to shaped-charge penetration. We start by looking at fully hy-

drodynamic models in two dimensions to gain intuition. The most rudimentary model is
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to consider the turnaround region in the tip as a filling flow, which is sufficiently far away

(axially) from where the jet-tip ends, at x = b(t), say. We will initially assume that the

flow occurs between two flat plates with constant separation H, before considering the

more general and representative flow where the upper surface H is a free boundary. We

also assume that the flow has already impacted the target and so has already turned back

on itself.

Following the scaling analogies, we assume that the height of the cavity (equivalent

to the radius in the axisymmetric model) is O (ε). We now divide the flow up into two

regions. We label the inner filling flow region I, where x ∼ O (ε), and the outer region II,

where x ∼ O (1). This is shown in Fig. 7.3.

∂φ
∂n

= 0

P

∇2φ = 0

III

∂φ
∂x

= Vr + Ẋ0

∂φ
∂x

= V − Ẋ0

y = εH

y = 0

x = b(t)

O (1)O (ε)

∂φ
∂y

= 0

∂φ
∂y

= 0hr

hj

Figure 7.3: Inner and outer regions for a filling flow moving with the turnaround point,

X0(t).

7.1.1.1 Region I

In a similar manner to the previous section, we wish to write mass, force and Bernoulli

balances for the flow in the inner region in a frame moving with the turnaround point,

X0(t), and hence introduce the inner coordinates ξ̄, ȳ and τ , where

εξ̄ = x−X0(τ), (7.5)

εȳ = y, (7.6)

τ = t. (7.7)



7. Paradigm tip models for the jet 139

The associated derivatives are

∂

∂x
=

1

ε

∂

∂ξ̄
, (7.8)

∂

∂y
=

1

ε

∂

∂ȳ
, (7.9)

∂

∂t
=

∂

∂τ
− X ′

0(τ)

ε

∂

∂ξ̄
. (7.10)

We start by considering Bernoulli’s equation, which, in the frame moving with X0(t),

becomes
∂φ

∂τ
− X ′

0(τ)

ε

∂φ

∂ξ̄
+

1

2

1

ε2

(
∂φ

∂ξ̄

)2

+
p

ρ
= G(τ). (7.11)

We also need to rescale the velocity potential φ in this region so that the velocity is

order one. Clearly, the appropriate scaling is φ = εϕ, and so the leading-order Bernoulli

equation becomes

−X ′
0(τ)

∂ϕ

∂ξ̄
+

1

2

(
∂ϕ

∂ξ̄

)2

+
p

ρ
= G(τ). (7.12)

When matching into the outer region, the first term is a function of τ only, and so a local

Bernoulli balance similar to (7.3) is valid. Let u0(τ) denote the far-field velocity of the

fluid in the inner region as the outer region is approached in the original frame. Writing

‘dot’ for derivatives with respect to τ , the Bernoulli condition is thus written in inner

variables as
P

ρ
+

1

2
(u0(τ)− Ẋ0)

2 =
1

2
(V − Ẋ0)

2, (7.13)

where P is the far-field pressure of the inner region as ξ →∞. Similarly, mass and force

balances are written as

hj(V − Ẋ0) = hr(Vr + Ẋ0) + (u0(τ)− Ẋ0)H, (7.14)

(P + ρ(u0(τ)− Ẋ0)
2)H = ρ(V − Ẋ0)

2(hj + hr), (7.15)

where we have implicitly used (7.4). These physical balances (7.13)-(7.15) are the inner

equations in certain slamming models [45] and also represent the inner equations used to

model surf-skimming [91].

Recalling that k2 =
hj

H
, we rearrange these three expressions and find ourselves with

two possible roots for Ẋ0 when k 6= 1
2
, namely

V − Ẋ0 =
Ẋ0 − u0(τ)

1− 2k
, (7.16)

or

V − Ẋ0 = −Ẋ0 − u0(τ)

1 + 2k
. (7.17)
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The latter root results in a negative pressure P and so we discard it on physical grounds.

Using the first one, we see that k ≥ 1
2

and find that

P = 2ρk(1− k)(V − Ẋ0)
2 =

k

2(1− k)
ρ (V − u0(τ))

2 , (7.18)

Ẋ0 = V +
u0(τ)− V

2(1− k)
. (7.19)

Expressions for hr and Vr can also be derived from these equation by making a trivial

modification to the global balances of Peregrine. These provide boundary conditions for

the flow in the returning jet, applied at x = X0(t). This jet is modelled using the zero-

gravity shallow-water equations, with no normal flow on the upper and lower boundaries,

and zero pressure on the free boundary.

In deriving these equations, we have assumed that there is a constant jet with velocity

V flowing into this region, corresponding to an infinite jet. The natural consequence of

this assumption is likely to be the existence of travelling-wave solutions. To proceed with

a solution, we move to consider the outer region.

7.1.1.2 Region II

The fluid in the outer region is assumed to be incompressible and irrotational. Thus, we

can introduce a potential function φ such that

∇2φ = 0. (7.20)

The boundary conditions are no normal flow on y = 0 and y = εH, the fluid velocity

equalling the velocity of b(t) at x = b(t), some further condition (to be discussed) at

x = b(t), and matching conditions with the inner region. Moving with the turnaround

point, the outer coordinates are

ξ = x−X0(τ), (7.21)

y = εȳ, (7.22)

τ = t, (7.23)

with derivatives

∂

∂x
=

∂

∂ξ
, (7.24)

∂

∂y
=

1

ε

∂

∂ȳ
, (7.25)

∂

∂t
=

∂

∂τ
−X ′

0(τ)
∂

∂ξ
. (7.26)
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Thus, the boundary conditions are

∂φ

∂ȳ
= 0 on ȳ = 0, H, (7.27)

û = ḃ(τ)− Ẋ0(τ) on ξ = b(τ)−X0(τ), (7.28)

along with the velocity matching into the inner region,

û+ Ẋ0 = u0(τ) at ξ = 0, (7.29)

where û is the horizontal velocity component in the moving frame.

We return to the momentum equation in order to derive an outer version of Bernoulli’s

equation in a moving frame. In the rest frame, the momentum balance is

∂u

∂t
+ (u.∇)u = −1

ρ
∇p. (7.30)

We introduce the new potential φ̂ = φ − Ẋ0ξ, and hence the ξ−component of the mo-

mentum equation is, with respect to the outer variables, (c.f. 4.9)

∂

∂ξ

(
∂φ̂

∂τ
+

1

2
|û|2 +

p

ρ

)
= −Ẍ0(τ). (7.31)

We can integrate this with respect to ξ to reach the Bernoulli condition in an accelerating

frame. We now expand the velocity potential φ̂:

φ̂(ξ, ȳ, τ) = φ̂0(ξ, ȳ, τ) + εφ̂1(ξ, ȳ, τ) + ε2φ̂2(ξ, ȳ, τ) +O (
ε3

)
, (7.32)

From Laplace’s equation 7.20, we see that the leading-order term is

∂2φ̂0

∂ȳ2
= 0. (7.33)

The boundary conditions are
∂φ̂

∂ȳ
= 0 on ȳ = 0, H, (7.34)

at all orders, which tell us that the leading-order velocity potential φ̂0 is a function of ξ

and τ only. Continuing the analysis up to O (ε2) yields

∂2φ̂2

∂ȳ2
(ξ, ȳ, τ) = −∂

2φ̂0

∂ξ2
(ξ, τ). (7.35)

Integrating with respect to ȳ twice and again imposing the zero vertical flow on the walls

leads us to the familiar expression

φ̂0(ξ, τ) = û(τ)ξ + A(τ), (7.36)
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for unknown functions û(τ) and A(τ). Thus we have plug flow where the horizontal ve-

locity is just a function of time only, given by û = û(τ). This velocity is easily determined

by applying the boundary condition (7.28), so

û(τ) = ḃ(τ)− Ẋ0(τ). (7.37)

Applying the matching condition (7.29) now gives u0(τ) = ḃ(τ), from which (7.19) can

be integrated with respect to τ to give

X0(τ) = −αV τ +
b(τ)− b0
2(1− k)

+ x0, (7.38)

where α = 2k−1
2(1−k)

is a positive nondimensional parameter, and the other constants are

defined by x0 = X0(0) and b0 = b(0), with b0−x0 = O (1). Further, the pressure difference

between x = b(τ) and the turnaround point is given by integrating (7.31) between ξ = 0

and ξ = b(τ)−X0(τ) as

Pb(τ)− P (τ) = −ρb̈(τ)(b(τ)−X0(τ)), (7.39)

where Pb(τ) = p(b(τ)−X0(τ)) is the pressure exerted on the end x = b(τ) by the fluid in

the outer region, and P (τ) = k
2(1−k)

ρ(V − ḃ(τ))2.

When k = 1
2
, the solution simplifies to

P =
ρ

2
(V − Ẋ0)

2, (7.40)

and Ẋ0 = u0(τ) = ḃ(τ). Hence the turnaround point X0 and end point always remain a

fixed distance apart, and the pressure on the end x = b(τ) is given from the expression

Pb = P − ρẌ0s0, (7.41)

where s0 = b0−x0 is the constant separation between the turnaround point and the ‘tip’.

This set-up corresponds to all the incoming fluid turning around, with no net flow into

region II. For completeness, we note that the solution procedure also yields that hj = hr

for such k.

7.1.1.3 End conditions

In order to close equations (7.38) and (7.39) for X0(τ) and b(τ), we need a constitutive

law at the end x = b(τ) to represent the confinement of the elastic medium. Although

they are rather simple, we elect to use the following three end conditions at x = b(τ) to

gain intuition:
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(i) Model a filling flow impacting a spring. The boundary condition is then

mb̈(τ) = −K(b(τ)− be) + PbH, (7.42)

where m is a measure of the spring’s inertia (equivalent to inertia in the elastic

medium), K is a positive spring constant and be is the equilibrium position of the

spring such that the initial position of the spring satisfies b0 ≥ be to model the initial

elasticity of the target. This is perhaps the simplest model we could use.

(ii) Model the end b(τ) as a dashpot, hence the force on the end b(t) is proportional

to the velocity. This is perhaps a better analogy than the spring model, as the

spring can only be pushed a finite amount for nonzero spring constant and so the

‘penetration’ would have to stop. The boundary condition for this end condition is

mb̈(τ) +Dḃ(τ) = PbH on x = b(τ), (7.43)

where D is a positive constant and m is the mass of the dashpot.

(iii) Model the end b(τ) via some kind of ‘yield pressure’ analogy. This is motivated

by the fact that the plastic material around the tip will satisfy a yield condition,

and so we pose

Pb = σY on x = b(τ). (7.44)

7.1.1.4 (i) Spring model

For k 6= 1
2
, we couple the expression for the pressure on the end b(τ), (7.39), with the

boundary condition (7.42) and the expression for X0(τ), (7.38), to reach the following

nonlinear and non-autonomous ordinary differential equation:
(
m

Hρ
+

(
αV t− x0 +

b0
2(1− k)

− αb

))
b̈ = − K

Hρ
(b− be) +

k

2(1− k)
(V − ḃ)2. (7.45)

To nondimensionalise this equation, we need to pick a suitable lengthscale. We choose

the steady state solution for b(τ), which gives a lengthscale of

L = be +
ρHkV 2

2(1− k)K
. (7.46)

Writing a typical timescale as T , we introduce the following nondimensional parameters:

M =
m

ρHL
, (7.47)

R =
T

L
V, (7.48)

I =

(
−x0

L
+

b0
2(1− k)L

)
, (7.49)

C =
KT 2

ρHL
. (7.50)
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Scaling b(τ) = Lb̄(τ̄) and τ = T τ̄ and dropping bars for convenience, the ordinary differ-

ential equation now becomes,

(M + αRτ + I − αb(τ))) b̈(τ) = −C(b(τ)− 1) +
k

2(1− k)
ḃ(τ)2 − Rk

1− k
ḃ(τ). (7.51)

Given the number of nondimensional parameters in this equation, there are numerous

different parameter regimes that we could investigate. In an attempt to at least weakly

represent the penetration, we attempt to choose some realistic parameters relating to the

penetration process. Firstly, we pick a timescale consistent with the chosen lengthscale

L and with the penetration velocity, so try T = L/V , say. Typical values from Table

3.1 motivate choosing V ∼ 4× 103ms−1, ρ ∼ 8× 103kg m−3, k = 0.55 (using a posteriori

estimates for the cavity size), α ∼ 0.1 and be = 0.7m. We choose x0 = 0 without loss of

generality. We wish to keep inertial terms in the tip. It is sensible to balance M with

the effect of the spring, so we suppose that M ∼ C. Thus the nondimensional constants

become I ∼ b0
L

, R = 1 and C ∼ L
ρV 2H

= 1
2
(1 + K

ρHV 2 ).

A key parameter in this model is the ratio ρHV 2

K
. If the spring constant K is large

compared to the ‘force’ ρHV 2, the lengthscale is dominated by the equilibrium position

of the spring and so we might expect oscillatory solutions. This behaviour is confirmed

numerically for b(τ) using MAPLE, shown in Fig. 7.4. We omit similar plots for pressure

and position of the turnaround point that also demonstrate oscillatory behaviour about

limiting values.

Bearing this numerical solution in mind, we can calculate the large-κ limit for b(τ).

For sufficiently large τ , (7.51) is

ατ b̈ = −C(b(τ)− 1) +
k

2(1− k)
ḃ(τ)2 − k

1− k
ḃ(τ). (7.52)

Substituting d(τ) = b(τ)−1, we neglect quadratic terms in ḋ (since the solution oscillates

about an equilibrium point) and the equation becomes

τ d̈(τ) ≈ −λd(τ)− µḋ(τ), (7.53)

where the constants λ and µ are defined by λ = C
α

and µ = k
(1−k)α

. The unintuitive

substitution d(t) = t
1−µ

2 f(t), where t =
√
τ leads to the more familiar equation

t2f ′′ + tf ′ + (4λt2 − (1− µ)2) = 0, (7.54)

where ′ = d
dt

. The solutions to this equation are the Bessel function Jν and modified

Bessel function Yν , where ν = µ − 1. Thus the large time limit solutions of the original

equation is a linear sum of the two Bessel functions:

τ−
ν
2Jν(

√
4λτ) and τ−

ν
2Yν(

√
4λτ). (7.55)
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Figure 7.4: A numerical plot of the solution of (7.51) (from MAPLE). The parameters

taken are M = 20, k = 0.55, I = b0
L ∼ b0

be
= 1, C = 20, R = 1, b0 = 0.7 and be = 0.7.

We can expand the Bessel functions for large τ (see e.g. [1]) as

Jν(
√

4λτ) ∼ 1√
π
√
λ
τ−

1
4 cos(2

√
λτ − νπ

2
− π

4
), (7.56)

Yν(
√

4λτ) ∼ 1√
π
√
λ
τ−

1
4 sin(2

√
λτ − νπ

2
− π

4
). (7.57)

Thus the solution will decay like τ−
1
4
− ν

2 . In terms of the original constants, this power

is − 2k+1
4(2k−1)

< 0. This is in agreement with the numerical solution (graphically) when

k = 0.55.

Conversely, suppose the spring constant K is small so that C ∼ 1
2
. The lengthscale

L is thus very large and so I ∼ 0. With the other parameters remaining unchanged, a

numerical plot reveals the behaviour shown in Fig. 7.5. This solution settles down to

the equilibrium position far quicker than the large K case and does not oscillate with

an O (1) amplitude. Hence, this is a preferred parameter regime when comparing it to

shaped-charge penetration, albeit unrepresentative of the physics.

7.1.1.5 Special case of k = 1
2

The case when k = 1
2

is a special limit. Recall that the physical interpretation is of no

net flow into the outer region from the inner, and that the pressure is given by (7.40).
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Figure 7.5: A numerical plot of the solution of 7.51 for small C (from MAPLE). The

parameters taken are M = 0.5, k = 0.55, I ∼ 0, R = 1, C = 0.5, b0 = 0.7 and be = 0.7.

This results in the following far simpler ordinary differential equation:

(Hρs0 +m)b̈ = −K(b− be) +
1

2
ρ(V − ḃ)2H. (7.58)

We nondimensionalise this equation by choosing the steady-state solution (from (7.46)) as

the lengthscale and by choosing the timescale T so that the inertia of the spring balances

the stiffness. Thus the equation becomes, in nondimensional variables,

b̈ = (1− b) + βḃ2 − γḃ, (7.59)

where β = ρHL/(Hρs0 +m) and γ = ρH/K
1
2 (Hρs0 +m)

1
2 are both constants, assumed

to be O (1). To convert this nonlinear second order differential equation into a system of

two first-order equations, we introduce X = b and Y = Ẋ = ḃ so that the system is

Ẋ = Y, (7.60)

Ẏ = 1−X + βY 2 − γY. (7.61)

This system has one equilibrium point, at (1, 0). We linearise the system about the

equilibrium point and find that its nature is determined by the eigenvalues of the following

matrix:
(

0 1

−1 −γ

)
. (7.62)
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The eigenvalues, λ±, are given by

2λ± = −γ ±
√
γ2 − 4. (7.63)

Hence, the nature of the equilibrium point depends on the sign of γ−2, although, in either

case, the real part of the eigenvalues is always negative and so the equilibrium point is

always stable. The two cases separate cases are:

� γ > 2, in which both of the eigenvalues are real and negative. The equilibrium point

is thus a stable node.

� γ < 2, where the eigenvalues are complex (with nonzero real part). The equilibrium

point is thus a stable spiral.

In either case, the nullclines are also simple to write down as

Y = 0 and X − 1 +
γ2

4β
= β

(
Y − γ

2β

)2

, (7.64)

and so we can plot the phase planes for γ > 2 (Fig. 7.6) and for γ < 2 (Fig. 7.7).
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Figure 7.6: Phase plane for the case γ > 2. The values taken are γ = 3 and β = 2 (from

MATLAB).

Suppose ḃ(0) = 0 so that the trajectories start from Y = 0 for some X. In both cases

we see that, for a certain parameter regime with b0 > be+
ρHV 2

2K
, all trajectories will end up

at the equilibrium point, and so the ‘penetration’ stops in finite time. Differing parameter

regimes with Y (0) = 0 can lead to the penetration speed increasing monotonically. This

is unphysical, and so there are some restrictions on β and γ in this ‘toy’ model.
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Figure 7.7: Phase plane for the case γ < 2. The values taken are γ = 1 and β = 2 (from

MATLAB).

We observe that these phase planes are consistent with the k 6= 1
2

solutions: in the

γ < 2 regime, the spring term K is more dominant which permits the possibility of

decaying oscillatory solutions; when γ > 2, the spring constant K is below a critical value

which denies the existence of any oscillatory solutions.

7.1.1.6 (ii) Dashpot model

In a similar manner to using the spring boundary condition (7.42), employing the dashpot

boundary condition (7.43) with k 6= 1
2

leads to an ordinary differential equation for b(τ),

m

Hρ
b̈+

D

Hρ
ḃ+

(
αV τ − x0 +

b0
2(1− k)

− αb

)
b̈ =

k

2(1− k)
(V − ḃ)2. (7.65)

Crucially, unlike the ‘spring equation’ (7.45), we can simplify this equation by substituting

f(τ) = V τ − b(τ) to arrive at an autonomous differential equation,

D

Hρ
(V − ḟ)− (αf − x0 +

m

Hρ
+

b0
2(1− k)

)f̈ =
k

2(1− k)
ḟ 2. (7.66)

We transform this equation into a system of two first order equations by setting X = f

and Y = Ẋ = ḟ , so

Ẋ = Y , (7.67)

Ẏ =
1

C + (2k − 1)X

(
2(1− k)DV

Hρ
− kY 2 − 2D(1− k)

Hρ
Y

)
, (7.68)
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where C = b0 + 2(1−k)m
Hρ

and, without loss of generality, x0 = 0. It is trivial to see that

there are no fixed points. The nullclines, however, are

Y = 0 and Y = Y±, (7.69)

where

Y± = −D(1− k)

Hρk
± 1

k

√(
D(1− k)

Hρ
+ kV

)2

− (kV )2. (7.70)

The phase plane is shown in Fig. (7.8).
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Figure 7.8: A schematic phase plane plot for the system (7.67)-(7.68). The trajectories

appropriate to our initial conditions are highlighted in red.

We know that, initially, X(0) = −b0 > −C/(2k − 1). Hence, by following the trajec-

tories starting at (−b0, Y0) for some Y0 (shown in red), we can deduce that Y → Y+ for

large τ (either from above or below). This corresponds to a large time solution of

b(τ) = V τ +
D(1− k)

Hρk
τ − τ

k

√(
D(1− k)

Hρ
+ kV

)2

− (kV )2 + b0. (7.71)

Substituting into (7.38) gives us that

X0 ∼ V τ +
D

2Hρk
τ − τ

2(1− k)k

√(
D(1− k)

Hρ
+ kV

)2

− (kV )2, (7.72)

and the separation

b(τ)−X0(τ) ∼ b0 +
2k − 1

2(1− k)

τ

k

√(
D(1− k)

Hρ
+ kV

)2

− (kV )2 − D(2k − 1)

2Hρk
τ. (7.73)
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This separation remains positive if and only if

√(
D(1− k)

Hρ
+ kV

)2

− (kV )2 − D(1− k)

Hρ
> 0, (7.74)

which is true for all positive D. The fact that X0(τ) and b(τ) are linear at large τ means

that the pressure on the dashpot also tends to a constant (by virtue of (7.18) and (7.39)).

Numerical solutions illustrate these features (Fig. 7.9).

0

6

8b(
τ
)

10

12

3 4 521
Time τ

(a) Position of the dashpot, b(τ).

3

4

5

6

0 2 3 4 51

Time τ

V
−
Ẋ
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Figure 7.9: Four numerical plots (using MAPLE) showing b(τ), V − Ẋ0, Pb(τ) and ḃ(τ)

all against time τ . We have taken b0 = 5, k = 0.76, ρ = 1, m = 1, H = 1, x0 = 0, V = 5

and D = 1.
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7.1.1.7 Special case of k = 1
2

When k = 1
2
, the equation for the motion of the dashpot is

(Hρb0 +m)b̈+Dḃ =
1

2
ρ(V − ḃ)2H. (7.75)

We introduce the lengthscale L = 2b0 + 2m/ρH and timescale T = L/V , so that the

nondimensional version of this equation is

b̈+ λḃ = 1 + ḃ2, (7.76)

where λ = 2 + 2D
ρHV

is a nondimensional parameter. Imposing b(0) = b0, the general

solution is now

b(τ) =
1

2
(λ+ µ)τ − 1

2
log

(
(exp (µτ − b0) + b1(exp (µτ)− 1))2) , (7.77)

where µ =
√
λ2 − 4 is a real constant, and b1 is a constant determined by ḃ(0). For large

τ , the logarithmic term is dominated by the exponential, and so

b(τ) ∼ 1

2
(λ+ µ)τ − µτ =

1

2
(λ−

√
λ2 − 4)τ. (7.78)

The argument of τ is positive, and so we have linear growth again at large time1.

7.1.1.8 (iii) “Yield pressure” model

Our last toy model states that the pressure at the tip is constant, say Pb = σY . For k 6= 1
2
,

the equation (without inertia2) is

σY

Hρ
+

(
αV τ − x0 +

b0
2(1− k)

− αb

)
b̈ =

k

2(1− k)
(V − ḃ)2. (7.79)

This equation is very similar in nature to (7.65) and so we analyse it accordingly. Thus

we let f(τ) = V τ − b(τ), set x0 = 0 and transform the resulting second order differential

equation into a two dimensional system via X = f and Y = Ẋ = ḟ :

Ẋ = Y, (7.80)

Ẏ =
1

b0 + (2k − 1)X
(2(1− k)

σY

Hρ
− kY 2). (7.81)

There are no stationary points, and the nullclines are given by Y = 0 and Y = ±Y∗,
where

Y∗ =

√
2(1− k)σY

Hρk
. (7.82)
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Y∗

−Y∗

X

Y

X = −c0

X=− b0
2k−1

Figure 7.10: A schematic phase plane plot for the system (7.80)-(7.81). The trajectories

appropriate to our initial conditions are again highlighted in red.

Thus, we can now plot the phase plane, shown in Fig. 7.10.

Initially, X(0) = −b0 < 0 = x0. More crucially, −b0 > −b0/(2k − 1) and, since

V − Ẋ0 > 0, Y (0) > 0. From this, we deduce that all appropriate trajectories start with

X > −b0/(2k − 1) and Y > 0. Such trajectories tend to Y = Y∗, and so, for large τ ,

b(τ) ∼ V τ −
√(

2(1− k)σY

Hρk

)
τ + b0. (7.83)

For a realistic notion of penetration, we must have ḃ > 0, and so we demand that3

V 2 >
2(1− k)σY

Hρk
. (7.84)

Concluding the analysis for large τ , the turnaround point is given by

X0 ∼ V τ − τ

2(1− k)

√(
2(1− k)σY

Hρk

)
, (7.85)

and the separation

b(τ)−X0(τ) =
2k − 1

2(k − 1)
τ + b0. (7.86)

This is a positive and increasing function of τ , and shows that the yield stress and X0 are

related quadratically for large τ . Plots of b(τ) and V − Ẋ0 are given in Fig. 7.11.

1This nondimensional result is consistent with the large-time limit derived in (7.71) with k = 1
2 .

2We could add inertia to this problem. In doing so, we would find that we gain little as it is a trivial
modification of the m = 0 case.

3c.f. the yield condition, where we demand P > σY /2 for plastic flow.
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Figure 7.11: Two numerical plots (using MAPLE) showing b(τ) and V − Ẋ0 against time

τ . We have taken b0 = 5, k = 0.76, ρ = 1, H = 1, x0 = 0, V = 5 and σY = 30.

7.1.1.9 Special case of k = 1
2

Consideration of the special case of k = 1
2

leads to a simpler differential equation for b(τ),

namely

b0b̈ =
1

2
(V − ḃ)2 − σY

Hρ
. (7.87)

This has an explicit solution,

b(τ) =

(
V +

√
2σY

Hρ

)
τ − 2b0 log

(
D1 exp

(
1

b0

√
2σY

Hρ
τ

)
−D2

)
, (7.88)

for some constants D1 and D2. Imposing b(0) = b0 fixes D1 = 1/e+D2, We can solve for

D2 by prescribing some initial velocity. For large time,

b(τ) ∼
(
V +

√
2σY

Hρ

)
τ − 2

√
2σY

Hρ
τ =

(
V −

√
2σY

Hρ

)
τ. (7.89)

Thus the final velocity is determined by the sign of V −
√

2σY /Hρ, in agreement with

(7.85) with k = 1
2
.

7.1.2 Comments

We have seen that even the simplest of end-conditions can exhibit disparate behaviour.

Firstly, we considered the end b(τ) as a spring, which, in a particular parameter regime,

demonstrated oscillatory behaviour. This is clearly a nonsensical situation when compar-

ing it to shaped-charge penetration. A different parameter regime led to a solution in
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which the trajectories in the phase-plane reach a stable equilibrium point, and so pene-

tration effectively comes to a halt. This is a more realistic analogy with shaped-charge

penetration and corresponds to a small contribution from the spring. The analysis demon-

strates the main problem in choosing a spring end-condition: the resulting equilibrium

point strongly depends on the equilibrium position of the spring, which must be chosen a

priori based on a posteriori estimates!

Conversely, the dashpot and ‘yield-pressure’ models both suggest a travelling-wave

type solution, in which the penetration velocity tends to a positive value (when V is

sufficiently great). This is the other type of solution we may hope to reach when solving

a fuller model. In these formulations, the initial conditions are effectively ‘forgotten’ for

large time whilst the pressure and fluid velocities equilibrate.

It is a trivial exercise to modify this analysis for an axisymmetric jet, in which the

height of the cavity merely gets replaced by the cross-sectional area in the global mass,

force and Bernoulli balances.

7.2 A model for a filling flow impacting a pre-stressed

membrane

The approach taken in the previous section was to develop simple ideas as stepping-stones

en route to fuller, more representative models. In this section, we again consider the jet

in the tip region as a filling flow. A key difference to the last section is that we will now

derive a two-dimensional model in which we permit the upper boundary to be free, whilst

the lower boundary still remains fixed at y = 0. The latter boundary is equivalent to the

axis of penetration (r = 0) in the axisymmetric model. The upper boundary represents

the jet-target boundary, and consequently must taper down to zero at the tip. We wish

this boundary to model the confinement of the surrounding target material. The simplest

method for doing so is to consider it as a membrane (or string) with position y = εH(x, t),

where 0 < ε¿ 1 is a nondimensional parameter (equal to the ratio of a typical y−scale to

a typical x−scale), under applied positive pressure P . This is shown in Fig. 7.12. When

the contact point moves in the positive x−direction, the membrane ‘peels back’ from the

surface and we have penetration. Note that we could alternatively model it as a beam,

whose stiffness is equivalent to the target elasticity. This will be considered in the next

section.

Before writing down the fluid equations for a filling flow impacting on a membrane, we

will derive the boundary condition on the membrane and appropriate initial conditions

to determine the initial profile of the membrane. We suppose that the height of the
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X0(t)

Membrane y = εH(x, t)

Pressure P

Figure 7.12: A filling flow impacting on a membrane.

membrane H(x, t) is fixed at endpoints x = 0 and x = L, such that

H(0, t) = H0, (7.90)

H(L, t) = 0, (7.91)

where H0 is small compared to L. We assume that the membrane is initially under

constant pressure P from above. We are thus faced with a contact problem (see e.g. [24]),

shown in Fig. 7.13. We denote the contact point as x = C. The equation of the membrane

� � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � �

Pressure P

x = C

Height H(x, 0)

H(0, t) = H0

x = 0 x = L

Figure 7.13: Initial conditions for the jet-membrane impact problem.

is

T
∂2H

∂x2
= −N + P, (7.92)

where T is the tension in the membrane (assumed constant) and the normal reaction N
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is given by

N =

{
0 0 ≤ x < C

P C < x ≤ L
. (7.93)

Note that we need to assume that N ≥ 0, so that P−THxx ≥ 0. The boundary conditions

are (7.90)-(7.91), and the continuity conditions4

H(C, t) = Hx(C, t) = 0. (7.94)

We solve these equations and boundary conditions to discover that the displacement at

time t = 0 satisfies

H(x, 0) =





P
2T

(
x−

√
2H0T

P

)2

0 ≤ x ≤
√

2H0T
P

0
√

2H0T
P

≤ x ≤ L
. (7.95)

We now need to write down an equation for the evolution of the membrane displace-

ment as a result of the pressure p of the fluid. For small H, a force balance leads to the

following wave-equation for the membrane:

1

c2
∂2H

∂t2
=
∂2H

∂x2
+
p− P

T
, (7.96)

where c =
√
T/ρm is the wave speed.

7.2.1 Inner and outer analysis

We are now in good shape to divide the model up into four separate regions. Firstly,

region I is where the incoming jet enters the thin channel, y = εH(x, t), before entering

the inner region (region II). This inner region is where the fluid rapidly turns around, and

so we will use a filling-flow model here. Region III is the outer shallow region, where the

fluid exerts a pressure on the membrane and the membrane comes down to zero. Finally,

region IV consists of returning jet material. This set-up is depicted in Fig. 7.14.

When deriving the equations for the flow, we will once more change to coordinates

moving with the turnaround point, X0(t), in the inner region. We start by looking at the

equations in the individual regions, concentrating on the all-important regions II, III and

IV.

4There will be a Heaviside-type discontinuity in wxx at x = C which leads to a δ−function in the
third derivative of w. If the first derivative was discontinuous, there would have to be a δ−function in
the second derivative, which we clearly do not have.



7. Paradigm tip models for the jet 157

� � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � �

P

b(t)

H(x, t)
II

I

IV

X0(t)
III

Figure 7.14: A schematic of the filling flow impacting a membrane, showing four separate

asymptotic regions.

7.2.1.1 Region I

In region I, we assume that a steady, infinite jet with velocity V and height hj flows in the

positive x−direction. The fluid in the jet is assumed to be irrotational and incompressible,

so that there exists a velocity potential satisfying Laplace’s equation. We also assume

that a filling flow develops almost instantaneously, thus neglecting any effects of turbulent

flow in the initial impact. Hence, region I merely provides the boundary conditions for

the incoming jet in region II.

7.2.1.2 Region II

Recall that, for nontrivial solutions of Laplace’s equation, the aspect ratio must be of

order unity. We thus introduce coordinates ξ̄, ȳ and τ for a frame moving with x = X0(t)

defined by

εξ̄ = x−X0(t), (7.97)

y = εȳ, (7.98)

τ = t. (7.99)

We write the inner membrane height as HII and expand it in powers of ε

HII = H0
II + εH1

II +O (
ε2

)
. (7.100)

We can now see that the effects of these inner scalings are immediately felt at leading-order

and at O (ε) in the membrane equation (7.96), giving

∂2H0
II

∂ξ̄2
= 0 and

∂2H1
II

∂ξ̄2
= 0. (7.101)

The matching conditions on HII into the outer regions III and IV are on H and its

derivative. At leading order, we have

lim
ξ̄→∞

H0
II = lim

ξ→0
H0

III and lim
ξ̄→−∞

H0
II = lim

ξ→0
H0

IV (7.102)
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and

lim
ξ̄→∞

1

ε

(
∂H0

II

∂ξ̄
+ ε

∂H1
II

∂ξ̄

)
= lim

ξ→0

∂H0
III

∂ξ
, (7.103)

lim
ξ̄→−∞

1

ε

(
∂H0

II

∂ξ̄
+ ε

∂H1
II

∂ξ̄

)
= lim

ξ→0

∂H0
IV

∂ξ
. (7.104)

We can immediately integrate (7.101) and use the matching condition on derivatives to

find that

HII(ξ̄, τ) = HII(τ). (7.105)

Furthermore, we also find that
∂2H1

II

∂ξ2 is a constant function of τ , and so

∂HIII

∂ξ
(0, τ) =

∂HIV

∂ξ
(0, τ). (7.106)

We can now use the knowledge that HII does not vary with ξ̄ to recapitulate the usual

filling flow balances of §7.1.1.1:

p0

ρ
+

1

2
(u0(τ)− Ẋ0)

2 =
1

2
(V − Ẋ0)

2, (7.107)

hj(V − Ẋ0) = hr(V − Ẋ0) +HII(u0(τ)− Ẋ0), (7.108)

(p0 + ρ(u0(τ)− Ẋ0)
2)HII = ρ(V − Ẋ0)

2(hj + hr). (7.109)

Here, p0 is the far-field pressure as ξ̄ → ∞, u0 − Ẋ0 is the far-field velocity as ξ̄ → ∞
and k(τ) =

√
hj

HII(τ)
is now a function of τ . Solving (7.107)-(7.109) leads to the familiar

expressions for the far-field pressure p0 and velocity u0 − Ẋ0:

p0 = 2ρk(τ)(1− k(τ))(V − Ẋ0)
2, (7.110)

u0 − Ẋ0 = (2k(τ)− 1)(V − Ẋ0). (7.111)

7.2.1.3 Region III

In region III, we use outer coordinates moving with the turnaround point X0(t) defined

by

y = εy′, (7.112)

ξ = x−X0(t), (7.113)

τ = t, (7.114)

with derivatives

∂

∂x
=

∂

∂ξ
, (7.115)

∂

∂y
=

1

ε

∂

∂y′
, (7.116)

∂

∂t
=

∂

∂τ
−X ′

0(τ)
∂

∂ξ
. (7.117)
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The flow in this region is assumed to be irrotational and incompressible, so there exists a

velocity potential, φ, that satisfies Laplace’s equation with respect to a rest frame,

∇2φ = 0, (7.118)

with fluid velocity given by u = ∇φ. With the benefit of hindsight and §4.1.1, we

introduce a new velocity potential defined by φ̂ = φ − Ẋ0ξ so that the fluid velocity in

the new frame is

u = (û, v̂) =

(
∂φ̂

∂ξ
,
1

ε

∂φ̂

∂y′

)
. (7.119)

Hence we can rewrite Laplace’s equation in these coordinates as

ε2∂
2φ̂

∂ξ2
+
∂2φ̂

∂y′2
= 0. (7.120)

The boundary conditions for the fluid will be no normal flow on the base y′ = 0, a

kinematic condition on y′ = HIII, matching conditions for the fluid velocity and pressure

from the inner region and a condition on the fluid velocity at the tip ξ = b(τ) − X0(τ).

The first two of these boundary conditions can be written as

∂φ̂

∂y′
= 0 on y′ = 0, (7.121)

ε2∂HIII

∂τ
=

∂φ̂

∂y′
− ε2∂HIII

∂ξ

∂φ̂

∂ξ
on y′ = HIII. (7.122)

From equations (7.110) and (7.111), the matching conditions on the fluid are

p(0, τ) = p0(0, τ) = 2ρ

√
hj

HII(τ)

(
1−

√
hj

HII(τ)

)
(V − Ẋ0)

2, (7.123)

û(0, τ) =

(
2

√
hj

HII(τ)
− 1

)
(V − Ẋ0). (7.124)

Intuitively, the fluid velocity should equal the tip velocity at the tip, and so we expect

that the boundary condition on the fluid at the tip is

û = ḃ− Ẋ0 at ξ = b−X0. (7.125)

We will see that this is the case, but will have to justify it after performing some analysis.

The fluid must also satisfy a version of Bernoulli’s equation in the moving frame, as

in §4.1.1 and §7.1.1. Integration of the ξ−component of Euler’s equation (momentum

conservation) allows us to write this as

∂

∂ξ

(
∂φ̂

∂τ
+

1

2
|û|2 +

p

ρ

)
= −Ẍ0, (7.126)
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where û is the velocity in the moving frame.

Transforming the membrane equation (7.96) into outer coordinates, we find that

1

c2

(
∂

∂τ
− Ẋ0

∂

∂ξ

)2

HIII =
∂2HIII

∂ξ2
+
p− P

T
. (7.127)

We also impose the tip boundary conditions

HIII,
∂HIII

∂ξ
= 0 at ξ = b(τ)−X0(τ), (7.128)

as we did when deriving the initial conditions for the problem5. The final conditions on

the membrane are the matching conditions (7.106) and

HIII(0, τ) = HII(τ). (7.129)

The rescaled Laplace equation (7.120) suggests an asymptotic series in powers of

O (ε2). Dropping dashes for convenience, we expand the velocity potential

φ̂ = φ̂0 + ε2φ̂2 +O (
ε4

)
. (7.130)

and find, at leading order,
∂2φ̂0

∂y2
= 0. (7.131)

Expanding the boundary conditions (7.121)-(7.122) to leading order, we easily obtain

φ̂0 = φ̂0(ξ, τ). (7.132)

Continuing the analysis to O (ε2),

φ̂2(ξ, y, τ) = −1

2

∂2φ̂0

∂ξ2
y2 + A(ξ, τ)y +B(ξ, τ), (7.133)

with boundary conditions

∂φ̂2

∂y
= 0 on y = 0, (7.134)

∂φ̂2

∂y
=

∂HIII

∂τ
+
∂HIII

∂ξ

∂φ̂0

∂ξ
on y = HIII. (7.135)

Thus A(ξ, τ) = 0 and, after some rearrangement,

∂HIII

∂τ
+

∂

∂ξ

(
∂φ̂0

∂ξ
HIII

)
= 0. (7.136)

5Here, we implicitly assume that HIII = 0 for ξ > b(τ) − X0(τ). This is the informal equivalent of
saying that the normal reaction N is non-negative for ξ > b(τ)−X0(τ).
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This is conservation of mass.

At leading order, Bernoulli’s equation becomes

∂

∂ξ

(
∂φ̂0

∂τ
+

1

2
|û|2 +

p

ρ

)
= −Ẍ0, (7.137)

where, in a slight abuse of notation, û = ∂φ̂0

∂ξ
.

We can now derive the boundary condition (7.125) formally. Integrating the mass

conservation equation (7.136) with respect to ξ, and noting that û = ∂φ̂0(ξ,τ)
∂ξ

is not a

function of y, we see that

ûHIII =

∫ HIII

0

ûdy =

∫ b(τ)−X0(τ)

ξ

∂HIII

∂t
(ζ, τ)dζ + 0, (7.138)

where the constant of integration is zero as HIII is zero at the tip. Changing to coordinates

local to the tip, we let η = ξ − (b(τ)−X0(τ)) and write HIII = H̄(η). Thus

∂HIII

∂τ
= −(ḃ− Ẋ0)H̄

′(η), (7.139)

leading to the fluid velocity at the tip being given by

û =
1

H̄

∫ 0

ξ−(b(τ)−X0(τ))

(−(ḃ− Ẋ0)H̄
′(ζ)dζ

=
1

H̄
(ḃ− Ẋ0)(H̄(η)− H̄(0)) (7.140)

= ḃ− Ẋ0.

This is defined as H̄ → 0 and so validates the boundary condition (7.125).

In summary, we have three equations for HIII, p and φ̂0 (7.127), (7.136) and (7.137),

with two boundary conditions on the membrane at the tip, whose position is unknown,

(7.128), one boundary condition on the fluid at the tip (7.125), and four matching condi-

tions as ξ → 0, (7.106), (7.123), (7.124) and (7.129).

7.2.1.4 Region IV

Much of the analysis for the returning jet in region IV is similar to the outer analysis in

region III, and so we use the outer coordinates (7.112)-(7.114). The main difference is

that the returning jet is bounded by an upper free boundary, y′ = HIV(ξ, τ) and a lower

free boundary, y′ = hIV(ξ, τ), say. Assuming an incompressible, irrotational fluid flow,

there exists a velocity potential φ such that

∇2φ = 0, (7.141)
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with fluid velocity u = ∇φ with respect to the rest frame. We again let φ̂ = φ− Ẋ0ξ to

get the following version of Laplace’s equation in outer coordinates:

ε2∂
2φ̂

∂ξ2
+
∂2φ̂

∂y′2
= 0. (7.142)

Similarly, Bernoulli’s equation is

∂

∂ξ

(
∂φ̂

∂τ
+

1

2
|û|2 +

p

ρ

)
= −Ẍ0. (7.143)

The fluid boundary conditions on the upper and lower free boundaries are kinematic,

so that (c.f. (7.122))

ε2∂HIV

∂τ
=

∂φ̂

∂y′
− ε2∂HIV

∂ξ

∂φ̂

∂ξ
on y′ = HIV, (7.144)

ε2∂hIV

∂τ
=

∂φ̂

∂y′
− ε2∂hIV

∂ξ

∂φ̂

∂ξ
on y′ = hIV. (7.145)

The equation for the membrane is

1

c2

(
∂

∂τ
− Ẋ0

∂

∂ξ

)2

HIII =
∂2HIII

∂ξ2
+
p− P

T
, (7.146)

whilst the equation on the lower free boundary is

p = 0 on y′ = hIV(ξ, τ). (7.147)

The matching conditions are concerning the height of the membrane and its derivative,

the fluid velocity and the distance between the two free boundaries. Explicitly, we write

HIV(0, τ) = HII(τ), (7.148)

∂HIV

∂ξ
(0, τ) =

∂HIII

∂ξ
(0, τ), (7.149)

û(0, τ) = −(V − Ẋ0), (7.150)

(HIV(0, τ)− hIV(0, τ)) = hr. (7.151)

Finally, we suppose that the membrane is pinned at x = −L, say, where L is negative

and of order unity, so

HIV(−L, τ) = Hp, (7.152)

where Hp is a constant.

Dropping dashes, we expand the velocity potential in powers of ε2 as

φ̂ = φ̂0 + ε2φ̂2 +O (
ε4

)
. (7.153)
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We substitute this into Laplace’s equation and use the kinematic boundary conditions to

find that, at leading order,

φ̂0 = φ̂0(ξ, τ), (7.154)

and at O (ε2), we obtain the mass conservation equation

∂

∂τ
(HIV − hIV) +

∂

∂ξ

(
∂φ̂0

∂ξ
(HIV − hIV)

)
= 0. (7.155)

The leading-order Bernoulli equation is more interesting. As φ̂0 is a function of τ only,

we find from the boundary condition (7.147) that, at leading order,

p = 0, (7.156)

and that

∂φ̂0

∂τ
+

1

2

(
∂φ̂0

∂ξ

)2

+ Ẍ0ξ = 0, (7.157)

as in (4.31). The leading-order membrane equation now simplifies to

1

c2

(
∂

∂τ
− Ẋ0

∂

∂ξ

)2

HIV =
∂2HIV

∂ξ2
− P

T
. (7.158)

We thus have a mass conservation equation for the fluid, (7.155), an “eikonal” equation

for φ0, (7.157), and an equation for the evolution of the membrane, (7.158). We also have

four matching conditions and a condition for the membrane at x = −L. In total, there

are three unknowns in this region, φ̂0, HIV and hIV, and five boundary conditions, which

is enough to determine X0(t), given X0(0), and b(t), given b(0).

7.2.2 Global travelling wave solution

The simplest solution methodology is to attempt a global travelling wave solution, in

which Ẋ0 = ḃ = U , say, where U is a constant such that U < V (so that the flow

is a filling flow). Note that we will have to replace the pinning condition (7.152) with

a new condition fixed in the travelling-wave frame for the formulation to work. Before

performing any detailed analysis, we can immediately predict that any such solution must

be in the k = 1
2

regime. This is because the outer region is “thin” so no extra mass can

flow into this region if Ẋ0 = ḃ. With this in mind, we start the analysis in region III by

introducing an outer travelling-wave variable ζ defined by

ζ = x− Ut. (7.159)
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The derivatives are thus

∂

∂x
=

d

dζ
, (7.160)

∂

∂t
= −U d

dζ
. (7.161)

In travelling-wave variables, and writingH forHIII, equation (7.136) for mass conservation

becomes
∂

∂ζ
(uH) = 0, (7.162)

and so the mass flux uH is constant through region III. This constant is easily determined

to be zero by noting that the velocity u is finite at the tip where H = 0. For a valid

solution, the height H cannot be zero everywhere in region III. Thus u = 0 in region III

for a travelling wave, and so the velocity potential here is a constant. As V > U , the

third matching condition (7.124) hence yields that k = 1
2
, as anticipated. This gives the

inner height as

HII = 4hj. (7.163)

Bernoulli’s equation in region III trivially gives that the pressure p is constant. This con-

stant will be determined by the second of the matching conditions, (7.123). We substitute

HII(τ) into this expression and hence find that the constant pressure in the outer region

satisfies

p =
1

2
ρ(V − U)2. (7.164)

Finally, we transform the membrane equation (7.96) into the new travelling-wave coordi-

nates. We nondimensionalise H = 4hjĤ and ξ = ξ∗ξ̂, where we have fixed ξ = 0 at the

turnaround point x = X0(t) and ξ = ξ∗ at the tip x = b(t). Dropping hats, the membrane

equation (7.96) becomes
∂2H

∂ξ2
= α, (7.165)

where

α =
(ρ(V − U)2 − 2P )ξ2

∗
8Thj

(
c2

U2 − c2

)
. (7.166)

Note that we have implicitly assumed that U 6= c. The case U = c will be considered

later. Also, this equation indicates that there is some constraint on the nondimensional

constant α. The nondimensional boundary conditions are

H,Hζ = 0 at ζ = 1, (7.167)

hence

H =
α(ξ − 1)2

2
. (7.168)
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The constraint on the solution being valid is that the quadratic must be positive, so α > 0.

Indeed, matching the membrane height into region II, using the nondimensional (7.163),

we find that α = 2 and so

H = (ξ − 1)2. (7.169)

We now transform the equations of region IV into travelling-wave variables, initially

keeping the analysis dimensional. Firstly, mass conservation (7.155) becomes

∂

∂ζ
(u(HIV − hIV)) = 0. (7.170)

Using the matching conditions and the result hr = hj, we can integrate to obtain

u(HIV − hIV) = −hj(V − U). (7.171)

Bernoulli’s equation is no longer an accelerating version, and so we have

1

2

(
∂φ̂0

∂ζ

)2

= constant. (7.172)

Again, we use the matching conditions and then integrate to find

φ̂0(ζ, t) = −(V − U)ζ + f(t), (7.173)

for some f(t), and so u = −(V − U). Substituting back into the new mass flux equation,

we see that

HIV − hIV = hj (7.174)

everywhere. This tells us that the two free boundaries must stay the same distance apart

in the travelling-wave formulation. Now, using the same nondimensionalisation as before

and dropping hats, the membrane equation (7.158) becomes

∂2HIV

∂ζ2
= β, (7.175)

where

β =
−Pξ2

∗
4Thj

(
c2

U2 − c2

)
. (7.176)

We integrate this twice, using the nondimensional matching conditions HIV(0) = 1 and

H ′
IV(0) = −2 and discover that

HIV =
βξ2

2
− 2ξ + 1. (7.177)

Although, in reality, we would like to solve on an infinite region, it is sensible to pin the

ends of the membrane in the moving frame for the travelling-wave formulation, and so

(7.152) becomes

HIV(−L̃) = H̃p, (7.178)
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where L̃ = L/ξ∗ and H̃p = Hp/4hj. This leads to

H̃p =
βL̃2

2
+ 2L̃+ 1. (7.179)

The equations α = 2 and (7.179) are enough to determine the unknown constants U

and ξ∗. These lead to a quartic (note that ξ∗ is hidden in the expression for H̃p, and

so the roots are nontrivial). To investigate possible solutions, we separately consider the

three cases of β > 0, β = 0 and β < 0, corresponding to subsonic, sonic and supersonic

penetration respectively. These may or may not be possible, and depend on choice of the

unknown constants in α and β.

Subsonic penetration (β > 0)

From the constraint α > 0, we see that subsonic penetration occurs when the applied

pressure P > 1
2
ρ(V − U)2. This bounds U via

V −
√

2P

ρ
< U < c. (7.180)

Interestingly, we note that the incoming jet speed can still satisfy V > c in this regime.

The profile in region IV is a positive quadratic, with ζ∗ and U determined via α = 2 and

(7.179).

Sonic penetration (β = 0)

If we try U = c, the dimensional membrane equation in region IV in the form

(
U2 − c2

c2

)
∂2HIV

∂ζ2
= −P

T
(7.181)

leads to the contradiction P = 0, and so there is no non-trivial travelling-wave solution

for such U .

Supersonic penetration (β < 0)

As V − U > 0, a supersonic travelling wave is only possibly if the the initial velocity of

the jet is itself supersonic. Further, as α > 0, we must have P < 1
2
ρ(V − U)2 and so V

must satisfy the stronger constraint of

V > U +

√
2P

ρ
> c+

√
2P

ρ
. (7.182)
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The profile is again quadratic in both regions III and regions IV, although the quadratic in

region IV is now a negative quadratic (i.e. is bounded above). Analysis of this quadratic

shows that it turns at

ζc =
2

β
=

L̃2

H̃p − 2L̃− 1
, (7.183)

which is negative by the assumption on β. The relative sizes of ζc and L̃ are not known

from this expression, and so we allow the possibility of the derivative of HIV changing

sign. This results in two possible profiles for subsonic penetration, depending on the

unknown variables. Note that the inequality (7.182) makes sense physically. Firstly, we

can see that a necessary condition for supersonic penetration is the initial jet to be itself

supersonic (c.f. plasticity in §3.3). Furthermore, the inequality demonstrates the effect of

the applied pressure P ; the greater the pressure P , the higher the velocity of the incoming

jet V has be above the sound speed of the membrane for supersonic penetration to occur.

7.2.2.1 Predictions using shaped-charge parameters

We can visualise these travelling-wave profiles using shaped-charge parameters from Table

3.1. We motivate choosing the pinning length-scale L = 1m from a typical penetration

depth, the confining pressure P by the yield stress, tension T by the Lamé constant λ,

the density ρ by the density ρj of the copper jet, and choose the primary sound speed

cp. We can then vary the parameters Hp and V to generate one subsonic travelling-wave

profile and two possible supersonic travelling-wave profiles. Recalling the constraints on

P and V for a valid solution, we plot solutions in Fig. 7.15 and Fig. 7.16.

� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �

ζ = 1

Pressure P
ζ = −L̃ Quadratic profile

ζ = 0

Figure 7.15: A subsonic travelling-wave profile, with hj = 2mm, ρ = 8920kgm−3, c =

5000ms−1, T = 1 × 1011kgs−2, P = 2 × 109kgm−1s−2, L = 0.5m, V = 2000ms−1 and

Hp = 20mm. This leads to a solution U = 2326ms−1 and ξ∗ = 0.91m.
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� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �

Quadratic profile

ζ = 1ζ = −L̃

ζ = 0

Pressure P

(a) Solution with Hp = 20mm. This leads to
a valid solution with U = 7920ms−1 and ξ∗ =
0.86m. Observe that the height in region IV
satisfies a negative quadratic with no turning
point.

� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �

Pressure P

Quadratic profile

ζ = 0

ζ = 1
ζ = −L̃

(b) Solution with Hp = 5mm. This leads
to a valid solution with U = 8320ms−1 and
ξ∗ = 6.0m. The height in region IV satisfies
a negative quadratic with a turning point in
the region.

Figure 7.16: The two supersonic travelling-wave profiles with hj = 2mm, ρ = 8920kgm−3,

c = 5000ms−1, T = 1× 1011kgs−2, P = 2× 109kgm−1s−2, L = 1m and V = 9000ms−1.

7.3 A model for a filling flow impacting a pre-stressed

beam

In the previous section, we investigated representing the elasticity of the target via a

membrane boundary condition (7.96). In this section, we use the stiffness of a bending

beam as an analogy to the target elasticity. To do so, we replace the linearised membrane

condition (7.96) with a linearised beam equation

m
∂2H

∂t2
+ EI

∂4H

∂x4
= p− P, (7.184)

where m is the mass of the beam, E is the Young’s modulus of the beam and I is the

area moment of inertia of the beam’s cross section. These are all assumed to be constant.

To derive an initial state of the beam, we are faced with the contact problem

EI
∂4H

∂x4
= N − P, (7.185)

where, using the same notation of the previous section,

N =

{
0 0 ≤ x < C

P C < x ≤ L
. (7.186)

We clamp the beam at x = L, so that H(L) = Hx(L) = Hxx(L) = 0, and suppose that

it is simply supported at x = 0, so that Hxx(0) = 0 and H(0) = H0, say. The continuity
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conditions at the contact point6 x = C are continuity of H, Hx and Hxx. This will give

us an initial profile, although we omit this analysis.

7.3.1 Inner and outer analysis

Once more, we consider four separate regions, as in Fig. 7.14. We omit much of the

analysis, as it is identical to the previous membrane analysis.

7.3.1.1 Inner region II

Changing to the inner coordinates defined by (7.97)-(7.99), we expand the height of the

beam as

HII = H0
II + εH1

II + ε2H2
II + ε3H3

II +O (
ε4

)
, (7.187)

and find that the beam equation (7.184) becomes

∂4Hj
II

∂ξ̄4
= 0, (7.188)

for j = 0, 1, 2, 3. We integrate these equations and find the cubic solutions

Hj
II(ξ̄, τ) = Aj(τ)ξ̄

3 +Bj(τ)ξ̄
2 + Cj(τ)ξ̄ +Dj(τ), (7.189)

for j = 0, 1, 2, 3. This is simplified by the matching conditions

lim
ξ̄→∞

H0
II = lim

ξ→0
H0

III, (7.190)

lim
ξ̄→−∞

H0
II = lim

ξ→0
H0

IV, (7.191)

lim
ξ̄→∞

1

ε

(
∂H0

II

∂ξ̄
+ ε

∂H1
II

∂ξ̄

)
= lim

ξ→0

∂H0
III

∂ξ
, (7.192)

lim
ξ̄→−∞

1

ε

(
∂H0

II

∂ξ̄
+ ε

∂H1
II

∂ξ̄

)
= lim

ξ→0

∂H0
IV

∂ξ
, (7.193)

lim
ξ̄→∞

1

ε2

(
∂2H0

II

∂ξ̄2
+ ε

∂2H1
II

∂ξ̄2
+ ε2∂

2H2
II

∂ξ̄2

)
= lim

ξ→0

∂2H0
III

∂ξ2
, (7.194)

lim
ξ̄→−∞

1

ε2

(
∂2H0

II

∂ξ̄2
+ ε

∂2H1
II

∂ξ̄2
+ ε2∂

2H2
II

∂ξ̄2

)
= lim

ξ→0

∂2H0
IV

∂ξ2
. (7.195)

Hence

HII(ξ̄, τ) = HII(τ), (7.196)

6The ‘Heaviside’ discontinuity at the contact point is now in the fourth derivative.
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and, after a little algebra onH0
II, H

1
II andH2

II, we obtain the simplified matching conditions

H0
III(0, τ) = HIV(0, τ) = HII(τ), (7.197)

∂HIII

∂ξ
(0, τ) =

∂HIV

∂ξ
(0, τ), (7.198)

∂2HIII

∂ξ2
(0, τ) =

∂2HIV

∂ξ2
(0, τ). (7.199)

As the height of the inner region does not depend on ξ̄, the remaining analysis is unchanged

from the membrane analysis, giving equations (7.107)-(7.109) and far-field matching con-

ditions (7.110)-(7.111).

7.3.1.2 Outer region III

The analysis in the outer region is mainly unchanged; the only differences are the beam

equation and its boundary conditions. Hence, the equations for the fluid motion are

mass conservation (7.136) and Bernoulli’s equation (7.137). The unchanged boundary

conditions are the condition (7.125) on the fluid velocity at the tip, whereas the membrane

equation (7.127) with boundary conditions (7.128) are superseded by

m

(
∂

∂τ
− Ẋ0

∂

∂ξ

)2

HIII + EI
∂4HIII

∂ξ4
= p− P for 0 < ξ < b(τ)−X0(τ), (7.200)

HIII = 0 for ξ > b(τ)−X0(τ), (7.201)

and

HIII,
∂HIII

∂ξ
,
∂2HIII

∂ξ2
= 0 at ξ = b(τ)−X0(τ). (7.202)

Along with the matching conditions (7.110)-(7.111), we have just the matching con-

ditions (7.197)-(7.199).

7.3.1.3 Outer region IV

Mass conservation is unchanged at (7.155), and the eikonal equation (7.157) still holds as

the result of p = 0 at leading order. The evolution equation (7.158) is replaced by

m

(
∂

∂τ
− Ẋ0

∂

∂ξ

)2

HIV + EI
∂4HIV

∂ξ4
= −P. (7.203)

The pinning condition (7.152) is unchanged, although we also suppose that the beam is

simply-supported, so that
∂2HIV

∂ξ2
(−L) = 0. (7.204)

Finally, the matching conditions as ξ → 0 are (7.150)-(7.151) for the pressure and fluid

velocity, and (7.197)-(7.199) for the beam.
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7.3.2 Global travelling wave solution

Once again, we search for a global travelling wave solution and so introduce the travelling-

wave variable

ζ = x− Ut. (7.205)

Following through the previous analysis, we recover the same solution for the fluid velocity

in region II, u = 0, the same outer pressure in III, p = 1
2
ρ(V −U)2, and same inner height,

HII = 4hj.

The first important difference is the beam equation (7.184), which, in the outer region

III, transforms to

EI
∂4HIII

∂ξ4
+mU2∂

2HIII

∂ξ2
=
ρ

2
(V − U)2 − P, (7.206)

with boundary conditions

HIII,
∂HIII

∂ζ
,
∂2HIII

∂ζ2
= 0 at ζ = ζ∗. (7.207)

We nondimensionalise this equation by scaling ζ = ζ∗ζ̃ and HIII = 4hjH̃, where ζ∗, the

length of the outer region, will be determined by the solution procedure. By writing
′ = d

dζ̃
and then dropping tildes for convenience, we obtain the following nondimensional

eigenvalue equation:

H ′′′′ + λ2H ′′ = µ, (7.208)

where the unknown nondimensional constants λ and µ are given by

λ2 =
mU2ζ2

∗
EI

, (7.209)

and

µ =
ζ4
∗

4EIhj

(ρ
2
(V − U)2 − P

)
. (7.210)

The boundary conditions are now

H(0) = 1, (7.211)

and

H(1) = H ′(1) = H ′′(1) = 0. (7.212)

The solution to this problem is

H(ζ) =
µ

2λ4

(
λ2(1− ζ)2 + cos(λ(1− ζ))− 1

)
, (7.213)

where µ and λ satisfy the transcendental equation

2λ4 = µ(λ2 + cosλ− 1). (7.214)
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The first key observation we make about this solution is that since z2 + cos z − 1 > 0

for all 0 < z < 1, the solution H is only positive if µ > 0. Thus, in stark contrast to the

membrane solution, there is no travelling wave solution unless

P <
ρ

2
(V − U)2, (7.215)

and so, for U to be positive, the velocity must satisfy

V 2 >
2P

ρ
. (7.216)

Note that the constraint (7.215) ensures that µ > 0 and so the transcendental equation

for λ and µ is well-defined. Secondly, it is clear by looking at the first derivative that this

function is monotonic increasing for ζ ∈ [0, 1].

A second equation for µ and λmust come from region IV. The nondimensional problem

here becomes

H ′′′′
IV + λ2H ′′

IV = µ̂, (7.217)

where µ̂ = − Pξ4∗
4EIhj

, with nondimensional boundary conditions from (7.197)-(7.199)

HIV(0) = 1, (7.218)

H ′
IV(0) =

µ

2λ3
(2λ+ sinλ), (7.219)

H ′′
IV(0) = − µ

2λ2
(2 + cosλ), (7.220)

HIV(−L̃) =
Hp

4hj

= H̃p, (7.221)

H ′′
IV(−L̃) = 0, (7.222)

where the end ζ = −L̃ = −L/ζ∗ is now simply-supported in the moving frame. Solving

this, we find that

HIV = A+Bζ +
µ̂ζ2

2λ4
+ C sinλ2ζ +D cosλ2ζ, (7.223)

where

A = 1− 1
2λ8

(
µλ2(2 + cosλ) + 2µ̂

)
, (7.224)

B = −
(

cot(λ2L̃)
λ6

(µλ2(2 + cosλ) + 2µ̂)

)
+

µλ(2 + sinλ)
2λ3

+
µ̂ csc(λ2L̃)

λ6
, (7.225)

C =
(µλ2(2 + cosλ) + 2µ̂)

2λ8
cot(λ2L̃)− µ̂

λ8
csc(λ2L̃), (7.226)

D =
1

2λ8
(µλ2(2 + cosλ) + 2µ̂), (7.227)

and

H̃p = A−BL̃+
µL̃2

2λ4
− C sin(λ2L̃) +D cos(λ2L̃). (7.228)
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This equation, in addition to (7.214), allows us to solve for µ and λ and hence obtain the

unknown U and ξ∗ (note that µ̂ can be rewritten in terms of λ and µ only). This remains

to be done numerically.

7.4 A filling-flow impact model with general consti-

tutive law p = p(H)

In §7.2, we considered a filling flow impacting a membrane under applied pressure P . In

this section, we pose a more general model in which the pressure on the cavity boundary

is a prescribed function of H,

p = p(H). (7.229)

We will, at first, only state that p(H) is a monotonically increasing function, so that a

higher fluid pressure p corresponds to the height of the free boundary being greater.

7.4.0.1 Outer region

The bulk of the outer analysis is the same as in §7.2.1, the only difference being the

replacement of the membrane equation (7.96) with the general constitutive law (7.229).

To recapitulate, we write the equations for conservation of momentum and mass in matrix

form as:
(

1 0

0 1

)(
û

H

)

t

+

(
û p′(H)

ρ

H û

)(
û

H

)

ξ

=

(
−Ẍ0

0

)
, (7.230)

where û is the velocity in the frame moving with the inner turnaround point. The eigen-

values λ± are given by

λ± = û±
√
Hp′(H)

ρ
. (7.231)

Owing to the assumption of p(H) being monotonically increasing, the eigenvalues are real

and distinct. Hence the system is hyperbolic, with characteristic equations

dξ

dt
= û±

√
Hp′(H)

ρ
. (7.232)

We now solve for the left eigenvectors, l±, which correspond to the eigenvalues λ±, yielding

l± =

(
1,∓

√
p′(H)

ρH

)
, (7.233)
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and so separately multiplying the system (7.230) by l± leads to

dû± d

(∫ √
p′(H)

ρH
dH

)
+ Ẍ0dt = 0. (7.234)

Integrating this gives us the Riemann invariants for the system as

û±
∫ √

p′(H)

ρH
dH + Ẋ0, (7.235)

which are constant on the characteristics (7.232).

The boundary conditions are

û(b(t)−X0(t) = ḃ− Ẋ0, (7.236)

and

H(b(t)−X0(t)) = 0, (7.237)

with matching conditions being continuity of H into the inner region and equations

(7.123)-(7.124). We also suppose that, without loss of generality, X0(0) = 0 and b(0) = b0.

A sensible first choice of p(H) is to pick a linear relationship between p and H, so we

write

p = ρgH, (7.238)

where g is a constant. Substituting this relationship into the system (7.230), we recover

the shallow water equations in a moving frame with gravitational acceleration g.

There are numerous examples in the literature of the shallow water equations where

the gravity term is important. One relevant example is in the consideration of ‘gravity

currents’. These consist of two fluids of differing constant densities, one of which flows

into the other under the effect of gravity. Typically, such currents arise in oceanography,

fluid-spreading problems (such as oil slicks) and in many other industrial examples. The

significant feature of these flows is that the lengthscales involved naturally lead to a small

parameter, and hence to the shallow-water equations (with nonzero gravity) as in the

version of (7.230) in a non-accelerating frame.

Using high-speed photography, gravity-currents can be investigated experimentally.

Thomas et al. [88] examine the region local to the advancing head of the denser fluid in a

large Reynolds number regime. Looking at a flow in which the front is moving with near-

constant velocity (“slumping phase”), they track individual fluid particles and discover a

locally-turbulent flow that is in agreement with numerical models.

Analytically, it is important to track the position of the interface between the two fluids

and the shape of the free boundary in these systems, especially for large time. Grundy et

al. [27], [29] do so by looking at a classical travelling-wave solution to the problem. The
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important boundary condition they use is to balance the buoyancy term with inertia at

the ‘tip’, assuming that the height does not go down to zero there. They then obtain a

large-timescale linearly stable solution, valid up to a cut-off time where the viscous forces

become important (and so inertia must balance viscosity after this point). Sadly, the

buoyancy boundary condition is only valid for a nonzero tip-height, which is incompatible

with our boundary condition at the tip7. However, their analysis does suggest that we

might try a similarity solution.

7.4.1 Similarity solution

If we were to follow in the footsteps of previous sections, we would continue by attempting

a global travelling-wave solution. For such a solution to exist, the length of the outer region

must remain constant by virtue of mass conservation. This corresponds to the k = 1
2

regime, and so the constant outer pressure is given by (7.164), as in §7.2.2. However,

if the pressure is constant, then the height of the boundary H must also be constant in

the outer region via (7.229). We conclude that a global travelling wave solution is not

possible. Thus, in this section, we adopt the linear law (7.238) and attempt to find a

similarity solution. We start by looking for such solutions with inner solution X0 = U0t,

say, for constant U0.

With the previous hypothesis, consider the outer system (7.230), with boundary con-

ditions (7.237)-(7.236) and initial conditions X0(0) = 0 and b(0) = b0. We suppose that

the variables scale x ∼ α, t ∼ β, û ∼ γ and H ∼ λ. For the equations to remain

scale-invariant under these scalings, we must have

λ

β
=
λγ

α
and

γ

β
=
γ2

α
=
λ

α
. (7.239)

The matching conditions must also scale correctly. Using the linear pressure law, (7.123)

becomes

gH0 = 2

√
hj

H0

(
1−

√
hj

H0

)
(V − U0)

2. (7.240)

This gives a quartic for the matching height H0 in terms of the velocity U0 and, in

conjunction with (7.124), shows that γ = λ = 1 for the boundary conditions to remain

invariant under the rescaling. Thus we introduce the similarity variable

η =
ξ

t− T
, (7.241)

7A similar interface-problem in a shallow-water regime is considered in [28]. Here, the fluid is assumed
to start from rest and the initial behaviour of the interface (tip) is considered. It is shown that the
interface can remain stationary for finite time before moving, depending on the shape of the initial
conditions local to the tip. These are called ‘waiting-time’ solutions. However, given the ferocity of the
incoming shaped-charge jet, a small t expansion is likely to be practically irrelevant!
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where introduction of an unknown T allows us to fit initial positions of b(t) and X0(t).

Writing the outer unknowns as H = H(η) and u = U(η), the outer equations become

−ηU ′ + UU ′ + gH ′ = 0, (7.242)

−ηH ′ + (UH)′ = 0. (7.243)

Searching for polynomial solutions, we obtain

U(η) =
2

3
η +

C

3
, (7.244)

H(η) =
1

9g
(C − η)2, (7.245)

for some constant C. The boundary condition (7.237) and the condition b(0) = b0 lead to

b(t)−X0(t) = C(t− T ) = Ct+ b0, (7.246)

and so the tip moves at constant velocity. This also determines T = −b0/C. The second

boundary condition (7.236) is automatically satisfied. Matching pressure into the inner

region and writing k0 =
√

hj

H0
, we find

2k0(1− k0)(V − U0)
2 =

C2

9
. (7.247)

Matching the velocity yields

C

3
= (2k0 − 1)(V − U0). (7.248)

Eliminating V −U0, we obtain the quadratic (2k0− 1)2 = 2k0(1− k0), which has solution

k0 =
1

2
+

1√
12
. (7.249)

The positive square root has been taken to ensure k0 >
1
2
.

Finally, matching the height into the inner region gives H0 = C2

9g
, and thus we solve

for C and reach

C = 3
√
ghj(3−

√
3) > 0. (7.250)

Thus U0 is determined via (7.248) and the boundaries X0(t) and b(t) are given by

X0(t) = U0t, (7.251)

b(t) = U0t+ Ct+ b0. (7.252)

The outer solutions for H and u are

H(ξ, t) =
1

g

(√
ghj(3−

√
3)− ξ

3(t+ b0
C

)

)2

, (7.253)

u(ξ, t) =
2ξ

3(t+ b0
C

)
+

√
ghj(3−

√
3)). (7.254)
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The constant inner velocity is

U0 = Vj − 3
√
ghj(

√
3− 1). (7.255)

Overall, we have some kind of stretching travelling wave solution; the solution to the

inner is a travelling wave with known velocity U , whereas the profile of the outer region

behaves like a stretching positively-oriented quadratic, whose minimum corresponds to

the tip.

The solutions to the filling-flow models varying with height have resulted in some kind

of travelling-wave solution (albeit just in the inner region). Although this will always

predict an infinite penetration depth, it does demonstrate the possibility of similarity

solutions in which the ratio between the inner height and incoming jet is fixed via (7.249).

7.5 Axisymmetric filling flows

Up until now, we have only considered two-dimensional filling flows, despite motivating

an axisymmetric elastic/plastic model in Chapter 3. In this section, we remedy this and

develop ideas generated from the two-dimensional models.

We consider the upper half of a general axisymmetric filling flow with velocity V and

initial jet radius rj, returning jet radius rl, as shown in Fig. 7.17. For simplicity and in
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Figure 7.17: An axisymmetric filling flow.

a manner consistent with the two-dimensional model, we initially suppose that the filling

flow is occurring in a cylinder with radius R. Initially, we say nothing about the nature

of the free boundary r = R(z, t).



7. Paradigm tip models for the jet 178

7.5.0.1 Inner region

With little thought, it is clear that we can proceed in a manner almost identical to the two-

dimensional derivation, but replacing lengths in the two-dimensional models with areas

for the axisymmetric model8. Hence, using the same notation as in the previous section

and in direct correspondence with (7.13)-(7.15), we can once more write down equations

describing conservation of mass, force and a Bernoulli balance in a frame moving with the

turnaround point X0(τ):

πR2(u0(τ)− Ẋ0(τ)) + πr2
l (V − Ẋ0(τ)) = πr2

j (V − Ẋ0(τ)), (7.256)

(P + ρ(u0(τ)− Ẋ0(τ))2)πR2 = ρ(V − Ẋ0(τ))2(π(R2 + r2
l )), (7.257)

P

ρ
+

1
2
(u0(τ)− Ẋ0(τ))2 =

1
2
(V − Ẋ0(τ))2. (7.258)

Introducing the dimensionless constant k =
rj

R
, we can manipulate the three equations

and arrive at the familiar results of

P = 2ρk(1− k)(V − Ẋ0)
2, (7.259)

and

u0 − Ẋ0 = (2k − 1)(V − Ẋ0). (7.260)

We observe that the main difference between this model and the two-dimensional model

is that k is proportional to the reciprocal of the square root of the height in the latter,

whereas it is proportional to the reciprocal of the radius in the former.

7.5.0.2 Outer region

Much of the work for writing down the equations for this outer region has already been

done in §4.1.1. Consequently, we quickly recall the salient equations, making the appro-

priate modifications as necessary.

Analogous to the two-dimensional solution, we assume that the flow in the outer

region is both incompressible and irrotational so that there exists a velocity potential

that satisfies Laplace’s equation. Changing to outer coordinates,

r = εr′, (7.261)

ξ = z −X0(t), (7.262)

τ = t, (7.263)

8Had we derived the conditions (7.13)-(7.15) using complex variable methods, this direct analogy
would not have been possible. Lamentably, this method does not give the equation of the inner free
boundary.
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and writing a new potential φ̂ = φ − Ẋ0ξ so that the new fluid velocity is given by

u = (û, 0, ŵ) =
(

∂φ̂
∂ξ
, 0, 1

ε
∂φ̂
∂r

)
, we arrive at (4.5). The boundary conditions for the fluid

are now zero radial flow on the base r′ = 0 (as a result of symmetry) and a kinematic

condition on the free boundary r′ = R(ξ, t). Thus, in the same vein as (4.16) and writing

t for the inner temporal variable,

∂φ̂

∂r′
− ε2∂R

∂ξ

∂φ̂

∂ξ
= ε2∂R

∂t
on r′ = R(ξ, t), (7.264)

and
∂φ̂

∂r′
= 0 on r′ = 0. (7.265)

Expanding φ̂ in powers of ε2 and substituting into Laplace’s equation and the boundary

conditions, we discover at leading order that φ̂0 = φ̂0(ξ, t). At O (ε2), we again discover

that φ̂2 satisfies (4.26). This is where the analysis differs slightly from §4.1.1; we now

apply the zero flow boundary condition on r′ = 0 and reach mass conservation:

∂

∂t
(R(ξ, t)2) +

∂

∂ξ

(
∂φ̂0

∂ξ
R(ξ, t)2

)
= 0. (7.266)

We could also have derived this by balancing flux through a slender cylinder.

The z−component of the momentum equation has also been derived (and integrated)

in (4.9), which we write as

∂ŵ

∂t
+ ŵ

∂ŵ

∂ξ
+

1

ρ

∂p

∂ξ
= −Ẍ0. (7.267)

Irrespective of the nature of the free boundary r = R(ξ, t), the boundary conditions

for the system are zero radius at the tip,

R(b(t)−X0(t)) = 0, (7.268)

the usual condition on the fluid velocity at the tip,

û(b(t)−X0(t)) = ḃ(t)− Ẋ0. (7.269)

and the matching conditions motivated by the inner equations (7.259)-(7.260):

R(0, t) = R0(t), (7.270)

p(0, t) = 2ρk0(1− k0)(V − Ẋ0)
2, (7.271)

û(0, t) = (2k0 − 1)(V − Ẋ0). (7.272)

Here, R0 is the inner radius obtained from matching and k0 =
rj

R0
.
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7.5.0.3 Comments

At first sight, the obvious progression of this model seems to be to develop a model for a

jet impacting a membrane (or beam-equivalent). The problem with such a model is the

boundary condition for the membrane at the tip. In the two-dimensional model for the

membrane, say, it was trivial to write down that the height H and its derivative had to

be continuous at the tip ξ = b(τ)−X0(τ), and penetration stemmed from a ‘peeling back’

action of the membrane at the tip. In axisymmetry, we still wish the membrane to come

down to zero at the tip. However, the peeling-back mechanism is not possible and, more

crucially, we will need to ‘create’ membrane at the tip for any penetration to transpire.

It is not immediately obvious what the correct boundary condition should be at the tip,

and so, as a consequence, we move to consider a general law for the pressure p = p(R),

as in §7.4. It is again sensible to assume that p′(R) > 0.

7.5.1 General constitutive law p = p(R)

Assuming a general law p = p(R), we write down the axisymmetric equivalent of the

two-dimensional system (7.230):

(
1 0

0 1

)(
ŵ

R

)

t

+

(
ŵ p′(R)

ρ
1
2
R ŵ

)(
ŵ

R

)

ξ

=

(
−Ẍ0

0

)
. (7.273)

The eigenvalues λ± of this system are λ± = ŵ +
√

Rp′(R)
2ρ

, and so the characteristic

equations are

dξ

dt
= ŵ +

√
Rp′(R)

2ρ
. (7.274)

Owing to the assumption that p′(R) > 0, we again have a hyperbolic system. This time,

the left eigenvectors are (
1,±

√
2p′(R)

ρR

)
, (7.275)

leading to Riemann invariants of

ŵ ± 2

∫ √
p′(R)

2ρR
dR + Ẋ0. (7.276)

These are constant on the characteristics (7.274).

To close the model, we need to use a suitable constitutive law relating the pressure to

the radius. The simplest law such that p′(R) > 0 is a linear one,

p(R) = ρgR, (7.277)
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where g is again constant. Substitution of this law into the system (7.273) yields the

axisymmetric shallow water equations in an accelerating frame. Similar systems have

been briefly discussed in §7.4 and so we again consider the possibility of a similarity

solution.

7.5.2 Similarity solution

In this section, we mirror the ideas from the two-dimensional similarity solution in §7.4.1.

Thus, we assume that the inner solution is locally a travelling wave moving with constant

velocity U0, and we adopt the linear law (7.277) for p(R). This leads to the following

outer system of equations:

ŵt + ŵŵξ + gRξ = 0 (7.278)

(R2)t + (ŵR2)ξ = 0. (7.279)

The boundary conditions are given by equations (7.268) and (7.269). The matching

conditions are (7.268)-(7.269). We also suppose that b(0) = b0 and, without loss of

generality, that X0(0) = 0.

After some algebra, we find that a suitable similarity variable is

η =
z

t− T
, (7.280)

for some constant T . Writing w = W (η) and R = R(η), the momentum and mass

conservation equations transform to

−ηW ′ +WW ′ + gR′ = 0, (7.281)

−R′η + 2WR′ +RW ′ = 0. (7.282)

We look for polynomial solutions and discover the following solution analogous to (7.244)-

(7.245):

R(η) =
2

25g
(η −D)2, (7.283)

W (η) =
4

5
η +

D

5
, (7.284)

for some constant D. Use of the boundary conditions gives us the tip position as

b(t) = U0t+D(t− T ) = U0t+ b0, (7.285)

so that T = −b0/D. Remembering the difference with the two-dimensional case, we recall

k0 = rj/R0, where R0 is the matching radius from the inner region. Matching the pressure

and velocity from (7.271)-(7.272), we see that

2

25
D2 = 2k0(1− k0)(V − U0)

2, (7.286)
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and
D

5
= (2k0 − 1)(V − U0). (7.287)

Solving for k0, we reach the quadratic 2(2k0 − 1)2 = 2k0(1− k0), which has solutions

k0 =
1

2

(
1± 1√

5

)
. (7.288)

The positive root is taken to ensure k0 >
1
2
. Continuing the analysis, we use continuity

of R which yields

R0 =
2D2

25g
. (7.289)

Along with (7.288), this equation pins down the unknown constant D as

D =
5

2

√
(5−

√
5)grj. (7.290)

The solutions are hence

X0 = U0t, (7.291)

b(t) = U0t+Dt+ b0, (7.292)

R =
2

25g

(
z

t+ b0
D

−D

)2

, (7.293)

W =
4z

5(t+ b0
D

)
+
D

5
, (7.294)

with constant tip velocity

U0 = V −

√
5(5−√5)grj

2
. (7.295)

Despite changing from a two-dimensional to an axisymmetric geometry, we have an

almost-identical solution in which the inner solution is locally a travelling wave, whilst

the outer has a profile of a stretching quadratic, whose minimum is at the tip.

7.6 Remarks

In this chapter, we have used ideas from filling flows to model the jet region in the tip

in an attempt to simplify the modelling. Some of the simpler models of §7.1.1 resulted

in analytic solutions, yet other seemingly-facile models led to equations which could only

be solved numerically. More representative two-dimensional models for jet-impact into a

membrane and into a pre-stressed beam were then considered. Again, it was not possible

to derive an analytic solution to the complete system, yet travelling-wave solutions and

similarity solutions gave us insight into the local shape of the boundary of the jet with
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the target. A similarity solution was possible with a linear law p = ρgH, a result that

also followed when modelling an axisymmetric jet.

The hyperbolic systems should be solved numerically and compared to known results

for penetration and with the hydrocodes. This could motivate a more sensible choice of

constitutive law p = p(R). Apart from the linear law, a good possibility is to try a law

that is based on the elasticity of the target. For example, recalling equations (5.4) and

(5.20), we could try writing

R =





ap
2µ

R ≤ Rc

σY a
4µ

exp
(

2p
σY
− 1

2

)
R > Rc

, (7.296)

where µ is a Lamé constant, σY is the yield stress, and Rc is some critical value of R

derived from the yield condition. In order to model the residual displacement, a separate

law for when the pressure on the free boundary is decreasing is required. Such a law

would be trivially based on either (5.86) or on the nonlinear analysis of §5.2, and is shown

graphically in Fig. 7.18. We would then have to solve hyperbolic systems in regions III

and IV, with hysteretic boundary conditions. This model is a good way to unite the

analysis of §5.3, in which the pressure-pulse was unknown, with the fluid-mechanics of

the jet. This remains as further work.
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Figure 7.18: A schematic hysteresis diagram showing the displacement of the inner surface

of a gun-barrel against applied cavity pressure, based on §5.1.6.



Chapter 8

Metallurgical and hydrocode analysis

Consideration of the microstructure of a penetrated target should help us to understand

the mechanism of penetration more fully. In this chapter, we review the literature on

how shaped-charge penetration affects the microstructure. We will then describe and

appraise our own analysis on a block of hardened-steel that has been penetrated by a

silver shaped charge jet. We conclude the chapter with a discussion of numerical results

from the QinetiQ hydrocodes.

8.1 Shaped charge metallurgy literature

Firstly, we recall the observation of Walters [93] that there is no mass loss of the target

material after penetration. Thus, we expect to see evidence of plastic flow as a method

of excavating the target material.

Wells et al [98] analyse the microstructure of a titanium block penetrated by a low-

impact (∼ 700ms−1) hardened-steel projectile. Titanium is well-known to be very sus-

ceptible to adiabatic shear, with highly anisotropic mechanical properties. The authors

initially use “X-ray computed tomography” (XCT) as a non-destructive method to look

at the microstructure, before using the more destructive method of sectioning and etching

the specimen. Their analysis is all done on plane-sections whose normals are parallel to

the axis of penetration. The XCT shows orbital cracks, approximately 0.1mm long, within

6mm of the cavity. It also shows damage voids (∼ 1µm) in the same region. Sectioning

and etching the specimen reveals a plastic zone extending about 6mm radially from the

cavity, with the majority of the orbital cracks concentrated near the boundary of this

zone with the bulk of the specimen. Shear bands and small cracks are also observed at an

undisclosed higher magnification, with an increasing number of shear bands being present

nearer the back of the penetrated target. The authors conclude that the orbital cracks

are areas of shear-failure, connected by the shear bands.

184
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An important investigation into the microstructure is given by Yin et al [104]. They

consider penetration of four stacked ultra-high strength steel plates, each of thickness

20mm, by a copper jet with unknown impact velocity. The microstructure of the first and

last plates are investigated. The first plate, after it has been etched with nital, exhibits

a “white” etching layer. This layer is, on average, 75µm thick and many shear bands

emanate from it. Conversely, the fourth plate has far fewer shear bands. Furthermore,

if the specimen is instead etched with a super-saturated picric acid, the white etching

layer is no longer seen. However, it is now easy to see that the shear bands include a

central line following the band. This is thought to be where the majority of the shearing

occurs (“local shear deformation zone”). The remainder of the shear band is described

as “heat-affected zone”, a result of unloading from the extreme temperatures from the

shearing in the central band (see §1.2.2.3). There is also evidence of recrystallization

of austenite grains1 in the white layer. This suggests a very localized temperature of

1000oC. This recrystallization is not evident in the heat-affected zones of the shear bands.

Finally, a micro-hardness test is performed. It is found that the white-etched layer and

shear bands have a higher hardness than the bulk material, whereas the region local to

the white-etching layer has a slightly lower hardness than the bulk metal. This will be

discussed later in the chapter.

Murr et al [53] discuss the microstructure of a copper target that has been impacted by

a copper jet with impact velocity of 5.83km s−1. They emphasise that there is no evidence

for melt-related phenomena, and consistently find evidence of dynamic recrystallization,

suggesting that it is of great importance for plastic flow.

The influence of shock-waves on the microstructure is also discussed by Murr et al [52].

They comment that, for an impact resulting in subsonic penetration, a shock-wave will

move ahead of the elastic-plastic penetration at the bulk sound speed. This shock wave

is likely to create lattice defects in the target, which may affect the ensuing penetration.

Other authors consider more specific target materials, such as aluminium and tantalum

[26, 56], discussing the effects of shear localization, dynamic recrystallization and any

localized temperature effects.

8.2 Metallurgical analysis

To assess the damage caused by penetration experimentally, a “firing” is done. In a typical

firing, metal blocks of target material are stacked up, and the charge is fired vertically

1Austenite is a high-temperature phase of steel alloys, occurring in simple steels at temperatures above
723oC. The structure of an austenite consists of a face-centred cubic structure of iron with carbon in solid
solution. This is a very closely-packed structure. It is often used in stainless steel cutlery.
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into the target at known stand-off (Fig. 8.1). We have analysed blocks from QinetiQ

Target

Charge

Figure 8.1: The set-up for a typical firing. The charge is fired down into stacked blocks of

the target metal. The blocks are analysed afterwards.

into which a silver jet was fired with impact velocity 7.43km s−1. Each of the blocks was

originally 100mm×100mm×80mm, with the shorter side being vertical.

Before any microstructure analysis, we can comment on the macrostructure of the

target blocks. Firstly, we consider the block that was uppermost on the stack (Fig. 8.2).

The upper side has a large hole where the charge entered. It is also dimpled throughout

Cratering

(a) The entry wound of the upper-
most block of the penetrated tar-
get.

Faint circular marking

(b) The exit wound of the upper-
most block of the penetrated tar-
get.

Figure 8.2: The entry and exit points of a shaped charge after penetrating a hardened-steel

block.

the upper surface, evidence of spall and of a sufficiently high impact velocity [73]. The

exit wound of the block is a lot cleaner. Observe the almost-circular marking on the block,

with centre along the axis of penetration. These markings occur consistently on all of the

other blocks. The radius of this marking is roughly twice the radius of the cavity. It is

possible that this could represent the boundary of the plastic region, in agreement with
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ε− ε scaling of Chapter 4 for jet and plastic region. Indeed, writing the cavity radius as a

and radius of the elastic-plastic boundary as b, we can perform a rough back-of-envelope

calculation, arguing that the volume of material displaced must approximately equal the

volume of the plastic annulus, so that

π(b2 − a2) = πa2, (8.1)

and hence b ≈ √
2a, roughly agreeing with the observation. This will hopefully be clarified

by a microscopic analysis.

The next block down and subsequent blocks have much more regular cavities. Recall

Fig. 3.1, which motivated axisymmetric modelling. The cavities are rough in nature,

lined with a thin layer of silver.

A key observation is that all the blocks have bowed. The importance of this observation

on the modelling of the elasticity of the target has already been discussed in §4.5. We

can corroborate the observation of zero-mass loss during penetration up to an order of

magnitude by estimating the volume of the hole and the total volume of bowed material.

These values are in remarkable agreement.

We present two more macroscopic images in Figs 8.3 and 8.4. These are QinetiQ cross-

sections depicting penetration of a copper jet into a thicker piece of metal (at unknown

velocity). The first figure shows the scale of the penetration and cavity size. More

interestingly, the second figure shows a scalloped cavity, with similarly-shaped structures

following the cavity shape at several different distances away. It is possible that this is

the same kind of phenomena responsible as for the faint circle in Fig. 8.2, although it is

equally probable that it is an artefact of the sawing. Diagonal lines in this picture are

likely to be a result of the machining.

of jet

Direction

Hardened steel (RHA) target

Remains of the copper jet line the cavity

Figure 8.3: A cross-section of a target material showing penetration of a copper jet.
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Bulk metal

Copper-lined cavity
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with echoes of these structures

Marks follow the cavity path

Figure 8.4: Another cross-section of a target showing a copper-lined cavity.
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8.2.1 Microscopic analysis

The cavity is very regular in the second and third blocks. Consequently, these blocks are

less likely to exhibit unique effects resulting from the initial stages of penetration. This

motivated us to perform metallurgical tests on the third block.

Three slices were made into the block using a very hard and powerful circular saw:

two in planes parallel to two sides passing through the centre of the cavity (i.e. θ = 0

and θ = π
2

in cylindrical polar coordinates), and a third to cut the block into two equal

pieces, in a plane perpendicular to direction of penetration (Fig. 8.5).

Metal block cut in 3 planes

Silver-lined quarter of cavity

‘Face 1’

‘Face 2’

Figure 8.5: The large block is cut into a smaller, more manageable piece. The two marked

faces will be polished.

A quick look at the microstructure at this preliminary stage reveals that the cut block is

still not ready for analysis, as the machining of the saw is far too coarse (Fig. 8.6). Indeed,

by looking at the block one merely sees a dull hue. Hence, we polished the two marked

200µ m

Figure 8.6: Microstructure of an unpolished, sawn face.

faces on a rotating wheel using silicon carbide paper of different (decreasing) thicknesses.

The final polishing was done with a damp soft rotating pad, on which a polycrystalline

diamond paste was lightly spread. The particles in the paste were 1-micron in dimension.

Finally, the surface, now with the finish of a very good mirror, was etched with 2% nital

solution for a few seconds at a time and examined between the successive etches. This

process enables the features of the microstructure to be examined under a microscope.
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8.3 Pictures of the microstructure

Numerous pictures were taken of the microstructure at various resolutions for two of

the faces, described in Fig. 8.5. In this section, we simply include the pictures, before

commenting on them en bloc.

8.3.1 Images from ‘Face 1’

The following images are taken from ‘Face 1’, in which the penetration has taken place

from the top to the bottom of the images. We will present pictures for increasing amounts

of etching, starting with images with a light 3 second etch.

200µm

Figure 8.7: A photo of the bulk microstructure of the target sufficiently far away (at least

1mm) from the edge of the cavity. Note that there is no evidence of cracking, shear bands

or the silver jet.
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Crack

Silver on
edge of specimen

Penetration

200µm

Figure 8.8: A typical view of the microstructure within 1mm of the cavity edge after a

very light etch. We consistently see that a band of width ∼0.8mm from the edge of the

cavity has etched significantly more than the bulk.

Penetration

Silver inclusion

200µm

Figure 8.9: Another view of the thin band local to the cavity after a light etch. We can

see thin inclusions of silver. We also note from the brown markings that the thin band has

etched significantly more than the outer bulk.
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etching
Light

Penetration

Large silver inclusion

Silver-filled crack
Heavy etching

200µm

Figure 8.10: A view of the inner band after more etching. Note the darker colouring in

the band and the silver inclusions.

A crack partially

filled with silver

Penetration

200µm

Figure 8.11: A second view of the inner band after more etching. We observe silver

tracking down the edge of the cavity and a crack partially-filled with silver in this particular

image.
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Penetration

Cracks

200µm

Figure 8.12: A clearer view of a silver inclusion after a total of 10 seconds of etching. The

inner band now clearly shows cracks.

Cracks200µm

Penetration

Silver edge

Figure 8.13: A picture showing cracks, silver inclusions, and a silver-lined cavity (with 10

seconds of etching).
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200µm

Silver-filled crack

Crack

Penetration Etching artefact

Figure 8.14: This is another typical view of the microstructure local to the cavity after

a 10 second etch. We can consistently observe that cracks and silver inclusions appear in

the band ∼0.8mm from the cavity. The blue colouring shows where the specimen has been

significantly etched.

100µm

Penetration

to vertical
∼ 30o

Angle of silver

Figure 8.15: A photo showing a closer view of one of the silver inclusions. Typically, they

are at an angle of 30o to the direction of penetration, with a length of the order of 0.6mm.
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Larger inclusion of silver

Cracks

100µm

Penetration

Figure 8.16: A picture showing an inclusion of silver, larger than in Fig. 8.15. We can

also see a network of cracks, mainly at an angle of between 20o and 40o to the direction

of penetration. Note that the silver inclusion doesn’t start from the edge of the cavity and

that there is a crack at the bottom of the inclusion.

Cracks

Small voids

Deeper cracks

200µm

Figure 8.17: Another picture showing cracked regions. The wider black regions are also

cracks, at a different altitude to the thinner cracks (and hence not in focus). There are also

small damage voids, evident by altering the focus on the microscope.
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50µm

Cracks have
varying thickness

Branching crack

Figure 8.18: A photograph within 0.8mm of the edge of the cavity, showing a silver

inclusion and a network of cracks. Note, again, that the silver inclusion leads into several

cracks.

50µm

several cracks
Inclusion splits into

Figure 8.19: A close-up of Fig. 8.18. From this, we observe that the width of a typical

inclusion is 25µm. We can see that several cracks emanate from the end of the inclusion.
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8.3.2 Images from ‘Face 2’, with penetration occurring ‘into’ the

paper

with silver
Crack partially-filled

Silver inclusion

200µm

Figure 8.20: A cross-sectional view of the target reveals cracking and silver inclusions

around the cavity after a 10 second etch. This is seen consistently on other parts of the

block, and the bulk is indistinguishable from Fig. 8.7.

50µm

Figure 8.21: A close-up of the silver inclusion uppermost in Fig. 8.20. The width is about

50µm. This inclusion emanates from the edge of the cavity.
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200µm

Figure 8.22: A picture showing a network of cracks around the cavity. Observe a silver

inclusion amidst the cracks, which doesn’t emanate from the edge.

100µm

Figure 8.23: A close-up of the inner silver inclusion from Fig. 8.22.



8. Metallurgical and hydrocode analysis 199

8.3.3 Observations

The microstructure can be divided up into the bulk region (Fig. 8.7) and a thin band

local to the cavity that extends out 1mm. Apart from a few material defects, the material

outside this thin band is uniform. Conversely, the microstructure of the thin band is

fascinating. We now describe and explain its salient features:

� Dark etching

Even when lightly etching the specimen for three seconds, the thin band is a lot

darker than the bulk material. This is apparent to the naked eye, and is clearly

shown in Figs. 8.8, 8.9, 8.20. This is a result of severe deformation, corresponding

to nuclei of strain. Apart from the obvious permanent deformation of the target, this

high concentration of dislocations is the first clear sign of plastic flow. Even when

the specimen is etched for significantly longer, the bulk metal never shows anywhere

near a comparable amount of deformation. This indicates that the extent of the

plastic region is not as suggested by the faint marking in Fig. 8.2(b). Indeed, there

is no noticeable change in the microstructure corresponding to the faint marking on

the exterior of the block.

� Silver-lined cavity

From Figs. 8.11 and 8.13, we can clearly see that the cavity is lined with a very

thin layer of silver, as seen on the macroscale.

� Silver inclusions and cracks

Silver-inclusions, fully or partially silver-filled cracks and smaller cracks without

silver are a major feature of the microstructure in the band, shown in Figs. 8.8-8.23.

To our knowledge (and somewhat strangely), silver-filled cracks are not mentioned

in the literature. All of these features are confined to the thin band.

Typically, the larger silver-filled cracks are oriented at an angle near 30o to the

direction of penetration, and have a length of the order of 0.6mm (Fig. 8.15). These

filled-cracks may not be observed with other liners owing to the high ductility of

silver [9]. Images from ‘face 2’ show that the cracks are radial in nature, in agreement

with the observations of [98]. It is clear that many of these cracks are not fully filled

with silver (Fig. 8.20, Fig. 8.22). The thickness of the inclusions varies between

20µm and 50µm (Fig. 8.19, 8.21).

Fig. 8.18 and Fig. 8.19 demonstrate the contrast in thickness between the silver-

filled cracks and the smaller, empty cracks. The latter tend to have a thickness of the

order of 2µm and often emanate from the thicker cracks with a similar orientation
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to the direction of penetration (Fig. 8.16). Furthermore, there are more of these

smaller cracks, and they tend to extend out a little further into the thin band (Fig.

8.20)

The final position and orientation of the cracks is likely to be the result of different

processes occurring in several stages. Firstly, a compressive shock-wave will propa-

gate ahead of the jet tip, creating lattice defects. The direction of propagation will

be mainly along the z−axis, corresponding to the normal impact of the target. As

the jet penetrates, the extreme stress causes severe deformation locally to the jet,

thus creating cracks at lattice defects and as a result of the plasticity. The axial

penetration and radial expansion determine the orientation of the cracks, which we

observe to be between 20o and 40o to the axis of penetration, shown in Figs. 8.12-

8.17. The silver, flowing plastically, fills and significantly expands the larger cracks

as the jet passes. The stresses decrease as the jet tip passes and so the silver behaves

elastically as the target relaxes. More cracks will open in this relaxation phase. The

cracks that were fully filled with silver open further. As the silver in these cracks

is no longer flowing, voids will be created, thus accounting for the partially-filled

cracks observed in Fig. 8.11.

� Shear bands and grain boundaries

We cannot see any evidence of shear bands or of grain boundaries in any of the

figures. The former is not surprising, since steel’s propensity to form shear bands

is very dependent on the particular nature of the steel and whether it has gone

through any heat or chemical treatment processes. We are slightly surprised not to

see any grain boundaries or individual grains, which we would expect to be on a

scale somewhere between 1µm and 100µm, depending on the steel. This may be a

consequence of the particular type of etchant used and, again, the exact metallurgy

of the type of steel, which is, alas, unknown.

� Damage voids

When slightly perturbing the focus of the microscope, very small holes come in and

out of focus. These holes are damage voids, likely to be a result of shock waves from

the impact [52]. Fig. 8.11 and Fig. 8.17 show some of these voids, which are the

same order of magnitude as observed by [98]. The voids are also apparent in the

bulk metal.



8. Metallurgical and hydrocode analysis 201

8.3.4 Remarks

Our microscopic analysis is illuminating in many respects, yet leaves some questions

unanswered. The analysis suggests that the likely width of the plastic zone is small

compared to the cavity radius, although more accurate tests should be done to confirm

this. This is likely to be a combination of two major factors: firstly, the block that was

dissected was the third block in the original stack, so near the termination of penetration;

secondly, the material properties of the steel are likely to dominate its response, potentially

having large effects on the position of the elastic-plastic boundary. Consideration of

different blocks in the original stack and a more detailed analysis into different target

materials would go a long way to clarify these observations.

The presence of both the smaller cracks and the larger filled cracks is unlikely to affect

the large-scale modelling of penetration, although a complete model should really include

fracture.

Further analysis should be done using a more powerful microscope, such as a scanning

electron microscope. We would then, hopefully, be able to see grains and grain boundaries

clearly, and we may even observe signs of dynamic recrystallization. Sadly, this is not

available to us. More-detailed microscopy may also be able to explain the near-circular

markings on Fig. 8.2(b). However, although there is no noticeable difference in the

microstructure at this radius, it is possible that there is a significant change in the hardness

of the block. This motivates performing a hardness test on the polished specimen.

8.4 Hardness

The hardness of a material is a measure of its resistance to abrasion or scratching. How-

ever, when considering metallurgical properties of a material, the hardness usually refers

to a measure of the material’s resistance to plastic deformation. Thus, the hardness of

a metal is affected by, for example, any thermal changes, work-hardening and plasticity

that may have occurred in the metal.

The simplest form of hardness test is to scratch one material with another material

and assess the relative hardness using the Moh’s scale of hardness. Clearly, this only

gives a qualitative measure. A quantitative measure is obtained by indenting the surface

of the metal with a small indenter. The size of the indentation is then measured and

so, knowing the force on the indenter and the time over which indentation took place,

a quantitative measure of hardness can be obtained. Various different measures can

be obtained, depending predominantly on the geometry of the indenter. The main three

measures are the Brinell hardness test (using a spherical indenter), Rockwell hardness test

(typically indenting with a diamond cone under a preliminary load and then measuring
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permanent deformation after application of a large load) and the Vickers hardness test.

We shall use the latter. This test involves indenting the test metal with a right-pyramidal

diamond indenter, which has a square base and an angle of 136o between opposite faces2.

Typically, a force of between 10N and 1000N is applied, for a duration of between 10s and

15s. A schematic of this set-up is shown in Fig. 8.24. The result is an indentation, whose

136o

Metal

Diamond indenter

Force F applied over a designated timescale

Figure 8.24: A schematic of a diamond indenter which is indenting a metal.

projection on the horizontal plane is a nearly-square rectangle (Fig. (8.25). The lengths

Indentation

Bulk metal

Figure 8.25: A typical indentation by a diamond indenter made into rolled hardened steel.

The dimension of the indentation is of the order 1.6× 10−2 mm.

of the diagonals can be measured accurately through a microscope, and so an estimate

for the total surface area can be obtained using the arithmetic mean of these two lengths.

The Vickers hardness (HV) is thus defined by the ratio of the force3 F applied to the total

surface area of the indentation,

HV =
2F sin 68o

d2
. (8.2)

2The angle is chosen to mimic the most desirable ratio of indentation radius to ball radius in the
Brinell test.

3Usually, the formula is quoted by engineers in terms of the “kilogram force”.
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8.4.1 Hardness testing of the steel specimen

Two rows of indentations were made across the specimen. Initially, the separation between

each indentation on one row was 0.1mm. This distance was relaxed sufficiently far from

the cavity (Fig. 8.26). A 50g load was applied for 10 seconds during each indentation.
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Polished surface
Cavity lined with silver

Path of
charge

Figure 8.26: A plan-view diagram showing indentations in the polished surface of our

specimen.

The Vickers hardness was then calculated using (8.2). The individual numerical values

are tabulated in Table E.1, and plotted in Fig. 8.27.
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Figure 8.27: Plots from Vickers Hardness tests.
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8.4.2 Remarks on hardness test results

In general, the hardness of the specimen is up to 60% higher within a 1mm band of the

cavity than in the bulk, agreeing qualitatively with the work of Yin et al [104]. This

band is in direct correspondence with the darker band described in the previous section.

Outside this band, the hardness quickly reduces to relatively small oscillations about some

mean value, with a few outlying points. Furthermore, there is no noticeable change in

hardness at the distance of the faint almost-circular marking in Fig. 8.2(b), which occurs

roughly 10mm out from the cavity.

These observations add weight to our supposition that the thin band parallel to the

cavity is where plastic flow occurred. They do not, however, shed any light on the faint

ring about 10mm from the edge of the cavity on the exterior of the block. The steel

could have gone through many unknown different thermal and mechanical treatments

beforehand, and so it is likely to be very anisotropic. Thus, the texture of the steel

will dominate its response. This is probably the chief contributory factor in the outliers

and any anomalies in the ‘bulk’ and inner band. It would be useful to compare and

contrast the analysis with metallurgical studies for penetration with different liner and

target materials, and to perform analysis at an earlier point in the penetration to see the

size of the plastic region. This is a significant amount of work.

8.5 Hydrocode analysis

In this section, we present results from the Eulerian QinetiQ hydrocode, GRIM, as de-

scribed in §2.2.3. Given the choice of geometry, choice of constitutive law and the large

number of material parameters involved, the number of possible hydrocode runs is ex-

tremely large. Hence, we elect to use simple parameter regimes, and will consider a

sufficiently large target, thus neglecting the effects of waves from the side and back walls

on the penetration local to the jet.

We consider axisymmetric shaped-charge penetration occurring in a large domain given

by 0 ≤ r ≤ 35cm and −16cm ≤ z ≤ 39cm. Initially, the target material, chosen to

be rolled-homogenous armour (RHA) with a yield stress of σY = 6.4 × 1010kg m−1s−2,

occupies 0 ≤ r ≤ 30cm and 0 ≤ z ≤ 38cm. The small air gaps between the target and the

edge of the domain are deliberately present to allow for expansion of the target and to

prevent any numerical edge effects. The lower boundary is modelled as rigid, whereas the

other three boundaries use transmissive boundary conditions (i.e. no reflection of waves).

The jet initially occupies 0 ≤ r ≤ 0.4cm and −15cm ≤ z ≤ 0cm, and is modelled using

a Mie-Gruneisen equation of state. The remainder of the domain is air. We also add

‘stations’ to the target. These are points at which physical quantities can be measured
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as the penetration occurs. We use nine stations, equally spaced on the line between

(r, z) = (1.5, 2.0) and (r, z) = (5.0, 20.0), labelled from 1 up 9, respectively. This initial

set-up is shown in Fig. 8.28.
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JetAir

RHA target
‘Station’ 9

‘Station’ 1

Figure 8.28: A schematic of the initial conditions and the positions of the stations for the

hydrocode runs. The edge of the domain r = 35cm is not shown.

The jet is given an initial vertical velocity between 2.5km s−1 and 10.0km s−1. The

time-step is taken to be 10−8 seconds, and a perfect-plastic constitutive model is used for

the penetration. A small artificial viscosity is also added to the model for the jet and the

target in order to smooth out the numerical solutions. Finally, two fine grids were chosen,

one with 350 radial grid points and 500 axial grid points, and a finer one with 750 radial

grid points and 750 axial grid points. The latter grid was chosen to look at the earlier

stages of penetration. Plots of stress, strain and velocities were then output at different

time intervals.

8.5.1 Hydrocode plots

In the same manner as the metallurgical analysis, we present images en bloc before com-

menting on them individually. We begin with a ‘station’ plot for σrr, before presenting

rasters showing stress, strain, and velocity distributions. We omit any plots of σrz, as the

hydrocode gives that it is zero everywhere in the target.
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Figure 8.29: A plot showing the distribution of σrr as a function of time for stations 1 to

10 in the target. The initial velocity of the jet is 7.5km s−1, and its position can be tracked

via Fig. 8.30.
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(a) Hydrocode plots of plastic strain (left) and total radial stress (right) after
15µs for a penetrator with initial impact of 7.5km s−1.

(b) Hydrocode plots of plastic strain (left) and total radial stress (right) after
30µs for a penetrator with initial impact of 7.5km s−1.
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(c) Hydrocode plots of plastic strain (left) and total radial stress (right) after
40.1µs for a penetrator with initial impact of 7.5km s−1.

(d) Hydrocode plots of plastic strain (left) and and total radial stress (right)
after 50.1µs for a penetrator with initial impact of 7.5km s−1.

Figure 8.30: Four plots showing the time-evolution plastic strain and total radial stress

for transonic penetration. Observe the compressive stress-wave moving ahead of the pene-

tration.
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(a) Hydrocode plots of plastic strain (left) and total radial stress (right)
after 10.1µs for a penetrator with initial impact of 2.5km s−1.

(b) Hydrocode plots of plastic strain (left) and total radial stress (right)
after 40µs for a penetrator with initial impact of 2.5km s−1.

Figure 8.31: Two plots of plastic strain and total radial stress for a lower impact velocity.

The white regions in the pressure plots represent negative pressure (compressive waves).

Note that these waves propagate ahead of the tip even at the early stages of penetration.
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(a) Hydrocode plots of plastic strain (left) and material pressure (right) after
275.8ns for a penetrator with initial impact of 7.5km s−1.

(b) Hydrocode plots of plastic strain (left) and material pressure (right) after
773.2ns for a penetrator with initial impact of 7.5km s−1.
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(c) Hydrocode plots of plastic strain (left) and material pressure (right) after
1.8µs for a penetrator with initial impact of 7.5km s−1.

(d) Hydrocode plots of plastic strain (left) and material pressure (right) after
3.0µs for a penetrator with initial impact of 7.5km s−1.

Figure 8.32: Four plots showing plastic strain and material pressure during the early

stages of penetration. These results were run on the finer grid.
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(a) Hydrocode plots of radial velocity (left) and axial velocity (right) after
5µs for a penetrator with initial impact of 5km s−1. Note that the axial and
radial scales are different to the previous figure.

(b) Hydrocode plots of radial velocity (left) and axial velocity (right) after
10.1µs for a penetrator with initial impact of 5km s−1.
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(c) Hydrocode plots of radial velocity (left) and axial velocity (right) after
20.1µs for a penetrator with initial impact of 5km s−1.

(d) Hydrocode plots of radial velocity (left) and axial velocity (right) after
40.1µs for a penetrator with initial impact of 5km s−1.

Figure 8.33: Four plots showing the evolution of radial and axial velocity components.
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8.5.2 Analysis of hydrocode results

We start by comparing Fig. 8.29 and Fig. 8.30. The former shows values of σrr taken at

the fixed stations4 near the edge of the cavity, as described in Fig. 8.28, whereas the latter

figure depicts the progress of penetration and the effect of the jet on the distribution of

σrr in the bulk. After approximately 40µs, we observe that all of the jet is used up and

so the penetration has significantly slowed down. It is at this point when a compressive

stress-wave propagates into the bulk of the target. Recalling parameter values from Table

3.1 and the (good) Birkhoff estimate from §2.1.1, it is not surprising that there is no wave

propagation ahead of the tip until it slows significantly, as the penetration speed is greater

than the shear wave speed. Similar behaviour is exhibited by a jet with impact velocity

of 10km s−1 (supersonic penetration).

The behaviour of σrr at the individual stations in Fig. 8.29 is also as one might expect:

each station exhibits a large peak in stress as the jet nears it, with the amplitude of the

peaks decreasing monotonically the deeper the penetration. Note that the jet has just

run out at 40µs. Hence, the amplitude of σrr at station 9 is a result of the compressive

stress wave emanated from the tip.

The right-hand plots in the sequence of figures in Fig. 8.30 show a measure of the

plastic strain as the penetration progresses. Clearly, the plastic strain is up to an order of

magnitude greater in a region local to the cavity. The width of this region is comparable

to the width of the jet. Further, there is nonzero plastic strain extending out a few cavity

radii from the cavity. This strain is significantly smaller. We must remember that, even

if there is a nonzero plastic strain in a region, it does not mean that there is plastic flow

(see Chapter 5), and so we could interpret this some of this region as plasticised material

with residual stresses (c.f. §6.1). Again, very similar behaviour is demonstrated by a jet

with impact velocity of 10km s−1.

The final observation from Fig. 8.30 is concerning the shape of the cavity. As well as

seeing evidence of spall from the rear of the cavity, we observe that the hydrocodes predict

a travelling-wave profile of the crater, where the radius of the cavity is at a minimum at

the tip, increasing to a slight bulge as z decreases, then decreasing again as we approach

the rear of the cavity. When the jet has been used up, the cavity becomes more cylindrical.

In contrast to the transonic penetration, Fig. 8.31 shows two plots of plastic strain

and material pressure for a jet with impact velocity of 2.5km s−1. The Birkhoff estimate

for penetration velocity is thus approximately 1.25km s−1. This is below the sound speed.

Hence, there is a marked difference in the wave propagation, namely that waves propagate

ahead of the tip before the jet is used up. Again, the negative material pressure tells us

4Lagrangian stations can also be used in the hydrocodes.
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that the waves are compressive in nature. The left-hand plot of plastic strain has a very

similar geometry to the transonic case, though has a smaller region of nonzero plastic

strain, the natural result of a lower velocity impact.

The early stages of how the hydrocode interprets the penetration is visualised in Fig.

8.32. This is the precursor to Fig. 8.30. We observe the evolution of the plastic region,

the initial stages of the copper jet turning around, and backflow of the target material at

the rear of the hole. The white region ahead of the tip corresponds to negative material

pressure (a region of compression). This region will stay near the tip until the penetration

slows significantly, at which point the compression wave propagates further into the bulk

of the target.

Finally, plots of the radial and axial velocity are presented in Fig. 8.33. It is clear

that the radial velocity is consistently greater throughout the penetration near the tip of

the jet, where the jet has just turned around. Even after this part of the jet has passed,

the target still experiences a significant radial component of velocity local to the cavity.

The axial component of velocity is more interesting. Firstly, there is a region just in front

of the tip, near the z−axis, that has negligible radial velocity and a large positive axial

component of velocity. This region moves with the tip, almost like a snow-plough (shown

in yellow and green). There is a region of backflow ahead of the ‘green’ region. From plots

of plastic strain, which we omit for the 5.0km s−1 impact, we see that the upper boundary

of this region of backflow corresponds to the boundary of zero and nonzero plastic strain

(elastic-plastic boundary), as expected.

8.5.3 Comments

The plots from the previous section gave a very general overview of hydrocode runs.

Even with the simplest of geometries and constitutive laws, marked differences between

subsonic, transonic and supersonic penetration were apparent, thus indicating the varying

importance of inertia in the problem. Furthermore, the stress and velocity profiles near

the tip of the jet are non-trivial. In conjunction with the model of Chapter 6, this

indicates that it will be hard to develop any analytical formulation that fully represents

the underlying physics in the tip region and that a numerical solution based on a good

mathematical understanding of the problem is the best way forward for the tip.

Of course, we could present many more results showing the effects of different pa-

rameters on penetration. For example, the effects of large standoff, radial drift and

particulation of the jet can be modelled by the hydrocode in countless geometries. By

doing these tests, comparisons can be made with experimental results to ascertain where

the hydrocode performs best and where further analytical work is needed to improve the

hydrocode. This is work is nontrivial.



Chapter 9

Conclusions

9.1 Summary of thesis

We opened Chapter 1 with a brief historical account of shaped charges, before outlining

the mechanics of the formation of a stretching axisymmetric jet. Various applications of

this remarkable technology were given, ranging from boring for oil to tree-felling. We then

set the stage for the following chapters by detailing equations for elasticity and plasticity,

in addition to presenting a paradigm of slender-body theory.

In Chapter 2, we outlined the classic two-dimensional Birkhoff hydrodynamic jet-

fluid impact model, before considering hydrodynamic models with finite confinement for

both continuous and particulated jets. We noted that these models were a good first

approximation, but did not fully represent the true physical processes involved. We

moved on to consider rock mining via a high-velocity water jet as an analogy, before

discussing more realistic models from solid mechanics. Initially, we illustrated some basic

crater-expansion models and then gave a précis of the literature on plastic instability and

jet particulation. We closed the chapter by setting out our thesis objectives.

Chapter 3 was concerned with laying the foundations of elastic-plastic equivalent to

the hydrodynamic Birkhoff impact model. We motivated an axisymmetric model via

experimental results and wrote equations and boundary conditions for the jet, plastic

and elastic regions. We then made the key assumption that the cavity is slender, again

motivated by experimental evidence. This led us to divide the model into outer, slender

and tip regions. Different possible tip scalings were discussed. These were based on both

geometrical arguments and on the tip regions individually having a local aspect ratio of

unity.

We developed the simplest slender scaling for plastic and jet regions in Chapter 4,

namely the scaling in which the radial width of both regions is O (ε). We nondimension-

alised the equations and expanded the variables in an asymptotic series. This reduced

216
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the dimensionality of the system, eventually resulting in an ‘eikonal’ equation and a novel

expression for the matching pressure into the plastic region. We used a Tresca yield con-

dition and Lèvy-Mises flow law in the plastic region, and discussed two possible velocity

scales.

The first velocity scale resulted in quasistatic equations of plasticity, enabling us to gain

explicit expressions for the stresses and velocities in terms of the unknown free-boundaries.

In the inner elastic region, we saw that the effects of inertia were not important, and

obtained the classic Lamé solution for the radial displacement and stress, although the

position of the elastic-plastic free-boundary was still unknown. The equations for the

inner were then reformulated in terms of the Love stress function to facilitate matching

with the outer elastic. We firstly considered an outer solution in which the effects of

waves were negligible. In performing this matching, we saw that we only needed the

stress decaying at infinity to determine enough unknowns in the inner. We then justified

the arguments for the full outer problem via reciprocity in §4.2.2 and matched with the

inner to obtain plastic stresses and velocities in terms of unknown free-boundaries and an

unknown quasi-constant axial plastic velocity. The system would have to be closed via

information from the tip. This methodology would have required nontrivial tip-analysis,

and so we attempted a travelling-wave formulation. The analysis demonstrated that such

a solution was not possible, suggesting that the plastic region must terminate.

We then considered a different plastic velocity scale, in which inertia became important

in the plastic region. This resulted in an ill-posed equation, indicating either that the axial

plastic velocity ẇ is constant or that this latter scaling is incorrect.

We concluded the chapter with the following question and observation:

� How could a linear-elastic-plastic model lead to a finite final cavity-radius, given

that the applied pressure returns to zero after penetration?

� Experimental evidence shows that penetrated blocks have bowed after penetration,

and that there is zero net weight loss after penetration.

This motivated looking more closely at a model which could ‘lock in’ plastic stresses and

displacements, which would keep the cavity open after penetration had terminated. This

provided the basis for Chapter 5.

We considered the paradigm two-dimensional, radially-symmetric cavity-expansion

problem in some detail in §5.1. We found that if we decomposed the stress into parts for

the expansion and contraction, we could derive expressions for residual plastic stresses and

displacements, visualised in Fig. 5.4. The key concept was that, once the applied pressure

had reached a peak (sufficient to induce plastic flow), decreasing the cavity pressure would

cause the material to immediately become elastic again with a locked in (residual) stress,
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although we showed that further plastic flow was possible if the initial pressure peak was

great enough. Thus the plastic part from expansion was unrecoverable. We looked into the

time history of the stresses when cyclically increasing and decreasing the cavity pressure,

and found that the system can ‘forget’ elastic changes, as it is recoverable (recall Fig. 5.7).

We then developed a hyperelastic equivalent to the modelling, again discovering important

residual stresses and displacements. The relevance to shaped-charge penetration of these

new ideas was discussed. To close the chapter, we considered a non-radially-symmetric

boundary condition on the inner cavity of the gun-barrel, hoping to gain insight into how

the plastic material was displaced in the tip. We found a solution for a small perturbation,

but concluded that a numerical solution would be required if the θ−dependent part of the

cavity boundary-condition was comparable in size to the radial part. We considered an

asymmetric model permitting residual stresses in §5.4.4 and outlined a solution procedure.

We illustrated interesting solutions to this problem using a finite element formulation.

This gave us new insight into the shape of the plasticised-plastic free-boundary.

We posed a model for penetration including the plastic history of the solid in Chapter

6. This model incorporated a non-slender plastic region and extra free-boundaries for

the ‘plasticised’ region. Sadly, this model was much more complicated than the slender

model of Chapter 4, and would have to be solved numerically. We moved on to consider

a mechanism to displace the plastic material in the tip via a squeeze film analogy. We

found that a quasistatic plasticity solution was unstable when the squeeze film was under

tension horizontally, leading to necking, but when under horizontal compression, we could

solve the system. We went on to develop a two-dimensional plastic squeeze film model in

intrinsic coordinates. We concluded the chapter by noting that these models only provided

us with qualitative behaviour of the target under confinement, and by commenting on

plastic mass conservation.

We considered the jet region in the tip in Chapter 7. With scaling ideas from Chapter

3, we modified Peregrine’s filling-flow analysis [67] to develop models for the fluid flow

in the tip. Simple filling-flow models between two fixed plates and novel tip conditions

showed interesting (albeit academic) solutions. More realistic models were considered in

§7.2, where we considered a filling flow impacting a membrane, the latter representing

the elasticity of the target. The model divided naturally into four different regions, one

each for the incoming jet, outgoing jet, inner filling flow and the large outer region in-

corporating the tip. A travelling-wave solution was obtained for the system. We then

replaced the membrane with a beam (so including stiffness into the model), and again

reached a travelling-wave solution. A more general model for the elasticity of the target

was considered in §7.4, in which we prescribed a general constitutive law p = p(H) on the

boundary between fluid and the solid body. A similarity solution for a particular p(H)
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ensued. We were easily able to generalise the two-dimensional analysis to axisymmetric

coordinates by using global balances rather than using conformal mapping techniques.

Again, a similarity solution was derived for a particular constitutive law p(R), and paral-

lels were drawn with the classic equations of shallow-water theory. Finally, we proposed

other possible constitutive laws in §7.6, based on the gun-barrel analysis of Chapter 5.

Chapter 8 began with a review of the metallurgical literature on shaped-charge targets.

We then presented new results from a microscopic analysis of penetrated blocks provided

by QinetiQ. We saw key features such as microcracks and damage voids. The former were

within a very thin radius from the edge of the cavity, and were often filled with silver. The

absence of shear bands was attributed to the specific nature of the steel target. In order

to help determine the region of the target that had undergone plastic deformation, we

conducted a hardness test on the specimen. This was inconclusive regarding the elastic-

plastic boundary. We ended the chapter with a gallery of results from simple hydrocode

runs. These illustrated the effects of waves, cavity size, stress state and target velocity for

differing impact speeds. In particular, differences in supersonic and subsonic penetration

were observed, an issue that is not fully-addressed by the shaped-charge theory.

9.2 Conclusions and discussion

The obvious elastic-plastic analogy to the Birkhoff hydrodynamic penetration model had

some problems. We firstly found that the assumption of a slender plastic region was

only feasible if the yield stress of the target was suitably low. Matching with the outer

elastic problem and the argument of reciprocity told us that inertia is only important

locally to the penetration if the axial component of the plastic velocity, ẇ is comparable

to the axial component of the jet velocity, q3. However, analysis of such a regime led

to an ill-posed problem, unless ẇ = W for some constant W . We can speculate that

ẇ ¿ q3 is realistic as the jet is unlikely to exert significant shear on the plastic region.

The failure of a travelling-wave formulation for this parameter regime indicates that the

plastic region should really terminate in the slender region or nearer the tip. Furthermore,

this linear-elastic-plastic model can not predict the observed bowing in the blocks. We

remedied this by considering loading-unloading phenomena in the classic gun-barrel prob-

lem. In doing so, we found that residual stresses and displacements were crucial, and so

should be included in any elastic-plastic model. A relatively simple modification gave us

the hyperelastic-plastic equivalent, exhibiting similar behaviour. Modelling the target as

hyperelastic now furnishes us with a mechanism to generate finite residual displacements

(rather than the infinitesimal displacements from linear elasticity), thus giving us two

alternative methodologies to generate a cavity, namely a sufficiently large plastic region
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(see §5.3), or finite displacement elasticity. Consideration of an asymmetric boundary

condition to the gun-barrel inflation demonstrated exciting behaviour in the stress field,

emphasising the importance of dividing the material into plastic, elastic, and plasticised

regions. From the complicated stress field that follows, we can conclude that solving a

full elastic-plastic model in this way must be done numerically.

A squeeze-film analogy will never be very accurate as the thin elastic-plastic layer

is always confined by (and pinned to) a surrounding elastic medium. However, we can

deduce that the confinement of the target acts against the pressure in the jet when creating

a plastic region. The analogy also highlighted a problem with plastic mass conservation.

The key observation is that, irrespective of the particular details of the model, if there is

a finite plastic region and a hole is opened up, then either the plastic material has been

compressed or there is a finite displacement in the elastic region.

Geometric ideas of slender jet scalings suggested tip scalings in the jet. Modelling

the rapid turnaround of the jet as a filling flow gave us insight into the fluid flow, and

toy models gave us ideas for the shape of the target-fluid boundary in both the two-

dimensional and axisymmetric case.

Finally, analysis of the microstructure of a penetrated block was extremely revealing,

yet perplexing. From the microscopic pictures, we can see numerous effects that aren’t

included in our modelling, such as microcracks filled with silver and the possibility of

shear bands (in the literature). However, it is important to understand the key features,

such as the cavity radius and bowing blocks, before incorporating the finer points. The

novel model described in §6 is successful in incorporating many features that cannot be

explained by existing models.

9.3 Future work

Throughout the thesis, we have illustrated various important, yet unresolved, issues.

Firstly, the slender analysis should be redone with different constitutive laws. For example,

the jet could be modelled as a shear-thinning fluid or as a plastic, and various plasticity

models, such as the Zerilli-Armstrong model (1.41) should be investigated. Temperature

effects should also be considered. Although it is likely that most of these will demand

a numerical resolution, it is necessary to compare and contrast the different solutions in

order to identify the important parameters and processes.

Inertia was of varying importance for the slender-body model and it is probable that it

plays a significant role in the global response of the target. Its influence is likely to depend

on whether the penetration is subsonic or supersonic. This is currently being investigated

[57]. Compressibility of the jet should also be considered. This can lead to a complex
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array of shock waves in the jet on impact. A relatively simple paradigm model for inertia

and the ensuing elastic waves is to consider the gun-barrel problem with inertial terms

in the force balance equations. This problem is outlined in Appendix F, and results in a

novel free-boundary problem that remains to be solved numerically.

Another numerical solution is required for the full elastic-plastic model incorporating

residual stresses and displacements in §6.1. This is a significant amount of work, although

the FEMLAB calculations in §5.4.4 indicate that it is likely to be very illuminating. The

simpler model mentioned in §5.3 also requires completion – this may represent the flow in

a slender region far from the tip, but is unlikely to be realistic nearer the tip where there

is a considerable axial component of the plastic velocity.

An exciting new avenue of research is to couple the filling-flow model for the jet (§7.5.1)

with the elastic-plastic pressure-pulse model of §5.3. Like Barnea and Sela’s model [4], it

is an elastic-plastic model that divides the target up into two-dimensional slices. However,

it has two main advantages: firstly, that it incorporates a more realistic three-dimensional

model of the jet, thus replacing the ad hoc approach taken by Barnea and Sela; secondly,

the all-important effects of residual stresses and displacements are included. This model

will have to be solved numerically.

We considered the response of a two-dimensional target via a squeeze-film analogy.

We could easily modify this analysis to consider an axisymmetric squeeze film. Again, we

expect that this analysis would only give qualitative results, although could result in a

novel flow-field.

The metallurgical analysis of §8.2 displayed a variety of microstructural phenomena.

It demonstrated the prevalence of cracks, indicating that a model for fracture needs to be

included for a complete model of penetration (although this is likely to be a less important

mechanism, a result of shock waves). Repeating such metallurgical analysis for firings with

different jet and target materials at various points throughout penetration for a range of

impact velocities would be very beneficial. In particular, metallurgical tests highlighting

differences between a supersonic and subsonic penetration velocity are crucial to enable

a full understanding of the problem. Furthermore, our simple metallurgical tests should

be refined – better tests more appropriate for a steel that has gone through several phase

transitions are likely to yield superior results.

There are countless many other aspects of shaped-charge penetration that could be

considered, such as particulation of the jet. One possible analogy can be drawn with the

particulated water-jets (§2.1.2). Indeed, it may be possible to control the particulation

via a corrugated liner; this remains to be investigated. Furthermore, the cyclic loading-

unloading phenomena outlined in §5.1.7 could be of vital importance for such jets. We

could also attempt to model new ideas such as lubricated penetration, or the effects of
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various armours, such as reactive armour1 or electric reactive armour2, or the counter-

measures taken against such armours, namely a tandem-warhead3. It is probable that

any of these is possible to model in isolation, but that constructing an analytical model

to cover all scenarios is unfeasible.

1This consists of tiles of explosive sandwiched between two metal plates on, say, a tank. When a
charge approaches, the explosive is detonated and one of the plates flies off into the path of the charge.
Thus new material is continuously being fed into the path of the shaped charge, inhibiting penetration.

2This armour consists of two charged plates separated by an insulator. When the shaped charge
penetrates, it ‘completes the circuit’ and so the tip ‘vaporises’.

3This warhead is made up of two shaped charges, fired in quick succession.



Appendix A

Stress and strain components in

cylindrical polars for linear elasticity

Recall that the Cauchy strain tensor for linear elasticity is defined by
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Writing the (r, θ, z) components of the displacement in cylindrical polars as (u, v, w),

respectively, the tensor becomes
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For a homogenous, isotropic elastic material, the components of the stress tensor are

σij = 2µεij + εkkλδij. (A.8)
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Hence, the general components of stress in cylindrical polars are
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With radial symmetry, these trivially simplify to
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σrθ = σzθ = 0. (A.19)
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Equations of small motion in

cylindrical polars in an isotropic

medium with no external body forces

The three components of Navier’s equations in cylindrical polars that include inertial

effects are
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The equations in general curvilinear coordinates are given by Love [49].
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Displacement and stress components

in terms of the Love stress function

χ(r, z, t) in cylindrical polars

The components of stress and displacement can be written in terms of the Love Stress

function, χ, for a solid of revolution strained symmetrically by forces applied at its surface.

The derivation of these components is non-trivial, though is performed by Love [49]. He

finds that the stress function must satisfy

∇4χ = 0, (C.1)

and that the components of stress and displacement are given in terms of χ as
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∇2χ− ∂2χ

∂z2

)
=

∂

∂z

(
(2− ν)∇2χ− ∂2χ

∂z2

)
, (C.6)

σrz =
∂

∂r

(
λ + 2µ

2(λ + µ)
∇2χ− ∂2A

∂z2

)
=

∂

∂r

(
(1− ν)∇2χ− ∂2χ

∂z2

)
. (C.7)
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Appendix D

The Navier-Stokes Equations

The most famous equations to model the flow of a viscous fluid are the Navier-Stokes

equations. Assuming incompressibility and constant kinematic viscosity µ, the (isother-

mal) equations for the flow of the fluid can be derived via conservation of momentum (see

e.g. [59]), and are given by

ρ

(
∂

∂t
+ (q.∇)

)
q = −∇p+ µ∇2q, (D.1)

where q is the fluid velocity. This can be easily nondimensionalised by scaling all lengths

with some typical lengthscale L, components of velocity with a velocity scale U , and

pressure with ρU2 to reach

(
∂

∂t
+ (q.∇)

)
q = −∇p+

1

R∇
2q. (D.2)

The nondimensional parameter R is the all-important Reynold’s number, defined by

R =
ρUL

µ
. (D.3)

Clearly, if this parameter is large, we can expect that inviscid fluid flow will generally be

a good approximation to the flow.
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Appendix E

Metallurgical data for hardness

testing

Table E.1: Data showing distance from the cavity, x, dimensions of the indents (∆x and

∆y) and the corresponding Vickers Hardness (HV). Some indents were unreadable owing to

the local microstructure of the metal; this accounts for odd numbering in the table.

x ∆x ∆y HV x ∆x ∆y HV

/mm /mm /mm /kg mm−2 /mm /mm /mm /kg mm−2

0.10 1.173× 10−2 1.403× 10−2 558.7 0.15 1.369× 10−2 1.438× 10−2 470.9

0.20 1.288× 10−2 1.564× 10−2 455.8 0.25 1.346× 10−2 1.369× 10−2 503.3

0.30 1.438× 10−2 1.633× 10−2 393.2 0.35 1.369× 10−2 1.415× 10−2 478.7

0.40 1.288× 10−2 1.311× 10−2 548.9 0.65 1.288× 10−2 1.484× 10−2 482.7

0.50 1.369× 10−2 1.323× 10−2 512.0 0.75 1.495× 10−2 1.461× 10−2 424.4

0.60 1.323× 10−2 1.231× 10−2 568.8 0.85 1.541× 10−2 1.656× 10−2 362.7

0.70 1.392× 10−2 1.334× 10−2 499.1 0.95 1.599× 10−2 1.507× 10−2 384.5

0.80 1.265× 10−2 1.300× 10−2 563.7 1.05 1.449× 10−2 1.622× 10−2 393.2

0.90 1.415× 10−2 1.461× 10−2 448.5 1.15 1.495× 10−2 1.449× 10−2 427.8

1.00 1.553× 10−2 1.622× 10−2 368.0 1.25 1.564× 10−2 1.541× 10−2 384.5

1.10 1.564× 10−2 1.668× 10−2 355.0 1.35 1.518× 10−2 1.518× 10−2 402.2

1.20 1.530× 10−2 1.622× 10−2 373.4 1.45 1.254× 10−2 1.587× 10−2 459.5

1.30 1.668× 10−2 1.748× 10−2 317.8 1.55 1.553× 10−2 1.587× 10−2 376.1

1.40 1.656× 10−2 1.576× 10−2 355.0 1.65 1.415× 10−2 1.622× 10−2 402.2

1.50 1.771× 10−2 1.645× 10−2 317.8 1.75 1.668× 10−2 1.610× 10−2 345.1

1.60 1.737× 10−2 1.760× 10−2 303.3 1.85 1.530× 10−2 1.564× 10−2 387.4

1.70 1.610× 10−2 1.668× 10−2 345.1 1.95 1.449× 10−2 1.357× 10−2 470.9

1.80 1.725× 10−2 1.679× 10−2 320.0 2.05 1.599× 10−2 1.553× 10−2 373.4

1.90 1.564× 10−2 1.691× 10−2 350.0 2.15 1.633× 10−2 1.691× 10−2 335.6

2.10 1.461× 10−2 1.622× 10−2 390.3 2.25 1.679× 10−2 1.760× 10−2 313.6

2.20 1.725× 10−2 1.691× 10−2 317.8 2.35 1.633× 10−2 1.564× 10−2 362.7

2.30 1.691× 10−2 1.668× 10−2 328.8 2.45 1.691× 10−2 1.610× 10−2 340.3

2.40 1.530× 10−2 1.518× 10−2 399.2 2.55 1.668× 10−2 1.702× 10−2 326.5

2.50 1.587× 10−2 1.553× 10−2 376.1 2.65 1.668× 10−2 1.645× 10−2 338.0

2.60 1.553× 10−2 1.587× 10−2 376.1 2.75 1.599× 10−2 1.702× 10−2 340.3

continued on next page
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continued from previous page
x ∆x ∆y HV x ∆x ∆y HV

/mm /mm /mm /kg mm−2 /mm /mm /mm /kg mm−2

2.70 1.656× 10−2 1.645× 10−2 340.3 2.85 1.576× 10−2 1.702× 10−2 345.1

2.80 1.564× 10−2 1.576× 10−2 376.1 2.95 1.576× 10−2 1.656× 10−2 355.0

2.90 1.541× 10−2 1.599× 10−2 376.1 3.15 1.633× 10−2 1.771× 10−2 320.0

3.00 1.507× 10−2 1.610× 10−2 381.7 3.35 1.656× 10−2 1.633× 10−2 342.7

3.20 1.564× 10−2 1.714× 10−2 345.1 3.55 1.576× 10−2 1.645× 10−2 357.6

3.40 1.553× 10−2 1.794× 10−2 331.0 3.75 1.599× 10−2 1.530× 10−2 378.9

3.60 1.633× 10−2 1.668× 10−2 340.3 3.95 1.645× 10−2 1.576× 10−2 357.6

3.80 1.587× 10−2 1.702× 10−2 342.7 4.15 1.541× 10−2 1.472× 10−2 408.4

4.00 1.587× 10−2 1.783× 10−2 326.5 4.35 1.656× 10−2 1.771× 10−2 315.7

4.20 1.564× 10−2 1.495× 10−2 396.2 4.55 1.518× 10−2 1.507× 10−2 405.3

4.40 1.691× 10−2 1.714× 10−2 320.0 4.75 1.530× 10−2 1.564× 10−2 387.4

4.60 1.622× 10−2 1.645× 10−2 347.6 4.95 1.610× 10−2 1.725× 10−2 333.3

4.80 1.679× 10−2 1.610× 10−2 342.7 5.15 1.760× 10−2 1.702× 10−2 309.4

5.00 1.714× 10−2 1.645× 10−2 328.8 5.35 1.783× 10−2 1.656× 10−2 313.6

5.20 1.576× 10−2 1.576× 10−2 373.4 5.55 1.725× 10−2 1.679× 10−2 320.0

5.40 1.599× 10−2 1.564× 10−2 370.7 5.75 1.668× 10−2 1.806× 10−2 307.4

5.60 1.449× 10−2 1.392× 10−2 459.5 5.95 1.656× 10−2 1.691× 10−2 331.0

5.80 1.484× 10−2 1.507× 10−2 414.7 6.15 1.645× 10−2 1.714× 10−2 328.8

6.00 1.587× 10−2 1.541× 10−2 378.9 6.35 1.576× 10−2 1.679× 10−2 350.0

6.20 1.576× 10−2 1.576× 10−2 373.4 6.55 1.622× 10−2 1.576× 10−2 362.7

6.40 1.599× 10−2 1.633× 10−2 355.0 6.75 1.610× 10−2 1.691× 10−2 340.3

6.60 1.725× 10−2 1.737× 10−2 309.4 6.95 1.783× 10−2 1.714× 10−2 303.3

6.80 1.691× 10−2 1.679× 10−2 326.5 7.15 1.702× 10−2 1.702× 10−2 320.0

7.00 1.714× 10−2 1.633× 10−2 331.0 7.35 1.656× 10−2 1.610× 10−2 347.6

7.20 1.656× 10−2 1.760× 10−2 317.8 7.55 1.587× 10−2 1.668× 10−2 350.0

7.40 1.725× 10−2 1.679× 10−2 320.0 7.75 1.599× 10−2 1.599× 10−2 362.7

7.60 1.737× 10−2 1.679× 10−2 317.8 7.95 1.622× 10−2 1.610× 10−2 355.0

7.80 1.702× 10−2 1.679× 10−2 324.3 8.45 1.622× 10−2 1.668× 10−2 342.7

8.00 1.783× 10−2 1.748× 10−2 297.4 8.95 1.725× 10−2 1.760× 10−2 305.3

8.50 1.725× 10−2 1.679× 10−2 320.0 9.45 1.725× 10−2 1.702× 10−2 315.7

9.00 1.679× 10−2 1.599× 10−2 345.1 9.95 1.829× 10−2 1.771× 10−2 286.1

9.50 1.679× 10−2 1.714× 10−2 322.1 10.45 1.737× 10−2 1.760× 10−2 303.3

10.00 1.794× 10−2 1.748× 10−2 295.5 10.95 1.691× 10−2 1.633× 10−2 335.6

10.50 1.714× 10−2 1.645× 10−2 328.8 11.45 1.714× 10−2 1.656× 10−2 326.5

11.00 1.760× 10−2 1.702× 10−2 309.4 11.95 1.656× 10−2 1.668× 10−2 335.6

11.50 1.817× 10−2 1.748× 10−2 291.7 12.45 1.725× 10−2 1.748× 10−2 307.4

12.00 1.679× 10−2 1.668× 10−2 331.0 18.00 1.599× 10−2 1.737× 10−2 333.3

12.50 1.714× 10−2 1.748× 10−2 309.4

13.00 1.771× 10−2 1.691× 10−2 309.4

18.00 1.783× 10−2 1.714× 10−2 303.3



Appendix F

Inertial elastic-plastic gun-barrel

expansion

In this appendix, we again consider the elastic-plastic expansion of a gun-barrel. The key

difference is that we now include inertial effects into the model, thus permitting waves.

We start by increasing the cavity pressure inside the gun-barrel, assuming infinitesimal

elastic displacement and a monotonically-increasing pressure profile P (t).

F.1 Plastic region

The equations for the plastic region are the yield condition, a radial force balance (in-

cluding inertia), and the associated flow law. These are written, respectively,

σθθ − σrr = σY , (F.1)

∂σrr

∂r
+
σrr − σθθ

r
= ρ

∂u̇

∂t
(F.2)

σ′ij = Λε̇ij, (F.3)

where ρ is the density of the material and the sign of the yield condition is chosen with

the benefit of hindsight. The inner boundary condition is unchanged, and is written

σrr(a) = −P. (F.4)

We now nondimensionalise the equations, scaling σ ∼ σY , P ∼ σY , r ∼ a, u ∼ a,

s(t) ∼ a and t ∼ a
c
, where s(t) is the position of the elastic-plastic boundary, and c

is the longitudinal elastic wave-speed given by c2 = (λ + 2µ)/ρ. Equation (F.3) gives

incompressibility, so that, now writing all variables nondimensionally,

∂u̇

∂r
+
u̇

r
= 0. (F.5)
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Inertial elastic-plastic gun-barrel expansion 231

Hence,

u̇ =
D(t)

r
, (F.6)

for some unknown D(t). The nondimensional stresses satisfy

σrr = −P (t) +

(
λ+ 2µ

σY

Ḋ(t) + 1

)
log r, (F.7)

σθθ = 1− P (t) +

(
λ+ 2µ

σY

Ḋ(t) + 1

)
log r. (F.8)

F.2 Elastic region

The nondimensional elastic-stresses are now given by

σrr =

(
λ+ 2µ

σY

)
∂u

∂r
+

(
λ

σY

)
u

r
, (F.9)

σθθ =

(
λ

σY

)
∂u

∂r
+

(
λ+ 2µ

σY

)
u

r
. (F.10)

The force balance equation becomes

∂2u

∂r2
+

∂

∂r

(u
r

)
=
∂2u

∂t2
. (F.11)

We now introduce the Lamé potential φ by writing u = ∂φ
∂r

. Hence, (F.11) is transformed

into the two-dimensional wave-equation with radial symmetry, namely

∂2φ

∂r2
+

1

r

∂φ

∂r
=
∂2φ

∂t2
. (F.12)

As usual, a boundary condition on the stress is that σ → 0 at infinity.

F.3 Matching conditions

As in the gun-barrel expansion without inertia, the (nondimensional) conditions on the

elastic-plastic boundary r = s(t) are continuity of σrr, continuity of u̇, and the yield

condition σθθ − σrr = 1. Hence
((

λ+ 2µ

σY

)
∂u

∂r
+

λ

σY

u

s(t)

) ∣∣∣
r=s(t)

= −P (t) +

(
λ+ 2µ

σY

Ḋ(t) + 1

)
log s(t), (F.13)

2µ

σY

(
u

s(t)
− ∂u

∂r

) ∣∣∣
r=s(t)

= 1, (F.14)

∂u

∂t

∣∣∣
r=s(t)

=
D(t)

s(t)
. (F.15)

These conditions can easily be rewritten in terms of φ, and the resultant system remains

to be solved numerically.
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