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Abstract: An efficient and chemoselective method for the Friedel–Crafts
acylation of aromatic compounds using P2O5=Al2O3 and carboxylic acids. Both
aromatic and aliphatic carboxylic acids reacted easily to afford the correspond-
ing aromatic ketones in good yields.
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INTRODUCTION

Friedel–Crafts acylation is one of the most important methods to prepare
aromatic ketones used in manufacturing fine and specialty chemicals as
well as pharmaceuticals.[1] The disadvantages associated with the classical
procedures include the use of toxic acid chlorides or acid anhydrates as
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acylating agents and an excess amount of aluminum trichloride as a
Lewis acid, which entails environment pollution and tedious workup.
To minimize this problem, some catalytic Friedel–Crafts acylations have
been developed recently.[2] Using carboxylic acids as acylating agents is a
superior method with respect to the procedures utilizing acyl chlorides
and anhydrides for the synthesis of aryl ketones. Carboxylic acids are
stable, less toxic, and more available compounds, and their handling is
much easier than that of their corresponding acyl chlorides and anhydri-
des. Zeolites,[3] heteropolyacids and their salts,[4] clay,[5] alumina=
trifluoroacetic anhydride (TFAA),[6] MeSO3H=graphite,[7] and Lewis
acids[8] are reported to catalyze Friedel–Crafts acylation using carboxylic
acids as acylating agents. However, the catalytic efficiency and=or applic-
able substrate range are very limited. For instance, a methodology of
acylation of anisole with carboxylic acids over HZSM-5 zeolite, although
environmentally safe, has limitations with regard to generality (no
reaction with higher acids) and efficiency (reaction time of 48 h and
concomitant O-acylation).[3c] Thus, a reliable general method for this
useful reaction involving nonhazardous reagents is in demand.

RESULTS AND DISCUSSION

Recently, the use of catalysts and reagents on solid supports was devel-
oped because such reagents not only simplify purification processes but
also help to prevent release of reaction residues into the environment.
This has led to growth in the field of solid supported on alumina.[9]

Although there are many reports of using phosphorus pentoxide as a
reagent in organic reactions,[10] P2O5 is difficult to handle because of
its moisture sensitivity at room temperature. P2O5 on alumina (P2O5=
Al2O3) is easy to prepare and handle and also is a useful reagent that
could be removed from the reaction mixture by simple filtration.[11]

Herein, we report an efficient, convenient, and chemoselective procedure
for the conversion of carboxylic acids to the corresponding aryl ketones
in the presence of P2O5=Al2O3. These reactions are easily carried out
under heterogeneous and reflux conditions (Scheme 1).

The acylation reactions were carried out by heating a stirring mixture
of the corresponding carboxylic acids, P2O5=Al2O3, and aromatic com-
pounds such as toluene, p-xylene, m-xylene, mesitylene, thiophene,
bromobenzene, chlorobenzene, and nitrobenzene under reflux conditions.
However, for the compounds such as anisole, 1,3-dimethoxybenzene,
2-methoxynaphtalene, naphthalene, anthracene, 2-methylthiophene, thio-
anisole, and biphenyl, the acylation reactions were carried out in
1,2-dichloroethane under reflux conditions. The products were isolated

Acylation of Aromatic Compounds 2703
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by simple filtration of the reaction mixture and then by usual workup.
Different structures of aromatic rings underwent acylation with a wide
rang of carboxylic acids. These reaction conditions were successfully
applied for the preparation of different aryl ketones from electron-rich
and electron-poor aromatic compounds. The results of this study are pre-
sented in Table 1. The reactions are remarkably clean, convenient, and no
chromatographic separation is necessary to get the spectra-pure com-
pounds except in few cases (Table 1, entries 26, 28, 29). By using this
reagent, acylation occurs at the para position with high selectivity. How-
ever, in cases where the para positions are blocked (Table 1, entries 2, 14),
the acyl group is introduced ortho to the substituted groups on aromatic
rings. This procedure is also good enough for the acylation of hetero-
cyclic aromatic compounds such as thiophene and 2-methyltiophene
(Table 1, entries 8, 17), as well as polycyclic aromatic hydrocarbons
(Table 1, entries 7, 9, 25, 26), producing the corresponding acylated pro-
ducts in good yields. These reactions are rather fast even with the higher
carboxylic acids. However, for deactivated aromatic rings such as bromo-
benzene and chlorobenzene (Table 1, entries 11, 22), the corresponding
4-acylated products were obtained in poor yields. Using nitrobenzene,
no product was obtained (Table 1, entry 12). It is notable that the acyl-
ation reaction between 3-phenylpropionic acid and anisole in the
presence of P2O5=Al2O3 produces the corresponding 4-acylated product
in good yield (Table 1, entry 27). However, the reaction between 3-
phenylpropionic acid and toluene or the reaction between 3-phenylpropionic
acid and m-xylene produces 2,3-dihydro-30H-[1,20]biindenyliden-10-one as
a major product (Table 1, entries, 28, 29). These results show that at first
intramolecular Friedel–Crafts acylation occurs and then the aldol
condensation reaction is carried out consequently.

To evaluate the role of Al2O3, we studied the acylation of toluene
with 4-nitrobenzoic acid in the absence of Al2O3. This reaction was
carried out under reflux conditions for 5 h in the presence of P2O5 alone.
The yield of (4-nitrophenyl) (p-tolyl)methanone was obtained in 42%.

Scheme 1. Friedel–Crafts acylation of aromatic compounds.
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However, by using the combination of P2O5=Al2O3, the yield of (4-nitrophe-
nyl) (p-tolyl)methanone was greater (21%) than that with P2O5 alone under
the same conditions (Table 1, entry 1). The effect of Al2O3 may be due to
good dispersion of P2O5 on the surface of alumina, leading to significant
improvements in its reactivity. Al2O3 as a support may also minimize cross
contamination between inorganic and organic components.[12]

EXPERIMENTAL

General

All reagents were purchased from Merck and Aldrich and used without
further purification. All yields refer to isolated products after purifica-
tion. Products were characterized by comparison with authentic samples
and by spectroscopic data [Fourier transform–infrared (FTIR, 1H NMR,
13C NMR, mass spectra (MS), CHNS, and melting point]. 1H NMR
spectra were recorded at FT 300MHz. The spectra were measured in
CDCl3 unless otherwise stated, relative to tetramethylsilane (TMS)
(0.00 ppm). P2O5=Al2O3 (w=w 50%) was prepared according to previous
works.[11a]

General Procedure for Acylation of Aromatic Compounds Using

Carboxylic Acids and P2O5/Al2O3 in Reflux of Aromatic Rings

P2O5=Al2O3 (w=w 50%, 0.6 g) was added to a mixture of a carboxylic acid
(1.5mmol) and an aromatic compound (5mL). The reaction mixture was
stirred under reflux conditions for the appropriate reaction times
(Table 1). After completion of the reaction (monitored by thin-layer
chromatography, TLC), the mixture was diluted with Et2O and filtered.
The organic layer was washed with 10% NaHCO3 solution and then dried
over anhydrous Na2SO4. The solvent was evaporated under reduced
pressure to give the corresponding pure aryl ketone.

Typical Procedure for Acylation of Toluene Using 4-Nitrophenylacetic

Acid and P2O5/Al2O3

P2O5=Al2O3 (w=w 50%, 0.6 g) was added to a mixture of 4-nitrophenyl-
acetic acid (1.5mmol, 0.27 g) and toluene (5mL), and the reaction
mixture was stirred under reflux conditions for 3 h. After cooling, the
mixture was diluted with Et2O (15mL) and filtered. The organic layer

2712 A. R. Hajipour et al.
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was washed with 10% NaHCO3 solution and then dried over anhydrous
Na2SO4. The solvent was evaporated under reduced pressure to give
1-((p-tolyl)-2-(4-nitrophenyl)ethanone in 78% yield.

Typical Procedure for Acylation of 1,3-Dimethoxybenzene Using

4-Nitrobenzoic Acid and P2O5/Al2O3 in 1,2-Dichloroethane
Under Reflux Conditions

P2O5=Al2O3 (w=w 50%, 0.6 g) was added to a mixture of 4-nitrobenzoic
acid (1.5mmol, 0.25 g), 1,3-dimethoxybenzene (3mmol, 0.4mL), and
1,2-dichloroethane (5mL), and the reaction mixture was stirred under
reflux conditions for 3 h. After cooling, the mixture was diluted with
CH2Cl2 (15mL) and filtered. The organic layer was washed with 10%
NaHCO3 solution and then dried over anhydrous Na2SO4. The solvent
was evaporated under reduced pressure. The crude product was washed
with cold n-hexane to give (2,4-dimethoxyphenyl)(4-nitrophenyl)-
methanone in 75% yield.

1H NMR and IR Spectral Data for Some Products

Compound 1b

Mp 118–120�C; 1H NMR (300MHz, CDCl3, TMS) d¼ 8.6 (2H, d,
J¼ 9.1Hz), 8.2 (2H, d, J¼ 9.1Hz), 8 (2H, d, J¼ 8.6Hz), 7.55 (2H, d,
J¼ 8.6Hz), 2.55 (3H, s). IR (KBr) cm�1: 3080, 1645, 1595, 1525, 1340,
1305, 1260, 910, 840, 825, 730, 700. Anal. calcd. for C14H11NO3: C,
69.7; H, 4.56; N, 5.81%. Found: C, 69.78; H, 4.61; N, 5.77%.

Compound 3b

Mp 96–98�C; 1H NMR (300MHz, CDCl3, TMS) d¼ 8.33 (2H, d,
J¼ 8.89Hz), 7.92 (2H, d, J¼ 8.89Hz), 7.64 (2H, d, J¼ 8.35Hz), 7.37
(2H, d, J¼ 8.35Hz), 3 (1H, septed, J¼ 7.3Hz), 1.3 (6H, d, J¼ 7.3Hz).
IR (KBr) cm�1: 3060, 2973, 1660, 1600, 1515, 1340, 1265, 925, 850,
700. Anal. calcd. for C16H15NO3: C, 71.37; H, 5.57; N, 5.2%. Found:
C, 71.25; H, 5.68; N, 5.31%.

Compound 4b

Mp 122–124�C; 1H NMR (300MHz, CDCl3, TMS) d¼ 8.3 (2H, d,
J¼ 8.92Hz), 7.96 (2H, d, J¼ 8.92Hz), 6.92 (2H, s), 2.38 (3H, s), 2.1

Acylation of Aromatic Compounds 2713
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(6H, s). IR (KBr) cm�1: 3050, 2875, 1670, 1600, 1520, 1440, 1345, 1260,
910, 870, 845, 720. Anal. calcd. for C16H15NO3: C, 71.37; H, 5.57; N,
5.2%. Found: C, 71.26; H, 5.68; N, 5.28%.

Compound 5b

Mp 122–123�C; 1H NMR (300MHz, CDCl3, TMS) d¼ 8.35 (2H, d,
J¼ 9.12Hz), 7.9 (2H, d, J¼ 9.12Hz), 7.83 (2H, d, J¼ 9.2Hz), 7 (2H,
d, J¼ 9.2Hz), 3.92 (3H, s). IR (KBr) cm�1: 3080, 2960, 1630, 1590,
1510, 1350, 1320, 1260, 1170, 1010, 935, 845. Anal. calcd. for
C14H11NO4: C, 65.37; H, 4.28; N, 5.44%. Found: C, 65.48; H, 4.37; N,
5.36%.

Compound 6b

Mp 119–121�C; 1H NMR (300MHz, CDCl3, TMS) d¼ 8.27 (2H, d,
J¼ 8.8Hz), 7.86 (2H, d, J¼ 8.8Hz), 7.55 (1H, d, J¼ 8.7Hz), 6.62 (1H,
dd, J1¼ 8.7Hz, J2¼ 1.74Hz), 6.5 (1H, d, J¼ 1.74Hz), 3.9 (3H, s), 3.65
(3H, s). 13C NMR (75MHz, CDCl3, TMS) d¼ 196, 165, 160.3, 147.7,
145, 133.3, 130.2, 123.5, 120.3, 105.4, 98.8, 55.8, 55.5. IR (KBr) cm�1:
3075, 2930, 1640, 1600, 1515, 1465, 1345, 1275, 1200, 1155, 1120, 945,
850, 815, 730. Anal. calcd. for C15H13NO5: C, 62.71; H, 4.53; N,
4.88%. Found: C, 62.61; H, 4.63; N, 4.81%.

Compound 7b

Mp 172–174�C; 1H NMR (300MHz, CDCl3, TMS) d¼ 8.25 (2H, d,
J¼ 8.82Hz), 7.98 (3H, m), 7.74 (1H, d, J¼ 7.35Hz), 7.52 (1H, d,
J¼ 9.1Hz), 7.4 (2H, m), 7.32 (1H, d, J¼ 9.1Hz), 3.8 (3H, s). 13C
NMR (75MHz, CDCl3, TMS) d¼ 196.6, 155.5, 151.2, 143.3, 133.2,
132.3, 131, 129.6, 129.2, 128.7, 125.2, 124.6, 124.2, 122, 113.5, 57.2. EIMS
m=z (%): 307 (Mþ, 56), 290 (16), 276 (13), 260 (12), 185 (100), 142 (25),
127 (21), 120 (27), 114 (26), 106 (15), 92 (14), 76 (14), 43 (34). IR
(KBr) cm�1: 3040, 2920 1675, 1600, 1530, 1340, 1235, 1080, 890, 840,
800. Anal. calcd. for C18H13NO4: C, 70.03; H, 4.23; N, 5.56%. Found:
C, 70.16; H, 4.21; N, 4.51%.

Compound 8b

Mp 173–174�C; 1H NMR (500MHz, CDCl3, TMS) d¼ 8.39 (2H, d,
J¼ 8.62Hz), 8.22 (1H, d, J¼ 4.16Hz), 8.06 (2H, d, J¼ 8.62Hz), 7.75
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(1H, d, J¼ 2.85Hz), 7.33 (1H, t, J¼ 3.95Hz). EIMS m=z (%): 233 (Mþ,
27), 187 (2), 150 (5), 111 (100), 83 (10), 76 (12), 50 (9), 44 (4). IR (KBr)
cm�1: 3062, 1630, 1600, 1510, 1410, 1355, 1300, 1050, 875, 840, 725. Anal.
calcd. for C11H7NSO3: C, 56.65; H, 3; N, 6; S, 13.73%. Found: C, 56.71;
H, 3.1; N, 5.95; S, 13.8%.

Compound 9b

Mp 89–91�C; mp 89–91�C; 1H NMR (300MHz, CDCl3, TMS) d¼ 8.32
(2H, d, J¼ 8.66Hz), 8.05–7.91 (5H, m), 7.62–7.51 (4H, m). EIMS m=z
(%): 277 (Mþ, 80), 230 (12), 202 (15), 155 (100), 127 (93), 101 (28), 76
(15), 43 (8). IR (KBr) cm�1: 3060, 1675, 1600, 1520, 1340, 1270, 1240,
910, 850, 790, 720. Anal. calcd. for C17H11NO3: C, 73.6; H, 3.97; N,
5.05%. Found: C, 73.51; H, 3.88; N, 4.96%.

Compound 10b

Mp 163–165�C; 1H NMR (300MHz, CDCl3, TMS) d¼ 8.37 (2H, d,
J¼ 9.1Hz), 7.97 (2H, d, J¼ 9.1Hz), 7.88 (2H, d, J¼ 8.65Hz), 7.74
(2H, d, J¼ 8.65Hz), 7.66 (2H, d, J¼ 8.4Hz) 7.5 (3H, m). EIMS m=z
(%): 303 (Mþ, 70), 181 (100), 153 (30), 152 (53), 76 (15). IR (KBr) cm�1:
3060, 1650, 1600, 1515, 1355, 1280, 935, 845, 755, 730, 700. Anal. calcd.
for C19H13NO3: C, 75.24; H, 4.29; N, 4.62%. Found: C, 75.34; H, 4.22;
N, 4.51%.

Compound 11b

Mp 124–126�C; 1H NMR (300MHz, CDCl3, TMS) d¼ 8.38 (2H, d,
J¼ 8.71Hz), 7.95 (2H, d, J¼ 8.71Hz), 7.72 (4H, s). EIMS m=z (%):
307 (Mþþ 2, 40), 305 (Mþ, 40), 277 (8), 275 (8), 185 (100), 183 (100),
157 (35), 155 (35), 150 (36), 120 (37), 76 (56). IR (KBr) cm�1: 3070,
1660, 1600, 1580, 1510, 1340, 1275, 1060, 990, 930, 845, 720. Anal. calcd.
for C13H8BrNO3: C, 51.14; H, 2.62; N, 4.59%. Found: C, 51.03; H, 2.71;
N, 4.51%.

Compound 13b

Mp 110–112�C; 1H NMR (300MHz, CDCl3, TMS) d¼ 8.17 (2H, d,
J¼ 8.4Hz), 7.88 (2H, d, J¼ 8.1Hz), 7.4 (2H, d, J¼ 8.4Hz), 7.27 (2H,
d, J¼ 8.1Hz), 4.38 (2H, s), 2.4 (3H, s). 13C NMR (75MHz, CDCl3,
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TMS) d¼ 195.5, 145, 143, 136, 134, 131, 130, 129, 124.5, 45.5, 20.5. IR
(KBr) cm�1: 3020, 2875, 1680, 1595, 1510, 1345, 1320, 1290, 995, 845,
800, 725. Anal. calcd. for C15H13NO3: C, 70.58; H, 5.1; N, 5.49%. Found:
C, 70.49; H, 5.18; N, 5.41%.

Compound 14b

Mp 86–88�C; 1H NMR (300MHz, CDCl3, TMS) d¼ 8.2 (2H, d,
J¼ 8.5Hz), 7.55 (1H, s), 7.4 (2H, d, J¼ 8.5Hz), 7.22 (1H, d, J¼ 8.05Hz),
7.15 (1H, d, J¼ 8.05Hz), 4.37 (2H, s), 2.42 (3H, s), 2.39 (3H, s). IR (KBr)
cm�1: 3065, 2890, 1680, 1600, 1510, 1340, 1170, 985, 960, 820, 720. Anal.
calcd. for C16H15NO3: C, 71.37; H, 5.57; N, 5.2%. Found: C, 71.3; H, 5.5;
N, 5.28%.

Compound 15b

Mp 114–116�C; 1H NMR (300MHz, CDCl3, TMS) d¼ 8.3 (2H, d,
J¼ 8.65Hz), 8.1 (2H, d, J¼ 8.7Hz), 7.55 (2H, d, J¼ 8.65Hz), 7.06
(2H, d, J¼ 8.7Hz), 4.43 (2H, s), 4 (3H, s). 13C NMR (75MHz, CDCl3,
TMS) d¼ 195, 165, 143.2, 131.5, 131.1, 130, 124.4, 115, 110.6, 56, 46.
IR (KBr) cm�1: 3055, 2930, 1680, 1600, 1510, 1450, 1350, 1340, 1270,
1175, 990, 825, 730. Anal. calcd. for C15H13NO4: C, 66.4; H, 4.79; N,
5.16%. Found: C, 66.38; H, 4.85; N, 5.09%.

Compound 16b

Mp 119–121�C; 1H NMR (300MHz, CDCl3, TMS) d¼ 8.18 (2H, d,
J¼ 8.7Hz), 7.85 (1H, d, J¼ 8.65Hz), 7.38 (2H, d, J¼ 8.7Hz), 6.55
(1H, dd, J1¼ 8.65Hz, J2¼ 2.48Hz), 6.48 (1H, d, J¼ 2.48Hz), 4.4 (2H,
s), 3.92 (3H, s), 3.88 (3H, s). IR (KBr) cm�1: 3045, 2920, 1660, 1600,
1515, 1355, 1310, 1270, 1140, 990, 830, 735. Anal. calcd. for
C16H15NO5: C, 63.78; H, 4.98; N, 4.65%. Found: C, 63.71; H, 5.08; N,
4.72%.

Compound 17b

Mp 104–106�C; 1H NMR (300MHz, CDCl3, TMS) d¼ 8.2 (2H, d,
J¼ 8.9Hz), 7.63 (1H, d, J¼ 3.83Hz), 7.47 (2H, d, J¼ 8.9Hz), 6.85
(1H, d, J¼ 3.85Hz), 4.28 (2H, s), 2.57 (3H, s). IR (KBr) cm�1: 3050,
1650, 1600, 1515, 1445, 1340, 1230, 930, 810, 730. Anal. calcd. for
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C13H11NSO3: C, 59.77; H, 4.21; N, 5.36; S, 12.26%. Found: C, 59.68; H,
4.26; N, 5.42; S, 12.19%.

Compound 18b

Mp 183–185�C; 1H NMR (300MHz, CDCl3, TMS) d¼ 8.16 (2H, d,
J¼ 8.96Hz), 7.96 (2H, d, J¼ 8.6Hz), 7.52 (2H, d, J¼ 8.9Hz), 7.32
(2H, d, J¼ 8.6Hz), 4.5 (2H, s), 2.53 (3H, s). IR (KBr) cm�1: 3055,
2910, 1675, 1590, 1515, 1340, 1225, 1175, 1080, 980, 800, 700. Anal. calcd.
for C15H13NSO3: C, 62.71; H, 4.53; N, 4.87; S, 11.15%. Found: C, 62.64;
H, 4.61; N, 4.96; S, 11.21%.

Compound 19b

Mp 51–53�C; 1H NMR (300MHz, CDCl3, TMS) d¼ 8.1–7.8 (7H, m),
7.45 (2H, d, J¼ 8.25Hz), 2.45 (3H, s). IR (KBr) cm�1: 3030, 2920,
1660, 1600, 1580, 1460, 1330, 1280, 925, 780, 710.

Compound 20b

Thick oil; 1H NMR (300MHz, CDCl3, TMS) d¼ 7.8 (2H, m), 7.55 (1H,
m), 7.45 (2H, m), 7.23 (1H, dd, J1¼ 6.8Hz, J2¼ 3.07Hz), 7.1 (1H, s), 7.03
(1H, d, J¼ 6.8Hz), 2.38 (3H, s), 2.27 (3H, s). IR (KBr) cm�1: 3060, 2916,
1660, 1610, 1595, 1445, 1375, 1265, 1160, 940, 885, 825, 700.

Compound 21b

Mp 34–35�C; 1H NMR (300MHz, CDCl3, TMS) d¼ 7.8 (2H, d,
J¼ 8.57), 7.56 (1H, t, J¼ 7.8Hz), 7.43 (2H, t, J¼ 7.8Hz), 6.9 (2H, s),
2.33 (3H, s), 2.08 (6 H, s). 13C NMR (75MHz, CDCl3, TMS) d¼ 201,
138.6, 137.5, 137, 134.3, 133.75, 129.6, 128.9, 128.3, 21.4, 19.4. IR
(KBr) cm�1: 3045, 2895, 1670, 1610, 1595, 1580, 1450, 1375, 1310,
1265, 1170, 920, 850, 700.

Compound 24b

Mp 85–87�C; 1H NMR (300MHz, CDCl3, TMS) d¼ 7.78 (2H, d,
J¼ 8.2), 7.53 (1H, t, J¼ 7Hz), 7.4 (2H, t, J¼ 7Hz), 6.55 (1H, dd,
J1¼ 8.2Hz, J2¼ 2.1Hz), 6.5 (1H, d, J¼ 2.1Hz), 3.88 (3H, s), 3.7 (3 H,
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s). IR (KBr) cm�1: 3020, 2920, 1640, 1600, 1440, 1370, 1285, 1100, 1020,
935, 830, 810, 690. Anal. calcd. for C15H14O3: C, 74.38; H, 5.78%. Found:
C, 74.29; H, 5.82%.

Compound 25b

Mp 125–127�C; 1H NMR (300MHz, CDCl3, TMS) d¼ 8–7.85 (4 H, m),
7.6–7.35 (7H, m), 3.85 (3H, s). EIMS m=z (%): 262 (Mþ, 62), 245 (16), 185
(100), 142 (15), 105 (15), 77 (30). IR (KBr) cm�1: 3060, 2916, 2830, 1660,
1590, 1500, 1450, 1250, 1070, 880, 780, 690. Anal. calcd. for C18H14O2: C,
82.44; H, 5.34%. Found: C, 82.38; H, 5.45%.

Compound 27b

Mp 96–98�C; 1H NMR (300MHz, CDCl3, TMS) d¼ 7.95 (2H, d,
J¼ 8.87Hz), 7.37–7.2 (5 H, m), 6.92 (2H, d, J¼ 8.87Hz), 3.86 (3H, s),
3.25 (2H, t, J¼ 8.05Hz), 3.05 (2H, t, J¼ 8.05Hz). 13C NMR (75MHz,
CDCl3, TMS) d¼ 198, 163.2, 141.5, 130.5, 130.2, 128.5, 126.3, 113.7,
55.5, 40.5, 30.5. IR (KBr) cm�1: 3040, 2915, 1670, 1600, 1570, 1500,
1450, 1420, 1255, 1170, 1020, 980, 840, 780, 745, 700. Anal. calcd. for
C16H16O2: C, 80; H, 6.66%. Found: C, 79.94; H, 6.78%.

Compound 28b

Mp 144–146�C; 1H NMR (500MHz, CDCl3, TMS) d¼ 7.9 (1H, d,
J¼ 8Hz), 7.72 (1H, d, J¼ 7.44Hz), 7.67 (2H, s), 7.51–7.04 (4 H, m),
4.1 (2H, s), 3.44 (2H, d, J¼ 5.64Hz), 3.11 (2H, t, J¼ 5.63). IR (KBr)
cm�1: 3040, 2875, 1675, 1625, 1600, 1580, 1470, 1325, 1280, 980,
740. Anal. calcd. for C18H14O: C, 87.8; H, 5.69%. Found: C, 87.88; H,
5.75%.

Compound 30b

Mp 100–102�C; 1H NMR (300MHz, CDCl3, TMS) d¼ 8.04 (2H, d,
J¼ 8.68Hz), 7.8 (1H, d, J¼ 15.1Hz), 7.62 (2H, m), 7.55 (1H, d,
J¼ 15.1Hz), 7.4 (3H, m), 6.97 (2H, d, J¼ 8.68Hz), 3.88 (3H, s). EIMS
m=z (%): 238 (Mþ, 100), 237 (72), 223 (22), 135 (92), 131 (22), 107 (18),
103 (36), 92 (30), 77 (77). IR (KBr) cm�1: 3045, 2875, 1650, 1600,
1575, 1440, 1420, 1260, 1230, 1180, 1015, 980, 830, 765, 700. Anal. calcd.
for C16H14O2: C, 80.67; H, 5.88%. Found: C, 80.54; H, 6%.
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Compound 31b

Mp 83–85�C; 1H NMR (300MHz, CDCl3, TMS) d¼ 7.8 (2H, d,
J¼ 9Hz), 7.67 (2H, d, J¼ 8.4Hz), 7.25 (2H, d, J¼ 8.4Hz), 6.95 (2H,
d, J¼ 9Hz), 3.85 (3H, s), 2.4 (3H, s). 13C NMR (75MHz, CDCl3,
TMS) d¼ 193.9, 161.4, 141.4, 133.9, 131, 128.9, 128.5, 127.5, 112, 53.9,
20. IR (KBr) cm�1: 3055, 2960, 1665, 1590, 1495, 1405, 1345, 1250,
1160, 1020, 940, 825. Anal. calcd. for C15H14O2: C, 79.64; H, 6.19%.
Found: C, 79.55; H, 6.15%.

Compound 33b

Mp 62–63�C; 1H NMR (300MHz, CDCl3, TMS) d¼ 7.55 (1H, d,
J¼ 7.5Hz), 7.08(2H, s), 4.6 (2H, s), 2.56 (3H, s), 2.38 (3H, s). IR
(KBr) cm�1: 3050, 2935, 1685, 1610, 1565, 1440, 1390, 1290, 1135, 990,
815, 790, 735. Anal. calcd. for C10H13ClO: C, 65.75; H, 6.02%. Found:
C, 65.64; H, 6.13%.

Compound 34b

Mp 68–70�C; 1H NMR (300MHz, CDCl3, TMS) d¼ 6.88 (2H, s), 4.4
(2H, s), 2.3 (3H, s), 2.22 (6 H, s). EIMS m=z (%): 198 (Mþþ 2, 3), 196
(Mþ, 8), 160 (5), 147 (100), 119 (50), 91 (27), 77 (17), 43 (27). IR (KBr)
cm�1: 2890, 1715, 1615, 1390, 1210, 1150, 980, 860, 765, 715. Anal. calcd.
for C11H13ClO: C, 67.17; H, 6.61%. Found: C, 67.08; H, 6.66%.

Compound 35b

Mp 100–102�C; 1H NMR (500MHz, CDCl3, TMS) d¼ 7.97 (2H, d,
J¼ 8.53Hz), 7 (2H, d, J¼ 8.53Hz), 5.1 (2H, s), 3.88 (3H, s). IR (KBr)
cm�1: 3045, 2875, 1640, 1600, 1500, 1450, 1310, 1250, 1160, 1140, 1020,
925, 850, 750. Anal. calcd. for C9H9ClO2: C, 58.22; H, 4.85%. Found:
C, 58.31; H, 4.91%.

CONCLUSION

P2O5=Al2O3 is an inexpensive, easily available, noncorrosive, and envir-
onmentally benign compound. In this work, we have reported a simple
and efficient procedure for the preparation of aryl ketones in good yields
and short reaction times. The notable advantages of this methodology
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are direct use of a wide variety of carboxylic acids, operational simplicity,
generality, high regioselectivity, availability of reactants, and easy
workup as a result of the heterogeneous conditions. Further investigation
on new applications of P2O5=Al2O3 is ongoing in our laboratories.
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