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Variational quantum algorithms dominate contemporary gate-based quantum enhanced optimization, eigen-
value estimation, and machine learning. Here we establish the quantum computational universality of variational
quantum computation by developing two objective functions which minimize to prepare outputs of arbitrary
quantum circuits. The fleeting resource of variational quantum computation is the number of expected values
which must be iteratively minimized using classical-to-quantum outer loop optimization. An efficient solution
to this optimization problem is given by the quantum circuit being simulated itself. The first construction is
efficient in the number of expected values for n-qubit circuits containing O(poly ln n) non-Clifford gates—the
number of expected values has no dependence on Clifford gates appearing in the simulated circuit. The second
approach yields O(L2) expected values whereas introducing not more than O(ln L) slack qubits for a quantum
circuit partitioned into L gates. Hence, the utilitarian variational quantum programming procedure—based on
the classical evaluation of objective functions and iterated feedback—is, in principle, as powerful as any other
model of quantum computation. This result elevates the formal standing of the variational approach whereas
establishing a universal model of quantum computation.
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Variational quantum algorithms reduce quantum state
preparation requirements whereas necessitating measure-
ments of individual qubits in the computational basis [1,2]. In
the contemporary noisy intermediate-scale quantum (NISQ)
enhanced technology setting [3], a sought reduction in
coherence time is mediated through an iterative classical-
to-quantum feedback and optimization process. Systematic
errors which map to deterministic yet unknown control
parameters—such as time variability in the application of spe-
cific Hamiltonians or poor pulse timing—can have less impact
on variational algorithms as states are prepared iteratively
and varied over to minimize objective function(s). These ex-
perimental advantages have made the variational approach
to quantum computation the most widely studied gate-based
approach today. See the reviews [4–6].

A variational quantum algorithm executes to prepare a
state which minimizes an objective function. In the case of
variational quantum approximate optimization (QAOA [1]),
a state is prepared by alternating a Hamiltonian representing
a penalty function (such as the NP-hard Ising embedding
of 3-SAT) with a Hamiltonian representing local tunneling
terms. The state is measured, and the resulting bit string serves
as a candidate solution to minimize the penalty function.
In the case of variational eigenvalue minimization [2], the
state is repeatedly prepared and measured to obtain a set of
expected values which is termwise calculated and collectively
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minimized. In both approaches, the minimization process is
iterated by updating Hamiltonian application times and/or
gate angles. Several techniques in variational quantum com-
putation are closely related to methods appearing in machine
learning [7,8] in which a quantum circuit is tuned subject to a
given training dataset.

Computational universality is a property of central study
in both classical and quantum models of computation. Uni-
versal models, such as adiabatic quantum computation [9]
both discrete and continuous quantum walks [10,11] and
measurement-based quantum computation [12], have been
proved computationally universal through constructions to
emulate a universal set of quantum gates. This implies directly
that the system has access to any polynomial time quantum
algorithm on n qubits (the power of quantum algorithms in
the class BQP).

An alternative notion of universality also exists in the lit-
erature. This strong notion is algebraic, wherein a system is
called universal if its generating Lie algebra is proven to span
su(2n) for n qubits. We call this controllability.

Evidently these two notions of universality can be inter-
related: By proving that a controllable system can efficiently
simulate a universal gate set, a controllable system becomes
computationally universal. It is conversely anticipated by the
strong Church-Turing-Deutsch principle [13] that a compu-
tationally universal system can be made to simulate any
controllable system.

Herein we assume access to control sequences which can
create quantum gates, such as Refs. [14–16]. Given a quantum
circuit of L gates, preparing a state |ψ〉 = ∏L

l=1 Ul |0〉⊗n for
unitary gates Ul , we construct a universal objective function
that is minimized by |ψ〉. The objective function is engineered
to have certain desirable properties. Importantly, we construct
a gapped Hamiltonian where minimization past some fixed
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tolerance ensures sufficient overlap with the desired output
state |ψ〉.

Recent work of interest by Lloyd considered the control-
lability of QAOA sequences to create quantum gates [17].
The original goal of QAOA was to alternate target and driver
Hamiltonians to evolve a system close to the target Hamilto-
nian’s ground state—thereby solving an optimization problem
instance. Lloyd showed that alternating driver and target
Hamiltonians can be programed to give computationally uni-
versal dynamics [17]. Following Lloyd’s work [17], myself
with two coauthors formulated Lloyd’s QAOA controllability
result past one-dimensional lines of qubits [18].

We assume controllable state preparation followed by local
Pauli measurements. These measurements are used to calcu-
late an objective function (a Hamiltonian) which we prove
minimizes to certify that the output of a target quantum circuit
has been prepared. The objective function is expressed as a
sum of terms in the Pauli basis. Each term corresponds to a
simplistic measurement operator, and, hence, this approach
avoids the long sequences of gates used to simulate Hamilto-
nian’s in the gate model. Whereas the objective function can
be evaluated termwise, achieving tolerance ∼ε requires ∼ε−2

measurements—see Hoeffding’s inequality [19].
Structure. After introducing variational quantum compu-

tation as it applies to our setting, we construct an objective
function (named a telescoping construction). The number of
expected values has no dependence on Clifford gates ap-
pearing in the simulated circuit and is efficient for circuits
with O(poly ln n) non-Clifford gates, making it amenable
for near-term demonstrations. We then modify the Feynman-
Kitaev clock construction and prove that universal variational
quantum computation is possible by minimizing O(L2) ex-
pected values whereas introducing not more than O(ln L)
slack qubits, for a quantum circuit partitioned into L Hermi-
tian blocks.

We conclude by considering how the universal model of
variational quantum computation can be utilized in practice.
In particular, the given gate sequence prepares a state which
will minimize the objective function. In practice, we think
of this as providing a starting point for a classical optimizer.
Given a T -gate sequence, we consider the first L � T gates.
This L-gate circuit represents an optimal control problem
where the starting point is the control sequence to prepare the
L gates. The goal is to modify this control sequence (shorten
it) using a variational feedback loop. One would iterate this
scenario, increasing L up to T .

I. VARIATIONAL QUANTUM COMPUTATION

We work in the standard setting of quantum computa-
tion using n qubits where we typically fix the computational
basis B⊗n and use the standard qubit representation of the
Pauli group algebra, satisfying the product identity XY =
ıZ , together with X 2 = Y 2 = Z2 = 1. We will interchange
the notation σ0 ≡ 1, σ1 ≡ X, σ2 ≡ Y, σ3 ≡ Z , and consider
Hamiltonian’s H = H† which act on the space of linear qubit
maps L(B⊗n).

We wish to simulate the output of an L gate quantum circuit
acting on the n-qubit product state |0〉⊗n. We have access to
p appropriately bounded and tunable parameters to prepare

and vary over a family of quantum states. All coefficients
herein are assumed to be accurate to not more than poly(n)
decimal places. We will define an objective function that when
minimized will produce a state close to the desired quantum
circuit output. We will provide a solution to the minimization
problem. Establishing our results requires several definitions
and supporting lemmas. Proofs not appearing after a lemma
or theorem can be found in the Supplemental Material [20].

Definition 1 (Variational state space). The variational
state space � of a p-parametrized n-qubit state preparation
process is the union of |ψ (θ)〉 over real assignments of θ,

�
def=

⋃
θ⊂R×p

{|ψ (θ)〉} ⊆ C⊗n
2 . (1)

Variational state space examples include preparing |ψ (θ)〉
by a fixed quantum circuit (called an ansatz) with, e.g., θ ∈
[0, 2π )×p tunable parameters as

|ψ (θ)〉 =
L∏

l=1

Ul |0〉⊗n, (2)

where typically Ul is adjusted by θl for l = 1 to p, although
some gates might be fixed. There are various approaches
to implement ansatz circuits, including the hardware ef-
ficient ansatz [21] which implements a daisy chain of
two-body coupling gates or the brick layer (also known as
the checkerboard) ansatz which is simply alternating stacks
of nearest-neighboring coupling gates (see, for example,
Ref. [22]).

Definition 2 (Variational sequence). A variational se-
quence is an assignment of θ′ to prepare a single state in a
variational state space |ψ (θ′)〉 ∈ �.

Examples of variational sequences include the general ex-
pression of a fixed quantum gate sequence acting on a product
state, which can be expressed as (2).

We will define an objective function that can be efficiently
calculated given access to a suitable quantum processor. Min-
imization of this objective function will be proven to produce
a close two-norm approximation to the output of a given
quantum circuit. Let us consider the most suitably general
Hamiltonian acting on qubits (3).

Definition 3 (Objective function). We consider an objec-
tive function as the expected value of an operator expressed
with real coefficients J a1a2···an

α1α2···αn
in the Pauli basis as

H =
poly(n)∑

J a1a2···an
α1α2···αn

σ a1
α1

σ a2
α2

· · · σ an
αn

, (3)

where greek letters index Pauli matrices, roman letters index
qubits, and the sum is over a poly(n) bounded subset of the 4n

elements in the basis. The tensor (⊗) is omitted in (3).
We are concerned primarily with Hamiltonians where

J a1a2···an
α1α2···αn

is given and known to be nonvanishing for at most
some poly(n) terms. This wide class includes Hamiltonians
representing electronic structure [21]. More generally, such
Hamiltonians are of bounded cardinality.

Definition 4 (Cardinality). The number of terms in the
Pauli basis {1, X,Y, Z}⊗n needed to express an objective
function.
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Definition 5 (Bounded objective function). An instance is
called bounded when it is taken from a uniform family of
objective functions of cardinality bounded by poly(n).

We will now use the Cartesian tensor (×) as states need not
be proximally interacting and can be independently prepared.
Hence, |φ〉×O[poly(n)] means we prepare polynomial many non-
interacting copies of |φ〉 to approximate each expected value.

Definition 6 (Polycomputable objective function). An ob-
jective function,

f : |φ〉×O[poly(n)] → R�0 (4)

is called polycomputable provided poly(n) independent phys-
ical copies of |φ〉 can be efficiently prepared to evaluate a
bounded objective function.

Efficiently computable objective function examples in-
clude calculating the expected value of O(ln n) products and
sums over

{H, 〈H〉, ·,+,R} (5)

for bounded cardinality H. Examples include
(2.i) Calculating the expected value of H itself, which

includes electronic structure Hamiltonians [2].
(2.ii) Calculating the dispersion var(H) = 〈H2〉 − 〈H〉2

which vanishes if and only if the prepared state is an eigenstate
of H [23].

Acceptance (as follows) must be shown by providing a
solution to the optimization problem defined by the objective
function.

Definition 7 (Accepting a quantum state). An objective
function f accepts |φ〉 when given O(poly n) copies of |φ〉,

f
(|φ〉×O(poly(n)

) = f (|φ〉, |φ〉, . . . , |φ〉) < 
 (6)

evaluates strictly less than a chosen real parameter 
 > 0.
The following Theorem 1 applies rather generally to varia-

tional quantum algorithms that minimize energy by adjusting
a variational state to cause an objective function to accept.
Herein acceptance will imply the preparation of a quantum
state, which begs to establish the following.

Lemma 1 (Variational stability). Let non-negative H =
H† ∈ L(Cd ) have spectral gap 
 and nondegenerate ground
eigenvector |ψ〉 of eigenvalue 0. Consider then a unit vector
|φ〉 ∈ Cd such that

〈φ|H|φ〉 < 
, (7)

it follows that

1 − 〈φ|H|φ〉



� |〈φ|ψ〉|2 � 1 − 〈φ|H|φ〉
Tr{H} . (8)

A. Maximizing projection onto a circuit

We will now explicitly construct an elementary Hermitian
penalty function that is non-negative with a nondegenerate
lowest (0) eigenstate—so as to apply Lemma 1. Minimization
of this penalty function prepares the output of a quantum
circuit.

Theorem 1 (Telescoping construction). Consider
∏

l Ul

|0〉⊗n an L-gate quantum circuit preparing state |ψ〉 on n
qubits and containing not more than O[poly(ln n)] non-
Clifford gates. Then there exists a Hamiltonian H � 0 on n
qubits with poly(L, n) cardinality, a (L, n)-independent gap 


and non-degenerate ground eigenvector ∈ span{�lUl |0〉⊗n}.
In particular, a variational sequence exists causing the Hamil-
tonian to accept |φ〉 viz., 0 � 〈φ|H|φ〉 < 
 then Lemma 1
implies stability.

To prove Theorem 1 we first show existence of the penalty
function. Construct Hermitian H ∈ L(C⊗n

2 ) with H � 0 such
that there exists a nondegenerate |ψ〉 ∈ C⊗n

2 with the property
that H|ψ〉 = 0. Define Pφ as a sum of projectors onto product
states, i.e.,

Pφ =
n∑

i=1

|1〉〈1|(i) = n

2

(
1 − 1

n

n∑
i=1

Z (i)

)
, (9)

and consider (9) as the initial Hamiltonian, preparing state
|0〉⊗n.

We will act on (9) with a sequence of gates
∏L

l=1 Ul corre-
sponding to the circuit being simulated as

h(k) =
(

k�L∏
l=1

Ul

)
Pφ

(
k�L∏
l=1

Ul

)†

� 0, (10)

which preserves the spectrum (i.e., Pφ|x〉 = |x|1|x〉 for x ∈
{0, 1}n and | · |1 the Hamming weight). From the properties
of Pφ it, hence, follows that h(k) is non-negative and nonde-
generate ∀ k � L. We now consider the action of the gates (10)
on (9).

At k = 0 from (9) there are n-expected values to be mini-
mized plus a global energy shift that will play a multiplicative
role as the circuit depth increases. To consider k = 1 we first
expand a universal gate set expressed in the linear extension
of the Pauli basis.

Interestingly, the coefficients J ab···c
αβ···γ of the gates will not

serve as direct input(s) to the quantum hardware; these co-
efficients play a direct role in the classical step where the
coefficients weight the sum to be minimized. Let us then
consider single qubit gates, in general, form viz.,

e−ıa·σθ = 1 cos(θ ) − ıa · σ sin(θ ), (11)

where a is a unit vector and a · σ = ∑3
i=1 aiσi. So each single

qubit gate increases the number of expected values by a factor
of at most 42. At first glance, this appears prohibitive, yet
there are two factors to consider. The first is the following
Lemma 2.

Lemma 2 (Clifford gate cardinality invariance). Let C be
the set of all Clifford circuits on n qubits, and let P be the
set of all elements of the Pauli group on n qubits. Let C ∈ C
and P ∈ P , then it can be shown that CPC† ∈ P or in other
words C(σ a

ασ b
β · · · σ c

γ )C† = σ a′
α′ σ

b′
β ′ · · · σ c′

γ ′ and so Clifford cir-
cuits act by conjugation on tensor products of Pauli operators
to produce tensor products of Pauli operators.

For some U a Clifford gate, Lemma 2 shows that the
cardinality of (10) is invariant. Non-Clifford gates increase
the cardinality by factors O(en) and so must be logarith-
mically bounded from above. Hence, telescopes bound the
number of expected values by restricting to circuits with k ∼
O(poly ln n) non-Clifford single qubit gates. Clifford gates
do, however, modify the locality of terms appearing in the
expected values—this is, i.e., prohibitive in adiabatic quantum
computation yet arises here as local measurements.
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A final argument supporting the utility of telescopes is that
the initial state is restricted primarily by the initial Hamil-
tonian having only a polynomial number of nonvanishing
coefficients in the Pauli basis. In practice—using today’s
hardware—it should be possible to prepare an ε-close two-
norm approximation to any product state

⊗n
k=1 cos θk|0〉 +

eıφk sin θk|1〉 which is realized by modifying the projectors in
(9) with a product of single qubit maps

⊗n
k=1 Uk . Other more

complicated states would also be possible.
To finish the proof of Lemma 1, the variational sequence is

given by the description of the gate sequence itself. That is,

h(k)

(
k�L∏
l=1

Ul

)
|x〉 = |x|1

(
k�L∏
l=1

Ul

)
|x〉 (12)

is minimized for x the string of zeros in {0, 1}n. Hence, a
state can be prepared causing the Hamiltonian to accept and
stability applies (Lemma 1).

To explore telescopes in practice, let us then explicitly
consider the quantum algorithm for state overlap (also known
as a swap test see, e.g., Ref. [24]). This algorithm has an
analogous structure to phase estimation, a universal quantum
primitive of error-corrected quantum algorithms.

Example 1. We are given two d-qubit states |ρ〉 and |τ 〉
which will be nondegenerate and minimal eigenvalue states
of some initial Hamiltonian(s) on n + 1 qubits,

h(0)|+, ρ, τ 〉 = 0 (13)

corresponding to the minimization of poly(n/2) + 1 expected
values where the first qubit (superscript 1 below) adds one
term and is measured in the X basis. The controlled swap gate
takes the form

[Uswap]1
m = 1

2 (11 + Z1) ⊗ 1m + 1
2 (11 − Z1) ⊗ Sm, (14)

where m = (i, j) indexes a qubit pair and the exchange op-
erator of a pair of qubit states is S = 1 + σ · σ. For the case
of d = 1 we arrive at the simplest (three-qubit) experimental
demonstration. At the minimum (= 0), the expected value
of the first qubit being in logical zero is 1

2 + 1
2 |〈ρ|τ 〉|2. The

final Hadamard gate on the control qubit is considered in the
measurement step.

Telescopes provide some handle on what we can do with-
out adding additional slack qubits yet fail to directly prove
universality in their own right. The crux lies in the fact that
we are only allowed some polynomial in ln n non-Clifford
gates (which opens an avenue for classical simulation, see
Refs. [25,26]). Interestingly however, we considered the ini-
tial Hamiltonian in (9) as a specific sum over projectors.
We instead could bound the cardinality by some polynomial
in n. Such a construction will now be established: requires
the addition of slack qubits. The universal construction then
follows.

B. Maximizing projection onto the history state

We will now prove the following Theorem 2 which es-
tablishes universality of the variational model of quantum
computation.

Theorem 2. Consider a quantum circuit of L gates on
n-qubits producing state

∏
l Ul |0〉⊗n. Then there exists an ob-

jective function (Hamiltonian H) with nondegenerate ground
state, cardinality O(L2), and spectral gap 
 � O(L−2) acting
on n + O(ln L) qubits such that acceptance implies efficient
preparation of the state

∏
l Ul |0〉⊗n. Moreover, a variational

sequence exists causing the objective function to accept.
To construct an objective function satisfying Theorem 2,

we modify the Feynman-Kitaev clock construction [27,28].
Coincidentally (and tangential to our objectives here), this
construction is also used in certain definitions of the com-
plexity class quantum-Merlin-Arthur (QMA), the quantum
analog of NP, through the QMA-complete problem k-LOCAL

HAMILTONIAN [28].
Feynman developed a time-independent Hamiltonian that

induces unitary dynamics to simulate a sequence of gates [27].
Consider Feynman’s Hamiltonians,

H̃t = Ut ⊗ |t〉〈t − 1| + U †
t ⊗ |t − 1〉〈t |,

H̃prop =
L∑

t=1

H̃t , (15)

where the Hamiltonian (15) acts on a clock register (right of
⊗) with orthogonal clock states 0 to L and an initial state |ξ 〉
(left). Observation of the clock in state |L〉 after some time
s = s� produces

1 ⊗ 〈L|e−ı·s·Hprop |ξ 〉 ⊗ |0〉 = UL · · ·U1|ξ 〉. (16)

The Hamiltonian Hprop in (15) can be modified as (17) so
as to have the history state (18) as its ground state,

− Ut ⊗ |t〉〈t − 1| − U †
t ⊗ |t − 1〉〈t | + |t〉〈t | + |t − 1〉〈t − 1|

= 2Ht � 0, (17)

where Ht is a projector. Then Hprop = ∑L
t=1 Ht has the his-

tory state,

|ψhist〉 = 1√
L + 1

L∑
t=0

Ut · · ·U1|ξ 〉 ⊗ |t〉, (18)

as its ground state as for any input state |ξ 〉 where 0 =
〈ψhist|Hprop|ψhist〉. This forms the building blocks of our ob-
jective function. We will, hence, establish Theorem 2 by a

series of lemmas. We let P0
def= |0〉〈0|.

Lemma 3 (Degeneracy lifting). Adding the tensor product
of a projector on the first clock qubit with a telescope,

Hin = V

(
n∑

i=1

P(i)
1

)
V † ⊗ P0 (19)

lifts the degeneracy of the ground space of Hprop and the
history state with fixed input as

1√
L + 1

L∑
t=0

t∏
l=1

Ul (V |0〉⊗n) ⊗ |t〉 (20)

is the nondegenerate ground state of JHin + KHprop for real
J, K > 0.

Lemma 4 (Gap existence). For appropriate non-negative
J and K , the operator JHin + KHprop is gapped with a
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nondegenerate ground state and, hence, Lemma 1 applies with


 � max

{
J,

Kπ2

2(L + 1)2

}
. (21)

Lemma 5 (Log space embedding Hprop). The clock space
of Hprop embeds into O(ln L) slack qubits, leaving the ground
space of JHin + KHprop and the gap invariant.

Lemma 6 (Existence and acceptance). The objective func-
tion JHin + KHprop satisfies Theorem 2. The gate sequence∏

l Ul |0〉⊗n is accepted by the objective function from
Lemma 6 thereby satisfying Theorem 2.

We will add K-identity gates to boost the probability of
the desired circuit output state |φ〉 = ∏L

l=1 Ul |0〉⊗n. From
Lemma 1, we have that

1 − 〈φ|H|φ〉



� |〈φ|ψhist〉|2 = 1

1 + L+1
K

, (22)

whenever 〈φ|H|φ〉 < max {J, Kπ2

2(L+1)2 }. For large enough K >

L, the right-hand side of (22) approaches unity, satisfying the
theorem.

Finally are faced with considering self-inverse gates. Such
gates (U ) have a spectrum Spec(U ) ⊆ {±1}, are bijective to
idempotent projectors (P2 = P = P†), viz. U = 1 − 2P, and
if V is a self-inverse quantum gate, so is the unitary conjugate
Ṽ = GV G† under arbitrary G. Shi showed that a set compris-
ing the controlled not gate (also known as the Feynman gate)
plus any one-qubit gate whose square does not preserve the
computational basis is universal [16]. Consider Hermitian,

R(θ ) = X sin(θ ) + Z cos(θ ), (23)

then,

eıθY = R(π/2)R(θ ). (24)

Hence, a unitary Y rotation is recovered by a product of two
Hermitian operators. A unitary X rotation is likewise recov-
ered by the composition (24) when considering Hermitian
Y sin(θ ) − Z cos(θ ). The universality of self-inverse gates is
then established with constant overhead. Hence, and to con-
clude, the method introduces not more than O(L2) expected
values whereas requiring not more than O(ln L) slack qubits
for an L gate quantum circuit.

C. Ansatz states and a combinatorial quantum circuit area law

Our construction of universal variational quantum compu-
tation has not considered whether a restricted form of ansatz
is capable of universal quantum computation at some arbitrary
depth as Lloyd [17] and others [18] have. Instead, the objec-
tive function to be minimized is defined in terms of the unitary
gates arising in the target circuit to be simulated. What ansatz
states are then required to simulate a given target circuit?

This question appears to be difficult, and not much is
currently known. In the case of QAOA it was recently shown
by myself and coauthors that the ability of an ansatz to ap-
proximate the ground-state energy of a satisfiability instance
worsens with increasing problem density (the ratio of con-
straints to variables) [29]. These related results, however, do
not immediately apply to our interests here.

Towards our goals, we show that reasonable depth circuits
might saturate bipartite entanglement—the depth of these cir-
cuits scales with the number of qubits and depends on the
interaction geometry present in a given quantum processor.
Consider the following.

An ebit is a unit of entanglement contained in a maximally
entangled two-qubit (Bell) state. A quantum state with q ebits
of entanglement (quantified by any entanglement measure)
contains the same amount of entanglement (in that measure)
as q-Bell states.

Lemma 7. Let c be the depth of two-qubit controlled ro-
tation gates in the n-qubit hardware-efficient ansatz. Then
the maximum possible number of ebits across any bipar-
tition is

Eb = min{�n/2�, c}.
In a low-depth circuit, the underlying geometry of the

processor heavily dictates c above. For example, for a line
of qubits and for a ring, the minimal c required to possibly
maximize Eb is ∼n/2 and ∼n/4 respectfully. However, in the
case of a grid, the minimal depth scales as ∼√

2/2.
Hence, if we wish to simulate a quantum algorithm de-

scribed by a low-depth circuit, having access to a grid
architecture could provide an intrinsic advantage. Specifically,
our combinatorial quantum circuit area law establishes that an
objective circuit generating k < �n/2� ebits across every bi-
partition, must be simulated by an ansatz of, at least, minimal
required circuit depth ∼√

k on a grid.
Although this does establish a preliminary relationship,

the general case remains unclear at the time of writing. For
example, given a quantum circuit with application time t�

which outputs |ψ〉, what is the minimal t (ε) � t� for a control
sequence to provide an ε close two-norm approximation to
|ψ〉?

II. DISCUSSION

We have established that variational quantum computation
admits a universal model. The gate sequence being simulated
serves as an upper bound showing that a control sequence
exists to minimize the expected values. Expected values are
then the fleeting resource of the variational model.

Although error correction is assumed in our universality
proofs, the techniques we develop should augment possibil-
ities in the NISQ setting, particularly, with the advent of
error suppression techniques [30,31]. Importantly, variational
quantum computation forms a universal model in its own right
and is not (in principle) limited in application scope.

An interesting feature of variational quantum computation
is how many-body Hamiltonian terms are realized as part of
the measurement process. This is in contrast with leading
alternative models of universal quantum computation.

In the gate model, many-body interactions must be simu-
lated by sequences of two-body gates. The adiabatic model
applies perturbative gadgets to approximate many-body in-
teractions with two-body interactions [9,32]. The variational
model simulates many-body interactions by local measure-
ments. Moreover the coefficients weighting many-body terms
need not be implemented by the quantum hardware directly;
this weight is compensated for in the classical process. Finally,
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as many quantum states can cause a considered objective
function to accept, the presented model is, therefore, partially
agnostic to how states are prepared.

Variational counterparts to an increasing number of cel-
ebrated quantum algorithms have been recently developed,
including the solution to linear [33] (and nonlinear [34])
systems. Indeed, computational universality implies that such
variational incarnations generally exist. Yet the present results
certainly do not rule out significant overhead reductions of
task tailored variational quantum algorithms.
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