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The challenge posed by the many-body problem in quantum physics originates from the difficulty
of describing the nontrivial correlations encoded in the many-body wave functions with high
complexity. Quantum neural network provides a powerful tool to represent the large-scale wave
function, which has aroused widespread concern in the quantum superiority era. A significant
open problem is what exactly the representational power boundary of the single-layer quantum
neural network is. In this paper, we design a 2-local Hamiltonian and then give a kind of Quantum
Restricted Boltzmann Machine (QRBM, i.e. single-layer quantum neural network) based on
it. The proposed QRBM has the following two salient features. (1) It is proved universal for
implementing quantum computation tasks. (2) It can be efficiently implemented on the Noisy
Intermediate-Scale Quantum (NISQ) devices. We successfully utilize the proposed QRBM to
compute the wave functions for the notable cases of physical interest including the ground state
as well as the Gibbs state (thermal state) of molecules on the superconducting quantum chip.
The experimental results illustrate the proposed QRBM can compute the above wave functions
with an acceptable error.

The wave function is an important object in quantum physics and is difficult to be characterized in
the classical world. Actually, the wave function encodes all of the information of a complex molecule on
a quantum state which needs an extremely large-scale space to characterize. Generally, the scale of the
space increases exponentially with the size of the physical system, therefore a large-scale wave function with
complex correlations among the subsystems needs too enormous resources to depict for a classical computer.
To address the above problem, Feynman proposed the idea that one can utilize a quantum computer to
simulate complex wave functions [1], then some quantum algorithms for solving many-body problems of
interacting fermions were proposed [2, 3]. These algorithms start from a “good” initial state that has a large
overlap with the target state [5]. Afterwards, they perform the phase estimation algorithm onto the initial
state to encode the eigen-values of the Hamiltonian into the quantum register. Noting that though these
algorithms can produce an extremely accurate energy for solving quantum chemistry and quantum material
problems, they apply stringent requirements on the coherence of the quantum hardware devices which are
inaccessible with current technology.

To reduce the coherence requirements on the quantum devices, classical-quantum hybrid algorithms were
delivered. This kind of algorithms involve minimizing a cost function that depends on the parameters of
a quantum gate sequence. Cost evaluation occurs on the quantum computer, with speed-up over classical
evaluation, and the classical computer utilizes this cost information to adjust the parameters of the ansatz
with the help of suitable classical optimization algorithms. As one of the most representative classical-
quantum hybrid algorithms, the Variational Quantum Eigensolver (VQE) utilizes Ritz’s variational principle
to prepare approximations to the ground state and its energy [4]. However, the efficiency of VQEs is limited
by the number of parameters that scales quartically with the number of spin orbitals that are considered in
the single- and double- excitation approximation. To improve the VQE algorithm, the hardware-efficient trial
states were introduced, which are composed by the single-qubit Euler rotation part and the entanglement
part [5], and the hardware-efficient ansatz can be efficiently implemented on the Noisy Intermediate-Scale
Quantum (NISQ) devices.
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The quantum neural network is a significant ansatz in simulating many-body systems [6]. In fact, the neu-
ral network is a powerful tool to interpret complex correlations in multiple-variable functions or probability
distributions in the classical world. Numerical experiment suggests that the single layer neural network, i.e.
the Restricted Boltzmann Machine (RBM), provides a good solution to several many-body systems, such as
the transverse-field Ising model and the antiferromagnetic Heisenberg model [6]. However, the representation
power of the RBM is not sufficient for implementing the universal quantum computation tasks. Duan et al.
[8] analyzed the representational power of the RBM, and indicated that the RBM cannot characterize some
of the quantum states, such as the projected entangled pair states and quantum enhanced feature states
[7, 8].

Afterwards, researchers proposed the Quantum Restricted Boltzmann Machines (QRBM) to efficiently
simulate some many-body systems. In 2018, Xia et al. [11] introduced a series of single-qubit rotation to
construct a marginal state of the QRBM, which provides a good solution on simulating the Hydrogen molecule
as well as the Water molecule. Zhang et al. [12] proposed a variational quantum algorithm to efficiently train
the QRBM, where the proposed algorithm reduced the required ancillary qubits. Recently, Carleo et al. [13]
presented an extension of quantum neural network to model interacting fermionic problems, and Kerstin et al.
[22] indicated that the Deep QRBM can implement the universal quantum computation tasks. The previous
works show outstanding performance in some notable cases of physical interest that are difficult for classical
RBM. These results suggest the QRBM has stronger representational power compared with the RBM, and
this conjecture is also verified in some quantum machine learning algorithms [7, 16, 17, 18, 19, 20, 21].
However, as pointed out by Roger G. Melko et al. [23], whether the QRBM can implement universal
quantum computation tasks is still a significant open problem.

In this paper, we utilize a 2-local Hamiltonian to induce a kind of QRBM, which we call 2-Local QRBM
(2L-QRBM). Different from the previous QRBM, the 2L-QRBM has connections between visible nodes.
Specifically, our model has two salient features. (1) It is proved universal for implementing quantum compu-
tation tasks. To do this, we consider the simplest case for the 2L-QRBM with only 1 hidden nodes (M = 1).
We provide three theorems to construct a map between the 2L-QRBM and the quantum circuit model. Given
an arbitrary quantum state |α〉 that is produced by a quantum circuit, the proof begins at indicating that
the state |α〉 can be encoded as the ground state of a 2-local Hamiltonian H (Theorem 2). Then we propose
how to construct a 2L-QRBM whose corresponding trial state |Φ〉 is O(ε) close to the ground state of H
(Theorem 3, 4), where ε is the approximation error. It implies that, compared with the classical RBM which
cannot simulate an arbitrary quantum state [8], QRBM illustrates the quantum advantages in terms of the
representative power. (2) The proposed 2L-QRBM can be efficiently transformed to a quantum circuit and
then be easily implemented on the NISQ devices. Based on this advantage, we validate the accuracy of the
proposed 2L-QRBM by studying the Hydrogen molecule as well as the Water molecule on the quantum sim-
ulator. And we also utilize 2L-QRBM to compute the Gibbs states of Haldane chains on a superconducting
device. The power of the 2L-QRBM is demonstrated, obtaining state-of-art accuracy in computing ground
states and Gibbs states.

Results

The construction of 2L-QRBM. The definitions of RBM and QRBM refer to Methods. Here, to satisfy
the representation power for implementing universal computation tasks, we design a 2(N+M) × 2(N+M)

bipartite Hamiltonian:

HRBM (θ) =

N∑
i=1

∑
t∈{x,y,z}

btiv
t
i +

M∑
j=1

mjh
z
j +

N∑
i=1

M∑
j=1

Wijv
z
i h

z
j +

N−1∑
s=1

N∑
k=s+1

∑
t∈{x,y,z}

Kt
skv

t
sv
t
k, (1)

which induces a quantum Boltzmann machine constituted by one layer of N nodes v = {vi}Ni=1 and a single
hidden layer of M auxiliary nodes h = {hj}Mj=1 (see Fig.1). The notation vti represents the Pauli operator
σti(t ∈ {x, y, z}) defined on the i-th visible node, hzj denotes the Pauli operator σzj on the j-th hidden node,
and θ = {bti,mj ,Wij ,K

t
sk} is real-valued Boltzmann parameter. In the Hamiltonian HRBM (θ), the first

two terms indicate the energy operators defined on the visible qubits and hidden qubits, respectively. The
third term represents the connections between the visible layer and the hidden layer, and the final term
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Figure 1: The 2L-QRBM induced by the Hamiltonian HRBM (θ). It has N visible nodes (orange circle)
as well as M hidden nodes (grey circle), and black solid lines indicate the coupling relationship between
different nodes.

expresses the intersections between visible nodes. As this quantum Boltzmann machine is induced by a
2-local HRBM (θ) without involving the interaction terms hzi ⊗hzj between the hidden nodes, it can be called
2-Local Quantum Restricted Boltzmann Machine [9].

The trial state of 2L-QRBM can be created with a two-step approach. First, entangle N + M qubits
(including all visible and hidden nodes) according to

|Ψvh(θ)〉 =
eHRBM (θ)H⊗(N+M)|0〉⊗(N+M)

vh√
〈+|⊗(N+M)e2HRBM (θ)|+〉⊗(N+M)

, (2)

where H is the Hadamard gate, |+〉 = 1√
2
(|0〉 + |1〉), and the denominator is a normalization factor. Note

that eHRBM (θ) is a non-unitary operator that is difficult to implement on the quantum computer in general.
To solve this problem, we will propose a method to transform eHRBM (θ) into a series of fundamental quantum
gates so that one can implement it efficiently on the NISQ devices.

Second, once the wave function |Ψvh(θ)〉 is generated, all the hidden nodes (qubits) will be post-measured
by |+〉. The measurement should be executed several times until all the hidden nodes (qubits) are projected
onto the state |+〉. After that, the 2L-QRBM trial state can be expressed as

|Ψv(θ)〉 =
〈+|⊗Mh |Ψvh(θ)〉√
〈Ψvh(θ)|P (h)

+ |Ψvh(θ)〉
=

1

Nv

∑
h

eHRBM (θ,h)|+〉⊗N , (3)

in which P
(h)
+ = (|+〉〈+|)1 ⊗ ... ⊗ (|+〉〈+|)M is the measurement operator, and Nv is the normaliza-

tion factor. HRBM (θ,h) =
∑N
i=1

∑
t∈{x,y,z} b

t
iv
t
i +

∑M
j=1mj(1 − 2hj)Ij +

∑N
i=1

∑M
j=1Wijv

z
i (1 − 2hj) +∑N−1

s=1

∑N
k=s+1

∑
t∈{x,y,z}K

t
skv

t
sv
t
k is a operator acting on the N visible qubits. One can utilize the trial

state |Ψv(θ)〉 to approximate the target wave function of the realistic physical system.
2L-QRBM is universal for quantum computation. It is well known that the quantum circuit model
is universal for quantum computation task, that is, there exists sets of gates acting on a constant number of
qubits that can efficiently simulate a quantum Turing machine [31]. In 2005, Aharonov et al. [27] proved that
the Adiabatic Quantum Computation (AQC) is also universal for quantum computation, that is, the AQC
can simulate the output of any quantum circuit in the polynomial time. Here, we prove that the 2L-QRBM
is universal for implementing quantum computation tasks in a similar way.

Theorem 1. The 2L-QRBM induced by the Hamiltonian HRBM (θ) (Eq.(1)) can implement universal
quantum computation tasks. That is, for an arbitrary quantum circuit whose output is denoted as |α〉 and
an arbitrary positive value ε, there exists a 2L-QRBM trial state |Ψv(θ)〉 that is O(ε) close to |α〉.

3



This result can be induced immediately from the Theorems 2-4 in Methods, and we here only give a
brief overview. Detailed proof refers to Methods. We first indicate that the output state |α〉 of an arbitrary
quantum circuit can be approximated by the ground state of a 2-local Hamiltonian H (see Theorem 2
in Methods). Furthermore, to reduce the variational parameters, we prove that the ground state of any
2-local Hamiltonian H can be approximated by that of a simplified 2-local Hamiltonian which is in the
form of Hs(θ̃) =

∑N
i=1

∑
t∈{x,y,z} b

t
iv
t
i +

∑N−1
s=1

∑N
k=s+1

∑
t∈{x,y,z}K

t
skv

t
sv
t
k, where θ̃ = {bti,Kt

sk}. This
approximation successfully truncates nearly half of the variational parameters compared with the general
2-local Hamiltonian (see Theorem 3 in Methods). Finally, we prove that there exists a 2L-QRBM trial state

converging towards the ground state of Hs(θ̃) by introducing a positive ‘phase shift’ λ∗ (see Theorem 4 in
Methods). We consider the simplest case of 2L-QRBM, that is, M = 1 and mj = 0. Given an arbitrary small
positive value ε, the 2L-QRBM trial state |Ψv(θ

∗)〉 with Boltzmann parameters θ∗ = {mj ,Wi1, b
t
i,K

t
sk} =

{0, ln(eλ
∗τ/N +

√
e2λ∗τ/N − 1),−τf(θ̃)} is O(ε) close to the ground state of the simplified Hamiltonian Hs(θ̃)

(simply denoted as Hs(θ̃) =
∑
j θ̃jPj , Pj ∈ {vti , vtsvtk}, t ∈ {x, y, z}), where the time evolution parameter

τ = O(poly(1/ε,N)) and f(θ̃j) = θ̃j − (E0+δ)
2N

∑
k Tr (Pj |ψk〉〈ψk|). The quantum state |ψk〉 is the k-th

excited state of Hs(θ̃), θ̃j is the j-th component of θ̃ and δ is a small positive value that is smaller than

the spectral gap of Hs(θ̃) (see Methods). Thus, the output state |α〉 of an arbitrary quantum circuit can be
efficiently approximated by a 2L-QRBM trial state.

Theorem 1 indicates that our 2L-QRBM model is complete for the description of many-body quantum
system. As shown in [8], the classical analogue of the 2L-QRBM, is incapable of this kind of task. Then
what kind of advantage our 2L-QRBM has in the description of wave function?
Quantum advantages of 2L-QRBM. In the classical RBM, the wave function |Ψ(θ)〉 =

∑
v Ψv(θ)|v〉,

in which the amplitude Ψv(θ) =
∑

h e
−Eθ(v,h), and the energy function E(v,h) =

∑
i bivi +

∑
jmjhj +∑

ijWijvihj +
∑
i,j Kijvivj . Note that the amplitude (marginal distribution) Ψ(v) can be computed as

Ψ(v) = exp

∑
i

bivi +
∑
i,j

Kijvivj

 M∏
j=1

cosh

(
mj +

∑
i

Wijvi

)
, (4)

which means that Ψ(v) can be calculated in polynomial time under given input values of v = (v1v2...vN ). It
is exactly the property which limits the performance of classical RBM. On one hand, if a quantum state has
the classical RBM representation, the computation complexity of computing Ψ(v) is of class P/poly, that
is, this problem can be solved by a polynomial-size circuit even if the circuit cannot be constructed efficiently
in general. On the other hand, Duan et al. [8] proved that simulating some kind of quantum states, such as

|Φ(x)〉 = exp
(
i
∑
S⊂[m] φS(x)

∏
i∈S σ

z
i

)
|0〉m, projected entangled pair state and the ground state of gapped

Hamiltonians, is #P-hard for classical computer. Therefore, these states cannot be efficiently simulated
by the classical RBM, otherwise #P ⊂ P/poly will be induced, which obviously means that polynomial
hierarchy (PH) collapses. Luckily, our 2L-QRBM has significant quantum advantage in simulating these
states. Actually, as Theorem 1 shows, 2L-QRBM is complete for the description of wave functions.
Prepare the 2L-QRBM by quantum circuit. We now show how to design a quantum circuit for
preparing the 2L-QRBM trial state with the Quantum Imaginary Time Evolution (QITE) algorithm [15].

Noting that the Hamiltonian HRBM (θ) =
∑
s ĥs(θ) is composed by the linear combination of operators that

act on at most k qubits (k = 1, 2). According to the Trotter theorem [25], the operator eHRBM (θ) can be
decomposed as:

eHRBM (θ) = (eĥ1(θ)/neĥ2(θ)/n...)n +O
(

1

n2

)
, (5)

in which the parameter n is the number of Trotter steps. For the s-term ĥs(θ), after a single Trotter step,
the initial state |Ψ0〉 becomes to

|Ψ〉 = c−1/2eĥs(θ)/n|Ψ0〉, (6)

and the normalization parameter c can be estimated by c = 1− 2
n 〈Ψ0|ĥs(θ)|Ψ0〉+O(1/n2) according to the

truncated Taylor series. To implement Eq.(6) on the NISQ devices, Chan et al. [26] introduces a unitary
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(a) (b)

Figure 2: Bond dissociation curves of the Hydrogen molecule (a) and the Water molecule (b). The curves are
obtained by repeated computation of the ground state energy for several bond length values. The simulation
results are computed by the ProjectQ [29] (We choose the swap operator as the entanglement operator in
the hardware-efficient ansatz).
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Figure 3: The Gibbs states (thermal states) of the Haldane chain in the case of N = 9, h2 = 0, h1/J ∈
[0.16, 1.60], which are computed by the (a) 2L-QRBM and (b) the hardware-efficient ansatz, respectively.
The darker pixels indicate smaller error with the exact value, while the lighter pixels show the opposite. We
sample 16 computational basis from the total 512 basis by implementing a large number of measurements
(100,000). The simulation error of 2L-QRBM achieves nearly ε = O(10−4).
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operator e−iAs(θ)/n to approximate it, where the operator As(θ) (acting on k qubits) can be extended in the
Pauli basis with relevant parameters as(θ)i1...ik

As(θ) =
∑
i1...ik

as(θ)i1...ikσi1 ...σik . (7)

Define |∆0〉 = n(|Ψ〉 − |Ψ0〉) and |∆〉 = −iAs(θ)|Ψ0〉, the goal is to find out an optimal operator As(θ) to
minimize ‖|∆0〉 − |∆〉‖. Taking parameters as(θ)i1...ik as variables, finding out As(θ) can be recognized as
an optimization procedure, and parameters as(θ)i1...ik can be efficiently determined by solving the linear

equation (S + S†)as(θ) = −b, where the matrix entries Si1...ik,j1...jk = 〈Ψ0|σ†i1...ikσj1...jk |Ψ0〉 and vector

entries bi1...ik = −ic−1/2〈Ψ0|σ†i1...ik ĥs(θ)|Ψ0〉. All of the entries Si1...ik,j1,...,jk and bi1...ik can be efficiently
estimated by the swap test method by the implementing of O(1/ε2) measurements with an acceptable error ε.
This optimization problem can be efficiently solved by a classical computer once all entries Si1...ik,j1,...,jk and
bi1...ik are all estimated by a quantum computer (though the computational overhead of solving the linear
equation is O(poly(2k))), it does not serve as the dominant component because k takes value from {1, 2}.
Therefore, the complexity of implementing the 2L-QRBM by using QITE algorithm is quasi-polynomial in
n (the number of Trotter steps) [26].
Experimental results. To solve different tasks, the 2L-QRBM should be trained by different constraints.
Given a Hamiltonian H =

∑
j αjPj , where αj ∈ R and Pj = P 1

j ⊗ P 2
j ⊗ ... ⊗ PNj , P sj ∈ {I,X, Y, Z}, we

here propose two training methods for 2L-QRBM to compute the ground state energy and Gibbs state of H,
respectively.

Compute ground state energy. We first give the elaborate details for training the ansatz to compute the
ground state energy. Similar to the variational quantum eigen-solver (VQE) algorithm, the ansatz |Ψv(θ)〉
approximates the ground state along with the energy E(θ) = 〈Ψv(θ)|H|Ψv(θ)〉 is minimized (and meanwhile
the Boltzmann parameters theta is trained/updated) by the iterative optimization method. We here utilize
a kind of gradient-descent method called “the Simultaneous Perturbation Stochastic Approximation (SPSA)
algorithm” to optimize the cost function. SPSA algorithm is robust against the statistical fluctuations, and
has shown the merits of high accuracy in the optimization of cost function [5]. Concretely, in every step (e.g.
the k-th step) of the SPSA algorithm, the gradient at θk is constructed as gk(θk) = (E(θ+

k )−E(θ−k ))∆k/2ck,
where θ±k = θk ± ck∆k, ∆k is sampled according to the Bernoulli distribution and ck can be selected with
priori experience.

We here simulate the ground state energy of the Hydrogen molecular as well as the Water molecular on
ProjectQ, and compares the performance of our 2L-QRBM and previous works including hardware-efficient
ansatz [5], QRBM without the transverse field and the Full Configuration Interaction (FCI) method. The
numerical results (see Fig.2) shows that, the QRBM without the transverse field and the hardware-efficient
ansatz cannot converge to an optimal solution when the bond length increases from 1.5 to 2.5 (both in (a)
and (b)), and the curves of our 2L-QRBM are extremely close to that of FCI method.

Compute Gibbs state. We now propose the training method to compute the Gibbs state (thermal state)
ρ = e−βH/Z of the Hamiltonian H =

∑
j αjPj . In general, Gibbs state comes from the process that

performing e−βH/2 onto the first system of the maximally mixed state |φ〉 = 2−N/2
∑
x |x〉|x〉, followed

by tracing out the second system. We here aim to tune the trial state |Ψv(θ)〉 to approximate the state
|φτ 〉 = c−1/2e−βH/2|φ0〉, where τ = 1/β. There might be a doubt why we do not invoke the QITE algorithm
to implement |φτ 〉 directly. Actually, if the target Hamiltonian is k-local (k is not too large), QITE algorithm
can efficiently solve the quantum Gibbs sampling problem, otherwise it will induce an enormous computation
overhead because it needs to solve a linear function (S + S†)as(θ) = −b. Fortunately, our 2L-QRBM
naturally provides a 2-local Hamiltonian whose ground state can approximate the purified Gibbs state of a
k-local Hamiltonian, even when k is large.

We introduce the Wick rotation (t → iτ) and the VQE algorithm to adjust the parameter so that the
trial state |Ψv(θ)〉 gradually approximates the purified Gibbs state |φτ 〉. The optimal Boltzmann parameter
is obtained when the equation δ‖(∂/∂τ +H− Eτ )|Ψv(θ)〉‖ = 0 is satisfied, where Eτ represents the energy
term. In this case, the parameter θ can be obtained from the equation θ(τ + δτ) = θ(τ) + A−1(τ)C(τ)δτ ,
where the elements of matrix A are defined as Amn = <〈∂Ψv(θ)/∂θn|∂Ψv(θ)/∂θm〉, that of C are Cn =
−<〈∂θnΨv(θ)|H|Ψv(θ)〉 [10]. the notation <(x) represents the real part of x.

Following the procedure above, we compute the Gibbs state of a family of Hamiltonians on a spin −1/2
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Figure 4: Finding the Gibbs state of Haldane chain with parameters N = 9, h1/J = 0.48 and h2 = 0 by
using 2L-QRBM (red line) versus QRBM (blue line) and hardware-efficient ansatz (green line). In this case,
the case of 2L-QRBM converges more rapidly to the target state (nearly with the fidelity of 100%) than the
other two methods.
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Theoretical Results
Experimental Results by IBMQ

Figure 5: The experimental results by using 2L-QRBM to compute the Gibbs state of Haldane chain on the
ibmq-essex chip when N = 4, h2 = 0 and h1 = 0.48. The frequency of the utilized four superconductor qubits
are ranging from [4.4997(GHz), 4.6946(GHz)], the maximum error rate of single-qubit-gate is 4.56 × 10−4,
and that for C-NOT gate is 1.474× 10−2 [30].
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chain with the open boundary conditions

H = −J
N−2∑
i=1

ZiXi+1Zi+2 − h1

N∑
i=1

Xi − h2

N−1∑
i=1

XiXi+1, (8)

where h1, h2 and J are the changeable parameters of the Hamiltonian. We compute the cases that N =
9, h2 = 0, h1/J ∈ [0.16, 1.60] by using the 2L-QRBM ansatz and the hardware-efficient ansatz with swap
entanglement operator on the ProjectQ, respectively. We implement 100,000 measurements on the compu-
tational basis to reconstruct the target Gibbs state. The results are illustrated as Fig.3 (a) (2L-QRBM)
and (b) (hardware-efficient). Each row of the graph represents the amplitude differences ||P triali − P exacti ||
between the trial state and the target one on the 16 sampled computational basses (from 512 possible basis),
where i ∈ {0, 1, ..., 2N}. Obviously, the error rate induced in 2L-QRBM is nearly O(10−4), which is much
less than that of the hardware-efficient ansatz. We also illustrate the optimization steps when computing
the Gibbs state of Haldane chain for the specific parameters N = 9, h1/J = 0.48 and h2 = 0 (see Fig.4). It
is evident that 2L-QRBM converges to an appropriate destination faster than the other two methods.

Finally, we test the 2L-QRBM model on the IBMQ-essex quantum device by computing the Gibbs state
of the Haldane chain (see Fig.5). Limited by the single- and double- gate error rates, the experimental
fidelity is only 0.926 which is below the corresponding theoretical value. We believe that, with the rapidly
refinement of the quantum hardware devices, our 2L-QRBM model can simulate much more functions with
high accuracy.

Discussion

In summary, we propose a QRBM induced by a specially designed 2-local Hamiltonian, and our model has
two salient features, as stated above. First, it is proved that the 2L-QRBM can implement the universal
quantum computation tasks, meanwhile our proof implies a new way for understanding the QRBM. Actually,
2L-QRBM can be recognized as the variational version of the QITE algorithm, and this relationship is similar
to that for the Quantum Approximation Optimization Algorithm (QAOA) and the Adiabatic Quantum
Computation (AQC). We hope our proof can inspire more interesting perspectives on understanding quantum
machine learning algorithms in terms of the representational power. Second, our model can be efficiently
transformed to a quantum circuit and be implemented on the NISQ devices. Different from the AQC whose
computational complexity depends on the depth of the corresponding quantum circuit, the complexity for
implementing the 2L-QRBM only comes from the Trotter steps. The exact simulation results show the
2L-QRBM trial state can converge to a better solution compared with the widely utilized hardware-efficient
ansatz and the Ising model based QRBM. We also test our model on the superconducting quantum devices
with 4 qubits, and the experimental results illustrate 2L-QRBM can approximate the target wave function
with an acceptable error on the realistic devices. One of the possible reasons for high fidelity performance is
that the 2L-QRBM is sufficient for universal quantum computation tasks, therefore the target quantum state
is bounded by the Hilbert space that 2L-QRBM can depict. This superior performance shows our model not
only has theoretical significance, but also has application values in the NISQ era.

Methods

Review of the RBM and QRBM. As a classic machine learning technique, the RBM serves as the
basis of complex deep learning models such as deep belief networks and deep Boltzmann machines [24]. It
comprises a probabilistic network of binary units with a quadratic energy function. The RBM are commonly
constituted by one visible layer of N nodes v = {vi}Ni=1, corresponding to the physical spin variables in a
chosen basis and a single hidden layer of M auxiliary nodes h = {hj}Mj=1. To maintain consistency with the
standard notation in quantum mechanics, the units vi and hj take value from {0, 1}, and the corresponding
energy function is a linear combination of them, that is,

Eθ(v,h) =

N∑
i=1

bivi +

M∑
j=1

mjhj +

N∑
i=1

M∑
j=1

Wijvihj , (9)
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where θ = {bi,mj ,Wij} are Boltzmann parameters. The (unnormalized) marginal distribution of observing
a visible variable v is given by Ψv(θ) =

∑
h e
−Eθ(v,h). Utilizing the RBM to fit a target wave function can

be achieved by the minimization of the loss function L(θ) via the tuning of Boltzmann parameters θ, and
the form of L(θ) depends on the realistic problem.

In the problem of computing the ground state of a Hamiltonian H, the loss function can be chosen as
L(θ) = 〈Ψ(θ)|H|Ψ(θ)〉/〈Ψ(θ)|Ψ(θ)〉. Here, |Ψ(θ)〉 =

∑
v Ψv(θ)|v〉 is a superposition state, corresponding

to the 2N possible inputs of v. The RBM parameter θ as well as the amplitudes Ψv(θ) are tuned in the
minimization of L(θ) so that |Ψ(θ)〉 converges to the ground state of H.

To enhance the computational efficiency of the RBM, the QRBM model are proposed [11, 12, 13]. Different
from the RBM, the QRBM utilizes a quantum circuit to parallelly compute the amplitudes Ψv(θ), and

naturally outputs the superposition state |Ψ(θ)〉 =
∑

v
Ψv(θ)
Z |v〉, where Z =

∑
v Ψ2

v(θ) is the normalized
factor.
Self energy and effective Hamiltonian. As we concerns only the low energy and ground state of the
Hamiltonian, we now illustrate some methods to approximate the Hamiltonian in the low energy space
(details refer to [28]).

Given a Hamiltonian H, the Hilbert space HSpace can be divided as HSpace = L+⊕L−, where L+ is the
space spanned by the eigenvectors of H with eigenvalues λ ≥ λc and L− is spanned by that with λ < λc. Let
Π± be the corresponding projection operators onto L±. Given an operator X on the Hilbert space HSpace,
X++ is defined as Π+XΠ+, which is an operator on L+, and similarly X−− = Π−XΠ− is an operator on
the low energy subspace L−.

The self energy of H is defined as

Σ−(z) = zI− −G−1
−−(z), (10)

where G(z) = (zI −H)−1. G(z) is a meromorphic operator-valued function of the complex variable z with
poles at z = λj , where λj is the eigenvalue of H. The self energy Σ−(z) is utilized to approximate the
spectrum of H in the low energy subspace. Note that Σ−(z) is nearly constant for a certain range of z,
therefore a Hamiltonian Heff can be selected to approximate it. That is, Heff can approximate H in the
low energy space, so it is generally called “effective Hamiltonian” in the computation of H’s ground state and
ground energy.

We now give several theorems to establish the relationship between our 2L-QRBM and quantum circuit.
Theorem 2. Given an arbitrary quantum circuit on n qubits with l layers of single-qubit or two-qubit

gates implementing a unitary U , suppose |α(l)〉 is the output of this circuit, then for an arbitrarily ε > 0,
there exists a 2-local Hamiltonian H whose ground state |ψ〉 is O((4/∆eff +1/

√
L)ε) close to the state |α(l)〉,

where ∆eff is the spectral gap of H’s effective Hamiltonian Heff .
We first review several lemmas in [27, 28], which are closely related with our proof of Theorem 2.
Lemma 2.1 [27]. Given a quantum circuit on n qubits with L two-qubit gates implementing a unitary U ,

and ε > 0, there exists a 3-local Hamiltonian Hfinal whose ground state is O(ε/
√
L) close (in trace distance)

to the quantum state U |0〉n. Moreover, the Hamiltonian Hfinal can be computed by a polynomial time Turing
machine.

Lemma 2.2 [28]. Suppose H is a Hamiltonian with a spectral gap ∆ around the cutoff λc (that is, all its
eigenvalues are in (−∞, λ−] ∪ [λ+,+∞), where λ+ = λc + ∆/2 and λ− = λc −∆/2), and V is a Hermite
operator with norm ‖V ‖ ≤ ∆/2, then for an arbitrarily small positive value ε, if there exists an operator
Heff whose eigenvalues belongs to [c, d] for some c < d < λc − ε and moreover, the inequality

‖Σ−(z)−Heff‖ ≤ ε (11)

(where Σ−(z) is the self energy of H̃ = H + V ) holds for all z ∈ [c − ε, d + ε], each eigenvalue λj is ε close
to the j-th eigenvalue of Heff .

Lemma 2.3 [28]. Assume that H, V,Heff satisfy the conditions of Lemma 2 with some ε2 > 0, let λeff,i
denote the i-th eigenvalue of Heff and |ṽ〉 (resp., |veff 〉) denote the ground state of H̃(resp.,Heff ). Suppose
λeff,2 and λeff,1 are the smallest two eigenvalues of Heff and λeff,2 > λeff,1, then we have

‖|ṽ〉 − |veff 〉‖ ≤
2‖V ‖2

(λ+ − λeff,1 − ε2)2
+

4ε2
λeff,2 − λeff,1

. (12)
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We begin our proof of Theorem 2 now. Given an arbitrary l-layer quantum circuit, without loss of
generality, we suppose the input state of this circuit is |0〉⊗n and the output state is |α(l)〉. According to
Lemma 2.1, for an arbitrary small positive value ε1, there exists a 3-local Hamiltonian H(3) whose ground
state |v(3)〉 is O(ε1/

√
L) close to |α(l)〉, that is,

‖|v(3)〉 − |α(l)〉‖ = ε1/
√
L. (13)

It is interesting to note that any 3-local Hamiltonian H(3) can be represented as [28]

H(3) = Y − 6

M∑
m=1

Bm1Bm2Bm3, (14)

where Y is a 2-local Hamiltonian with the norm bound O(1/n6), M = O(n3), n is the scale of the quantum
system, and each Bmi ≥ 1

n3 I is a linear combination of the Pauli operators. Now we construct a 2-local

Hamiltonian H(2) whose ground state can approximate that of H(3). For an arbitrarily small positive value
δ, let

H = −δ
−3

4

M∑
m=1

I ⊗ (σzm1σ
z
m2 + σzm1σ

z
m3 + σzm2σ

z
m3 − 3I), (15)

and

V = Y ⊗ I + δ−1
M∑
m=1

(B2
m1 +B2

m2 +B2
m3)⊗ I − δ−2

M∑
m=1

(Bm1 ⊗ σxm1 +Bm2 ⊗ σxm2 +Bm3 ⊗ σxm3), (16)

then H(2) = H+ V is a 2-local Hamiltonian, and its self energy can be written as

Σ−(z) = Y ⊗ I − 6

M∑
m=1

Bm1Bm2Bm3 ⊗ (σx)eff +O(δ). (17)

Let Heff = Y ⊗ I − 6
∑M
m=1Bm1Bm2Bm3 ⊗ (σx)eff , the self energy of H(2) can be rewritten as Σ−(z) =

Heff +O(δ). Since ‖Heff‖ ≤ O(1) and ‖V ‖ = O(δ−2), applying Lemma 2.2 with c = −‖Heff‖, d = ‖Heff‖,
and λc = ∆/2, where ∆ = δ−3 is the spectral gap of H, we can obtain that the smallest eigenvalue of H(2)

is O(δ) close to that of Heff .
We now exploit the relationship between Heff and H(3). Note that

Heff =

(
Y − 6

M∑
m=1

Bm1Bm2Bm3

)
⊗ |+〉〈+|+

(
Y + 6

M∑
m=1

Bm1Bm2Bm3

)
⊗ |−〉〈−| (18)

= H(3) ⊗ |+〉〈+|+

(
Y + 6

M∑
m=1

Bm1Bm2Bm3

)
⊗ |−〉〈−| (19)

and Bm1Bm2Bm3 ≥ 0, then the ground state of Heff can be written as |veff 〉 = |v(3)〉|+〉, where |v(3)〉 is
the ground state of H(3).

Note that the 2-local Hamiltonian H(2), Hermite operator V (Eq.16) and effective Hamiltonian Heff
(Eq.19) satisfy the conditions in Lemma 2.2, then according to Lemma 2.3, we have

‖|v(2)〉 − |veff 〉‖ ≤
2‖V ‖2

(λ+ − λeff,1 − ε2)2
+

4ε2
λeff,2 − λeff,1

, (20)

where |v(2)〉 is the ground state of H(2). Since |veff 〉 = |v(3)〉|+〉 and ‖|v(3)〉 − |α(l)〉‖ = ε1/
√
L (Eq.13), we

have

‖|v(2)〉 − |α(l)〉|+〉‖ ≤ ‖|v(2)〉 − |veff 〉‖+ ‖|veff 〉 − |α(l)〉|+〉‖ (21)

= ‖|v(2)〉 − |veff 〉‖+ ‖|v(3)〉|+〉 − |α(l)〉|+〉‖ (22)
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≤ 2‖V ‖2

(λ+ − λeff,1 − ε2)2
+

4ε2
λeff,2 − λeff,1

+
ε1√
L

= ε(4/∆eff + 1/
√
L) = O(ε), (23)

where ∆eff = λeff,2 − λeff,1, ε = max{ε1, ε2} = O(δ), ||V || = O(δ−2), λ+ = δ−3, and |λeff,1| = O(1).
Theorem 3. For an arbitrary 2-local Hamiltonian H, there exists a simplified 2-local Hamiltonian in the

form of

Hs(θ̃) =

N∑
i=1

∑
t∈{x,y,z}

btiv
t
i +

N−1∑
s=1

N∑
k=s+1

∑
t∈{x,y,z}

Kt
skv

t
sv
t
k (24)

which can approximate H in the low energy subspace, that is, the Hamiltonian only with interaction terms
vsi ⊗ vlj, s 6= l ∈ {x, y, z} can be approximated by a Hamiltonian with terms {vsi , vsi ⊗ vsj} in the low energy
subspace, where s ∈ {x, y, z}.
Proof. Jocob et al.[31] showed that the intersection σzi σ

x
j can be constructed from σxσx and σzσz in the

low energy subspace. Following their method, we here propose how to approximate terms σxi σ
y
j and σzi σ

y
j

by merely using terms {σsi , σsi ⊗ σsj}Ni,j=1, where s ∈ {x, y, z}.
Given a 2-local Hamiltonian αijσ

x
i σ

y
j and an arbitrary δ > 0, our target is to find a 2-local Hamiltonian,

composed only by σx, σy, σxσx and σyσy, which can be O(δ) close to αijσ
x
i σ

y
j in the low energy space. Let

H(2) = σxi + σxj + σyi + σyj + σxi σ
x
j + σyi σ

y
j , (25)

V1 = (H(2) +D(σyj + I))⊗ Ik −Aσxi ⊗ |−〉〈−|k, (26)

V2 = B(σyj ⊗ I)⊗ σyk , (27)

V3 = Cσxi ⊗ |+〉〈+|k, (28)

and V = V1 + V2 + V3, where A,B,C,D are real-valued parameters to be determined later. Then, the self
energy operator Σ−(z) of the 2-local Hamiltonian H(2) + V can be written as

Σ−(z) = H̃(2) +

(
2B2C

(z − δ−1)2
−A

)
σxi +

(
2B2

z − δ−1
+D +

4DB2

(z − δ−1)2

)
(σyj + I) +

2B2C

(z − δ−1)2
σxi σ

y
j +O(δ3), (29)

where H̃(2) = H(2) + B2

(z−δ−1)2 (σyj + I)H(2)(σyj + I). Select a random nonzero real number E, and let

hi =

(
1 +

2B2

(z − δ−1)2

)
, (30)

∆i =

(
1 +

4B2

(z − δ−1)2

)
, (31)

∆j =

(
1 +

2B2

(z − δ−1)2

)
, (32)

Kij =

(
1 +

4B2

(z − δ−1)2

)
, (33)

where A = αij , B = (1/δE)2/3E,C = αij(1/δE)2/3/2 and D = 2δ−1/3E2/3, then the self-energy of

H(2∗) + V = hiσ
x
i + hjσ

x
j + ∆iσ

y
i + ∆jσ

y
j + σxi σ

x
j +Kijσ

y
i σ

y
j + V (34)
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can be simplified as

Σ−(0) = H̃(2∗) + αijσ
x
i σ

y
j +O(δ3), (35)

where H̃(2∗) = H(2∗) + B2

(z−δ−1)2 (σyj + I)H(2∗)(σyj + I). Since Σ−(0) is a decent approximation of H(2∗) + V

in the low energy subspace and the ground state of Σ−(0) is extremely close to that of H̃(2∗) + αijσ
x
i σ

y
j ,

then the ground state of αijσ
x
i σ

y
j is extremely close to that of Hamiltonian (H(2∗) +V −H̃(2∗)) which is only

composed by σx, σy, σxσx and σyσy.
The Hamiltonian σyσz can be approximated in a similar way.
Theorem 4. Given an arbitrary simplified 2-local 2N × 2N Hamiltonian H =

∑
j αjPj in the form of

Eq.(24), where Pj ∈ {vti , vtsvtk}, t ∈ {x, y, z} and −→α = (α1, α2, ...), suppose E0 is the ground state energy of H
and |ψk〉 is the k-th excited state of H, then for a small positive value δ which is less than the spectral gap of
H, there exists a 2L-QRBM whose trial state |Ψ(θ∗)〉 is O(ε) close to H’s ground state |ψ0〉, where ε is the

error rate, τ = O ((log 1/ε+N)), the Boltzmann parameter θ∗ = {0, ln(eλ
∗τ/N +

√
e2λ∗τ/N − 1),−τf(−→α )}

with f(αj) = αj − (E0 + δ)
∑
k Tr(Pj |ψk〉〈ψk|)/2N , which can be efficiently determined with a selected ‘phase

shift’ λ∗ > 0.
Proof: Since the Hamiltonian H is a Hermite matrix , it can be expressed as

H =

2N−1∑
j=0

Ej |ψj〉〈ψj |, (36)

where Ej is the j-th eigenvalue whose corresponding eigenvector is |ψj〉. Without loss of generality, suppose
the eigenvalues {Ej} is in an increasing sequence, that is, E0 < E1 < ... < E2N−1, then E0 represents the
ground state energy and |ψ0〉 represents the ground state of the Hamiltonian H. According to Eq.(24), for

a small positive δ which is small than the spectral gap of H, the Hamiltonian H̃ = H− (E0 + δ) · I has the

same eigenvectors as H and its eignvalues Ẽj = Ej − (E0 + δ) are all non-negative. Clearly, the Hamiltonian

H̃ can be written as H̃ =
∑
j f(αj)Pj , where f(αj) = αj − (E0 + δ)

∑
k Tr(Pj |ψk〉〈ψk|)/2N .

We first introduce the ‘phase shift’ value λ∗ which should satisfy Ẽ0 < λ∗ ≤ Ẽ1. This value can be
estimated in advance by for example the phase estimation algorithm or VQE algorithm. Let

H∗ = H̃ − λ∗I =

2N−1∑
j=0

(Ẽj − λ∗)|ψj〉〈ψj |. (37)

and E∗j = Ẽj − λ∗, then we have E∗0 < 0, E∗j ≥ 0 for j = 1, ..., 2N − 1, and the ‘phase shift’ λ∗ > 0.
We now compute the ground state ofH∗ with the 2L-QRBM model. ConsiderM = 1, θ∗ = {mj ,Wi1, b

t
i,K

t
sk} =

{0,Wi1,−τf(−→α )} and τ = O ((log 1/ε+N)), then according to Eq.(3), the trial state of it can be expressed
as

|Ψv(θ
∗)〉 = c−1/2〈+|h exp(HRBM (θ∗))|+〉h|+〉⊗Nv . (38)

Note that ||− τf(−→α )|| = O(1), according to the Trotter theorem [25], the trial state can be approximated as

|Ψv(θ
∗)〉 =

c−1/2

2N

T︷ ︸︸ ︷(
exp(Hs(−τf(−→α )/2T ))

)
...
(
exp(Hs(−τf(−→α )/2T ))

) N∏
i=1

(eWi,1 + e−Wi,1)I

T︷ ︸︸ ︷(
exp(Hs(−τf(−→α )/2T ))

)
...
(
exp(Hs(−τf(−→α )/2T ))

)
|+〉⊗Nv +O(1/T 2).

(39)

≈ c−1/2

2N

N∏
i=1

(eWi,1 + e−Wi,1)I exp(Hs(−τf(−→α )))|+〉⊗Nv , (40)
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where the constant T = O(poly(N)). Let Wi1 = ln(eλ
∗τ/N +

√
e2λ∗τ/N − 1) and note that Hs(−τf(−→α )) =

−τH̃ , then we have

|Ψv(θ
∗)〉 = c−1/2 exp (λ∗τI) exp

(
−τH̃

)
|+〉⊗Nv = c−1/2e−τ(H̃−λ∗I)|+〉⊗Nv . (41)

Suppose the initial state |+〉⊗Nv of the 2L-QRBM has the overlap K with the ground state, then

|Ψv(θ
∗)〉 =

Ke−(Ẽ0−λ∗)τ

√
c

|ψ0〉+

√
1− K2e−2(Ẽ0−λ∗)τ

c
|ψ⊥0 〉. (42)

The state |ψ⊥0 〉 is composed by the eigienstates |ψ1〉, ...|ψ2N−1〉 that are orthogonal to |ψ0〉, that is,

|ψ⊥0 〉 =

2N−1∑
j=1

aje
−(Ẽj−λ∗)τ |ψj〉, (43)

where aj are the complex parameters. Since Ẽ0 − λ∗ < 0 and Ẽj − λ∗ ≥ 0, j = 1, ..., 2N − 1, the amplitudes

aje
−(Ẽj−λ∗)τ (j ≥ 1) will converge to 0 rapidly with the increase of τ , and meanwhile Ke−(Ẽ0−λ∗)τ

√
c

will increase

to nearly 1 [15]. Then the overlap (fidelity) between 2L-QRBM |Ψv(θ)〉 and the ground state |ψ0〉 can be
estimated by

F (|Ψv(θ
∗)〉, |ψ0〉) =

K2e−2(Ẽ0−λ∗)τ

K2e−2(Ẽ0−λ∗)τ +
∑
j ‖aj‖2e−2(Ẽj−λ∗)τ

(44)

= 1− ε

e−2(Ẽ0−λ∗)τ + ε
, (45)

where ε represents the truncated terms
∑
j ‖aj‖2e−2(Ẽj−λ∗)τ . When the parameter

τ = O
(

(log(1/ε) +N)/min{Ẽj − λ∗}
)
, (46)

the truncated terms will converge to 0.
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