23 Boron–Oxidizer Systems

23.1 OVERVIEW

TARIE 23 1

This chapter concerns the adiabatic properties of the boron-oxygen system and another thirty boron-oxidizer combinations. Equation 23.1 is a general description of the chemical reactions in question, and Table 23.1 provides a broad overview of the most basic results. The thermochemical descriptions within this chapter were derived from the *FactPS* and *FToxid* databases of

Boron–Oxidizer Systems			
Section	Pages	Oxidizer	Maximum T _{ad} (K)
23.2	762	O_2	3687
23.3	764	TiO ₂	1429
23.4	765	V_2O_5	2323
23.5	767	Nb ₂ O ₅	2120
23.6	768	Ta ₂ O ₅	1622
23.7	769	Cr_2O_3	1662
23.8	770	MoO ₃	2323
23.9	772	WO ₃	2323
23.10	773	MnO	1459
23.11	774	Mn_3O_4	1855
23.12	775	Mn_2O_3	2216
23.13	777	MnO_2	2316
23.14	779	FeO	2274
23.15	781	Fe_3O_4	2274
23.16	783	Fe_2O_3	2274
23.17	785	CoO	2322
23.18	787	Co_3O_4	2323
23.19	789	NiO	2323
23.20	790	Cu ₂ O	2314
23.21	791	CuO	2317
23.22	792	Ag_2O	2262
23.23	793	ZnO	1177
23.24	794	CdO	1094
23.25	795	HgO	2551
-	-	B_2O_3	-
-	-	SiO_2	-
23.26	796	SnO	2103
23.27	797	SnO_2	2303
23.28	798	PbO	2006
23.29	799	Pb_3O_4	2008
23.30	800	PbO_2	2189
23.31	801	Sb_2O_3	2018
23.32	802	Bi ₂ O ₃	2039

FactSage 7.0.* Only pure substances were considered in the condensed phases. Gases were treated ideally, and ideal gas mixing was assumed. Charged species were not considered in any phase.

boron + oxidizer
$$\rightarrow$$
 adiabatic equilibrium products
(*P* = 1 atm, *T*_i = 298.15 K, *T*_{ad} = adiabatic equilibrium temperature) (23.1)

Within each of the following sections, you will find one or two general figures as well as written descriptions of certain fuel-to-oxidizer ratios. Temperature points (T1, T2, and so on) describe features and points of interest along adiabatic temperature profiles. Similarly, gas points (G1, G2, and so on) refer to adiabatic gas production profiles. Some adiabatic temperature charts contain flat regions where the adiabatic temperature remains constant despite variations in the stoichiometry of the system. Some of these plateaus are described and explained (see Chapter 2 and Tables 2.10–2.15 for additional information).

23.2 BORON + O_2

FIGURE 23.1 Adiabatic equilibrium temperature profile, B (fuel) + O₂ (oxidizer).

T1. 23% fuel, 3540.55 K

solids: none liquids: none gases: 34.48% BO₂, 29.52% B₂O₃, 13.87% O₂, 12.46% BO, 9.42% O, 0.25% (BO)₂ a combination of reactions with excess oxidizer remaining: $(25.3\% \text{ fuel}) \text{ B} + \text{O}_2 \rightarrow \text{BO}_2$ $(31.1\% \text{ fuel}) 4\text{B} + 3\text{O}_2 \rightarrow 2\text{B}_2\text{O}_3$ $(40.3\% \text{ fuel}) 2\text{B} + \text{O}_2 \rightarrow 2\text{BO}$

^{*} Bale, C. W.; Pelton, A. D.; Thompson, W. T.; Eriksson, G.; Hack, K.; Chartrand, P.; Decterov, S.; Jung, I.-H.; Melançon, J.; Petersen, S. *FactSage*, version 7.0; CRCT ThermFact, Inc. and GTT-Technologies, 2015; www.factsage.com (accessed September, 2019).

T2. 31% fuel, 3686.99 K—peak temperature solids: none liquids: none gases: 36.49% BO, 30.29% B₂O₃, 25.32% BO₂, 4.88% O, 1.82% O₂, 1.20% (BO)₂ a combination of reactions with excess oxidizer remaining: $(25.3\% \text{ fuel}) \text{ B} + \text{O}_2 \rightarrow \text{BO}_2$ $(31.1\% \text{ fuel}) 4\text{B} + 3\text{O}_2 \rightarrow 2\text{B}_2\text{O}_3$ (40.3% fuel) $2B + O_2 \rightarrow 2BO$ **T3.** 38% fuel, 3304.37 K solids: none liquids: none gases: 60.14% BO, 22.71% B₂O₃, 15.41% (BO)₂, 1.59% BO₂, 0.10% B₂O a combination of reactions: $(31.1\% \text{ fuel}) 4\text{B} + 3\text{O}_2 \rightarrow 2\text{B}_2\text{O}_3$ $(40.3\% \text{ fuel}) 2B + O_2 \rightarrow (BO)_2$ (40.3% fuel) $2B + O_2 \rightarrow 2BO$ **T4.** 41% fuel, 3040.51 K solids: none liquids: 0.68% B gases: 50.00% BO, 42.46% (BO)₂, 3.65% B₂O₃, 2.97% B₂O, 0.18% B a combination of reactions: $(31.1\% \text{ fuel}) 4\text{B} + 3\text{O}_2 \rightarrow 2\text{B}_2\text{O}_3$ $(40.3\% \text{ fuel}) 2B + O_2 \rightarrow (BO)_2$ (40.3% fuel) $2B + O_2 \rightarrow 2BO$ $(57.5\% \text{ fuel}) 4\text{B} + \text{O}_2 \rightarrow 2\text{B}_2\text{O}$ **T5.** 54% fuel, 2746.30 K solids: none liquids: 23.99% B gases: 49.56% (BO)₂, 16.91% BO, 8.60% B₂O₃, 0.91% B₂O a combination of reactions with excess fuel remaining: $(31.1\% \text{ fuel}) 4\text{B} + 3\text{O}_2 \rightarrow 2\text{B}_2\text{O}_3$ $(40.3\% \text{ fuel}) 2B + O_2 \rightarrow (BO)_2$ (40.3% fuel) $2B + O_2 \rightarrow 2BO$

- Points 1–5 correspond to the maximum amounts of BO₂, B₂O₃, BO, B₂O, and (BO)₂, respectively.
- From 76% to 84% fuel, the temperature appears to be limited by the vaporization of boron oxides from B(s)/B₂O₃(l) mixtures, which occurs at 2192 K. Alone, B₂O₃(l) vaporizes with slight decomposition at about 2323 K.
- From 63% to 72% fuel, the temperature is limited to 2350 K by the B(s-l) transition.
- B(l) is present from 41% to 72% fuel with the maximum amount (38.76%) occurring at 62% fuel. B(g) is present from 40% to 45% fuel with the maximum amount (0.18%) occurring at 41% fuel. Pure B(l) vaporizes at 4141 K.

23.3 BORON + TiO_2

FIGURE 23.2 Adiabatic equilibrium temperature profile, B (fuel) + TiO₂ (oxidizer).

- **T1.** 4.4% fuel, 656.18 K solids: 85.83% Ti₂O₃, 13.98% B₂O₃, 0.19% TiB₂ liquids: none gases: none
- T2. 31.1% fuel, 1428.86 K—peak temperature solids: 59.95% TiB₂ liquids: 40.04% B₂O₃ gases: none simplified equation at 31.1% fuel: 10B + 3TiO₂ → 2B₂O₃ + 3TiB₂
 - Elemental titanium is not predicted to occur at any point.

23.4 BORON + V_2O_5

FIGURE 23.3 Adiabatic equilibrium temperature profile, B (fuel) $+ V_2O_5$ (oxidizer).

 $B + V_2O_5$

Adiabatic Equilibrium Gas Products

100

90

80

70

60 50 40

FIGURE 23.4 Adiabatic equilibrium gas production profile, B (fuel) + V_2O_5 (oxidizer).

- **T1.** 3.8% fuel, 1633.00 K solids: 63.94% VO₂ liquids: 23.52% VO₂, 12.24% B₂O₃, 0.31% V₂O₅ gases: none simplified equation at 3.8% fuel: 2B + $3V_2O_5 \rightarrow B_2O_3 + 6VO_2$
- T2. 7.3% fuel, 3.47% gas produced, 2323.01 K—peak temperature solids: 75.43% V₂O₃
 liquids: 20.06% B₂O₃, 1.04% VO₂
 gases: 3.42% B₂O₃
 simplified equation at 7.3% fuel: 4B + 3V₂O₅ → 2B₂O₃ + 3V₂O₃
- **T3.** 10.6% fuel, 2146.71 K solids: 0.58% V₂O₃ liquids: 65.29% VO, 34.13% B₂O₃ gases: none simplified equation at 10.6% fuel: 2B + V₂O₅ → B₂O₃ + 2VO
- **T4.** 26.5% fuel, 12.76% gas produced, 2294.55 K solids: 52.82% V_3B_4 liquids: 34.42% B_2O_3 gases: 10.61% B_2O_3 , 1.97% (BO)₂, 0.18% BO simplified equation at 26.3% fuel: 18B + 3V₂O₅ → 5B₂O₃ + 2V₃B₄

- **T5.** 27.6% fuel, 13.05% gas produced, 2288.93 K solids: $53.33\% V_2B_3$, 0.14% V_3B_4 liquids: $33.49\% B_2O_3$ gases: 10.45% B_2O_3 , 2.40% (BO)₂, 0.19% BO simplified equation at 27.3% fuel: $19B + 3V_2O_5 \rightarrow 5B_2O_3 + 3V_2B_3$
- **T6.** 30.6% fuel, 13.43% gas produced, 2286.03 K solids: 54.84% VB₂, 0.50% V₂B₃ liquids: 31.23% B₂O₃ gases: 10.55% B₂O₃, 2.68% (BO)₂, 0.20% BO simplified equation at 30.4% fuel: 22B + $3V_2O_5 \rightarrow 5B_2O_3 + 6VB_2$
 - Elemental vanadium is not predicted to occur at any point.
 - From 3.5% to 4.8% fuel, the temperature is limited to 1633 K by the VO₂(s-1) transition.
 - From 31.2% to 42.4% fuel, the temperature appears to be limited by the vaporization of boron oxides from B(s)/B₂O₃(l) mixtures, which occurs at 2192 K.
 - From 27.7% to 30.6% fuel, the temperature appears to be limited to 2286 K by the reaction
 of B₂O₃(l) and VB₂(s) which forms V₂B₃(s), (BO)₂(g), and BO(g). Some B₂O₃ is also
 vaporized.
 - From 26.6% to 27.6% fuel, the temperature appears to be limited to 2289 K by the reaction of $B_2O_3(l)$ and $V_2B_3(s)$ which forms $V_3B_4(s)$, $(BO)_2(g)$, and BO(g). Some B_2O_3 is also vaporized.
 - From 14.0% to 26.4% fuel, the temperature appears to be limited to 2297 K by the reaction of $B_2O_3(l)$ and $V_3B_4(s)$ which forms VO(l), (BO)₂(g), and BO(g). Some B_2O_3 is also vaporized.
 - From 7.4% to 8.9% fuel, the temperature appears to be limited to 2321 K by the reaction of B₂O₃(l) and VO(l) which forms V₂O₃(s), (BO)₂(g), and BO(g). Some B₂O₃ is also vaporized.
 - From 6.9% to 7.3% fuel, the temperature is limited to about 2323 K by the vaporization of $B_2O_3(l)$.
- G1. 31.2% fuel, 14.17% gas produced, 2191.63 K—peak gas solids: 54.90% VB₂
 liquids: 30.91% B₂O₃
 gases: 8.51% (BO)₂, 5.41% B₂O₃, 0.24% BO a combination of two reactions:
 (30.4% fuel) 22B + 3V₂O₅ → 5B₂O₃ + 6VB₂
 (34.9% fuel) 18B + 2V₂O₅ → 5(BO)₂ + 4VB₂

23.5 BORON + Nb_2O_5

FIGURE 23.5 Adiabatic equilibrium temperature profile, B (fuel) + Nb₂O₅ (oxidizer).

- **T1.** 2.7% fuel, 906.13 K solids: 91.23% NbO₂, 0.20% NbB₂ liquids: 8.57% B₂O₃ gases: none
- T2. 23.0% fuel, 2120.49 K—peak temperature solids: 66.35% NbB₂ liquids: 33.61% B₂O₃ gases: none simplified equation at 23.0% fuel: 22B + 3Nb₂O₅ → 5B₂O₃ + 6NbB₂
 - Elemental niobium is not predicted to occur at any point.

23.6 BORON + Ta_2O_5

FIGURE 23.6 Adiabatic equilibrium temperature profile, B (fuel) + Ta₂O₅ (oxidizer).

T1. 15.2% fuel, 1622.00 K—*peak temperature* solids: 77.68% TaB₂ liquids: 22.25% B₂O₃ gases: none simplified equation at 15.2% fuel: 22B + $3Ta_2O_5 \rightarrow 5B_2O_3 + 6TaB_2$

• Elemental tantalum is not predicted to occur at any point.

23.7 BORON + Cr_2O_3

FIGURE 23.7 Adiabatic equilibrium temperature profile, B (fuel) + Cr_2O_3 (oxidizer).

- **T1.** 17.2% fuel, 1375.76 K solids: 31.78% CrB, 30.11% Cr, 0.34% Cr₂O₃ liquids: 37.77% B₂O₃ gases: none a combination of two reactions: $(12.5\% \text{ fuel}) 2B + Cr_2O_3 \rightarrow B_2O_3 + 2Cr$ $(22.1\% \text{ fuel}) 4B + Cr_2O_3 \rightarrow B_2O_3 + 2CrB$
- **T2.** 22.2% fuel, 1661.90 K—*peak temperature* solids: 63.92% CrB, 0.44% CrB₂ liquids: 35.64% B₂O₃ gases: none simplified equation at 22.1% fuel: 4B + Cr₂O₃ \rightarrow B₂O₃ + 2CrB
- **T3.** 29.9% fuel, 1581.53 K solids: 67.77% CrB₂, 0.12% CrB liquids: 32.11% B₂O₃ gases: none simplified equation at 29.9% fuel: 6B + Cr₂O₃ → B₂O₃ + 2CrB₂
 - T1 corresponds to the maximum amount of Cr.
 - From 15.4% to 17.2% fuel, the temperature appears to be limited by the 2CrB(s) + $Cr_2O_3(s) \rightarrow 4Cr(s) + B_2O_3(l)$ reaction, which occurs at 1376 K.

23.8 BORON + MoO_3

FIGURE 23.8 Adiabatic equilibrium temperature profile, B (fuel) + MoO_3 (oxidizer).

FIGURE 23.9 Adiabatic equilibrium gas production profile, B (fuel) + MoO₃ (oxidizer).

- **T1.** 4.7% fuel, 1.70% gas produced, 2250.61 K solids: 83.44% MoO₂ liquids: 14.86% B₂O₃ gases: 1.18% (MoO₃)₃, 0.28% B₂O₃, 0.14% (MoO₃)₄ simplified equation at 4.8% fuel: 2B + 3MoO₃ \rightarrow B₂O₃ + 3MoO₂
- T2. 13.0% fuel, 22.50% gas produced, 2322.95 K—peak temperature solids: 57.68% Mo liquids: 19.81% B₂O₃ gases: 21.90% B₂O₃, 0.18% (MoO₃)₃, 0.12% MoO₃, 0.11% (MoO₃)₂ simplified equation at 13.1% fuel: 2B + MoO₃ → B₂O₃ + Mo
- T3. 15.8% fuel, 26.22% gas produced, 2316.69 K solids: 56.33% Mo₂B, 2.79% Mo liquids: 14.65% B₂O₃ gases: 25.05% B₂O₃, 0.96% (BO)₂, 0.19% BO simplified equation at 15.8% fuel: 5B + 2MoO₃ → 2B₂O₃ + Mo₂B
- **T4.** 18.6% fuel, 27.49% gas produced, 2310.90 K solids: 59.93% MoB, 0.42% Mo₂B liquids: 12.16% B₂O₃ gases: 25.36% B₂O₃, 1.85% (BO)₂, 0.27% BO simplified equation at 18.4% fuel: 3B + MoO₃ → B₂O₃ + MoB

- **T5.** 26.2% fuel, 24.69% gas produced, 2250.71 K solids: 62.81% Mo₂B₅, 0.21% MoB liquids: 12.30% B₂O₃ gases: 15.08% B₂O₃, 9.17% (BO)₂, 0.43% BO a combination of two reactions: (25.3% fuel) 9B + 2MoO₃ \rightarrow 2B₂O₃ + Mo₂B₅ (29.2% fuel) 11B + 2MoO₃ \rightarrow 3(BO)₂ + Mo₂B₅
- The maximum amount of molybdenum, 57.93% Mo(s), occurs at 13.1% fuel and 2321.52 K.
- From 26.8% to 45.0% fuel, the temperature appears to be limited by the vaporization of boron oxides from B(s)/B₂O₃(l) mixtures, which occurs at 2192 K.
- From 19.5% to 26.2% fuel, the temperature appears to be limited to 2251 K by the reaction of B₂O₃(l) and Mo₂B₅(s) which forms MoB(s), (BO)₂(g), and BO(g). Some B₂O₃ is also vaporized.
- The plateau from 4.8% to 9.3% fuel (2252 K) could not be attributed to a simple transition or reaction; species in this region include (MoO₃)_n(g), B₂O₃(g), B₂O₃(l), MoO₂(s), and Mo(s).
- From 16.1% to 18.6% fuel, the temperature appears to be limited to 2311 K by the reaction of B₂O₃(l) and MoB(s) which forms Mo₂B(s), (BO)₂(g), and BO(g). Some B₂O₃ is also vaporized.
- From 13.2% to 15.9% fuel, the temperature appears to be limited to 2317 K by the reaction of $B_2O_3(l)$ and $Mo_2B(s)$ which forms Mo(s), $(BO)_2(g)$, and BO(g). Some B_2O_3 is also vaporized.
- G1. 2.9% fuel, 39.18% gas produced, 1359.59 K—peak gas solids: 51.49% MoO₂ liquids: 9.34% B₂O₃ gases: 22.05% (MoO₃)₄, 12.75% (MoO₃)₃, 4.36% (MoO₃)₅ one reaction with excess oxidizer remaining: (4.8% fuel) 2B + 3MoO₃ → B₂O₃ + 3MoO₂
- **G2.** 9.3% fuel, 33.96% gas produced, 2251.82 K solids: 41.12% Mo, 0.62% MoO₂ liquids: 24.30% B₂O₃ gases: 23.43% (MoO₃)₃, 5.61% B₂O₃, 2.72% (MoO₃)₄, 1.81% (MoO₃)₂, 0.25% MoO₃ one reaction with excess oxidizer remaining: (13.1% fuel) 2B + MoO₃ \rightarrow B₂O₃ + Mo
- **G3.** 18.6% fuel, 27.49% gas produced, 2310.90 K see T4 for details

23.9 BORON + WO₃

FIGURE 23.10 Adiabatic equilibrium temperature profile, B (fuel) + WO₃ (oxidizer).

- **T1.** 3.0% fuel, 1699.34 K solids: 89.66% WO₂, 0.68% W₁₈O₄₉ liquids: 9.66% B₂O₃ gases: none simplified equation at 3.0% fuel: 2B + 3WO₃ \rightarrow B₂O₃ + 3WO₂
- **T2.** 8.5% fuel, 7.94% gas produced, 2322.83 K—*peak temperature* solids: 72.25% W liquids: 19.80% B₂O₃ gases: 7.51% B₂O₃, 0.29% (WO₃)₂ simplified equation at 8.5% fuel: 2B + WO₃ → B₂O₃ + W
 - The maximum amount of tungsten, 72.48% W(s), occurs at 8.6% fuel and 2311.44 K.
 - From 4.6% to 5.4% fuel, the temperature appears to be limited by the $3W_{18}O_{49}(s) \rightarrow 5W(s) + 49WO_3(1)$ decomposition, which occurs at 2011 K.
 - The plateau from 5.7% to 6.2% fuel (2071 K) could not be attributed to a simple transition or reaction; species in this region include (WO₃)_n(g), W₃O₈(g), B₂O₃(g), WO₃(l), B₂O₃(l), and W(s). The vaporization of WO₃ and W₃O₈ from W(s)/WO₃(l) mixtures is expected to occur at 2087 K.
 - From 9.2% to 17.7% fuel, the temperature appears to be limited by the vaporization of boron oxides from B(s)/B₂O₃(l) mixtures, which occurs at 2192 K.
- G1. 6.2% fuel, 27.21% gas produced, 2071.06 K—peak gas solids: 52.33% W
 liquids: 19.67% B₂O₃, 0.79% WO₃
 gases: 13.74% (WO₃)₃, 5.65% (WO₃)₄, 4.23% W₃O₈, 3.30% (WO₃)₂, 0.30% B₂O₃
 a combination of two reactions with excess oxidizer remaining:
 (1.0% fuel) 2B + 9WO₃ → B₂O₃ + 3W₃O₈
 (8.5% fuel) 2B + WO₃ → B₂O₃ + W

FIGURE 23.11 Adiabatic equilibrium gas production profile, B (fuel) + WO₃ (oxidizer).

23.10 BORON + MnO

FIGURE 23.12 Adiabatic equilibrium temperature profile, B (fuel) + MnO (oxidizer).

- **T1.** 20.3% fuel, 1458.92 K—peak temperature solids: 73.53% MnB, 0.40% MnB₂ liquids: 26.07% B₂O₃ gases: none simplified equation at 20.3% fuel: 5B + 3MnO \rightarrow B₂O₃ + 3MnB
- **T2.** 28.9% fuel, 1386.83 K solids: 76.74% MnB₂ liquids: 23.26% B₂O₃ gases: none simplified equation at 28.9% fuel: 8B + 3MnO \rightarrow B₂O₃ + 3MnB₂
 - Elemental manganese is not predicted to occur at any point.

23.11 BORON + Mn_3O_4

FIGURE 23.13 Adiabatic equilibrium temperature profile, B (fuel) + Mn_3O_4 (oxidizer).

- T1. 3.1% fuel, 1257.51 K solids: 89.94% MnO, 0.17% MnB liquids: 9.89% B₂O₃ gases: none simplified equation at 3.1% fuel: 2B + 3Mn₃O₄ → B₂O₃ + 9MnO
 T2. 20.9% fuel, 1842.97 K solids: 66.55% MnB liquids: 32.06% B₂O₃, 1.30% Mn gases: none simplified equation at 21.1% fuel: 17B + 3Mn₃O₄ → 4B₂O₃ + 9MnB
 T3. 21.1% fuel, 1855.08 K—*peak temperature* solids: 67.87% MnB
- solids: 67.87% MnB liquids: 32.01% B_2O_3 , 0.13% Mn gases: none simplified equation at 21.1% fuel: 17B + $3Mn_3O_4 \rightarrow 4B_2O_3 + 9MnB$
- **T4.** 29.1% fuel, 1701.78 K solids: 71.17% MnB₂ liquids: 28.77% B₂O₃ gases: none simplified equation at 29.1% fuel: 26B + 3Mn₃O₄ → 4B₂O₃ + 9MnB₂
 - T2 corresponds to the maximum amount of Mn.

23.12 BORON + Mn_2O_3

FIGURE 23.14 Adiabatic equilibrium temperature profile, B (fuel) + Mn_2O_3 (oxidizer).

FIGURE 23.15 Adiabatic equilibrium gas production profile, B (fuel) + Mn_2O_3 (oxidizer).

- **T1.** 1.5% fuel, 1157.89 K solids: 95.14% Mn_3O_4 liquids: 4.83% B_2O_3 gases: none simplified equation at 1.5% fuel: $2B + 9Mn_2O_3 \rightarrow B_2O_3 + 6Mn_3O_4$
- **T2.** 4.4% fuel, 1870.66 K solids: 85.56% MnO liquids: 14.17% B₂O₃, 0.27% Mn gases: none simplified equation at 4.4% fuel: 2B + $3Mn_2O_3 \rightarrow B_2O_3 + 6MnO$
- **T3.** 15.1% fuel, 1844.13 K solids: 21.12% MnB liquids: 41.44% Mn, 37.44% B_2O_3 gases: none a combination of two reactions: (12.0% fuel) 2B + Mn₂O₃ \rightarrow B₂O₃ + 2Mn (21.5% fuel) 4B + Mn₂O₃ \rightarrow B₂O₃ + 2MnB
- **T4.** 21.5% fuel, 2216.10 K—*peak temperature* solids: 65.36% MnB liquids: 34.58% B₂O₃ gases: none simplified equation at 21.5% fuel: 4B + Mn₂O₃ → B₂O₃ + 2MnB

- **T5.** 29.1% fuel, 1997.08 K solids: 68.55% MnB₂, 0.19% MnB liquids: 31.27% B₂O₃ gases: none simplified equation at 29.1% fuel: $6B + Mn_2O_3 \rightarrow B_2O_3 + 2MnB_2$
 - T3 corresponds to the maximum amount of Mn.
 - From 5.3% to 15.0% fuel, the temperature appears to be limited by the $2MnB(s) + 3MnO(s) \rightarrow 5Mn(l) + B_2O_3(l)$ reaction, which occurs at 1843 K.
- G1. 21.4% fuel, 0.28% gas produced, 2201.28 K—peak gas solids: 64.65% MnB liquids: 34.51% B₂O₃, 0.56% Mn gases: 0.13% Mn, 0.11% B₂O₃ simplified equation at 21.5% fuel: 4B + Mn₂O₃ → B₂O₃ + 2MnB

23.13 BORON + MnO_2

FIGURE 23.16 Adiabatic equilibrium temperature profile, B (fuel) + MnO_2 (oxidizer).

- **T1.** 3.8% fuel, 3.45% gas produced, 1878.85 K solids: 84.40% Mn_3O_4 liquids: 12.15% B_2O_3 gases: 3.37% O_2 a combination of two reactions: (5.2% fuel) 4B + 9Mn $O_2 \rightarrow 2B_2O_3 + 3Mn_3O_4$ (decomposition) $3MnO_2 \rightarrow Mn_3O_4 + O_2$
- T2. 7.7% fuel, 6.98% gas produced, 2315.81 K—peak temperature solids: none liquids: 74.96% MnO, 18.06% B₂O₃ gases: 6.60% B₂O₃, 0.27% Mn simplified equation at 7.7% fuel: 2B + 3MnO₂ → B₂O₃ + 3MnO
- T3. 14.2% fuel, 13.37% gas produced, 2211.55 K solids: none liquids: 46.51% Mn, 38.35% B₂O₃, 1.77% MnO gases: 6.34% Mn, 5.89% B₂O₃, 1.05% (BO)₂ simplified equation at 14.2% fuel: 4B + 3MnO₂ → 2B₂O₃ + 3Mn
- **T4.** 23.0% fuel, 18.59% gas produced, 2214.88 K solids: 55.74% MnB liquids: 25.68% B₂O₃ gases: 8.56% B₂O₃, 7.65% (BO)₂, 2.09% Mn, 0.29% BO a combination of two reactions: (22.5% fuel) 7B + 3MnO₂ → 2B₂O₃ + 3MnB (27.2% fuel) 3B + MnO₂ → (BO)₂ + MnB

FIGURE 23.17 Adiabatic equilibrium gas production profile, B (fuel) + MnO₂ (oxidizer).

- T5. 29.9% fuel, 12.27% gas produced, 2193.99 K solids: 61.29% MnB₂ liquids: 26.43% B₂O₃ gases: 6.97% (BO)₂, 4.78% B₂O₃, 0.32% Mn, 0.20% BO a combination of two reactions:
 (29.3% fuel) 10B + 3MnO₂ → 2B₂O₃ + 3MnB₂ (33.2% fuel) 4B + MnO₂ → (BO)₂ + MnB₂
- The maximum amount of manganese, 47.89% Mn(1) and 6.20% Mn(g), occurs at 14.4% fuel and 2206.25 K.
- The plateau from 3.9% to 5.2% fuel (1923 K) could not be attributed to a simple transition or reaction; species in this region include $O_2(g)$, $B_2O_3(g)$, $B_2O_3(l)$, $Mn_3O_4(s)$, and MnO(s). The $2Mn_3O_4(s) \rightarrow 6MnO(s) + O_2(g)$ decomposition is expected to occur at 1925 K.
- From 5.8% to 6.7% fuel, the temperature is limited to 2115 K by the MnO(s-l) transition.
- The plateau from 30.0% to 40.1% fuel (2189 K) could not be attributed to a simple transition or reaction; species in this region include (BO)₂(g), B₂O₃(g), BO(g), Mn(g), B₂O₃(l), MnB₂(s), and B(s).
- The plateau from 14.5% to 21.3% fuel (2201 K) could not be attributed to a simple transition or reaction; species in this region include Mn(g), $B_2O_3(g)$, $(BO)_2(g)$, BO(g), Mn(l), $B_2O_3(l)$, and MnB(s).
- From 8.4% to 14.3% fuel, the temperature appears to be limited to 2212 K by the reaction of $B_2O_3(l)$ and Mn(l) which forms MnO(l) and (BO)₂(g). Additionally, Mn and B_2O_3 are partly vaporized.
- From 23.1% to 29.5% fuel, the temperature appears to be limited to 2212 K by the reaction of B₂O₃(l) and MnB₂(s) which forms MnB(s), (BO)₂(g), and Mn(g). Some of the B₂O₃ is also vaporized.

G1. 21.3% fuel, 21.06% gas produced, 2201.28 K—peak gas solids: 47.74% MnB liquids: 30.88% B₂O₃, 0.33% Mn gases: 9.52% Mn, 8.55% B₂O₃, 2.81% (BO)₂, 0.17% BO a combination of two reactions:
(14.2% fuel) 4B + 3MnO₂ → 2B₂O₃ + 3Mn (22.5% fuel) 7B + 3MnO₂ → 2B₂O₃ + 3MnB

23.14 BORON + FeO

FIGURE 23.18 Adiabatic equilibrium temperature profile, B (fuel) + FeO (oxidizer).

fuel (wt-%)
FIGURE 23.19 Adiabatic equilibrium gas produc-

tion profile, B (fuel) + FeO (oxidizer).

- **T1.** 9.1% fuel, 2017.85 K solids: none liquids: 70.51% Fe, 29.30% B_2O_3 , 0.19% FeO gases: none simplified equation at 9.1% fuel: 2B + 3FeO \rightarrow B₂O₃ + 3Fe
 - T2. 14.9% fuel, 0.62% gas produced, 2273.75 K—*peak temperature* solids: 71.94% Fe₂B liquids: 26.89% B₂O₃, 0.55% Fe gases: 0.45% B₂O₃, 0.16% (BO)₂ simplified equation at 14.9% fuel: 7B + 6FeO → 2B₂O₃ + 3Fe₂B
 - **T3.** 20.1% fuel, 1.92% gas produced, 2252.47 K solids: 73.69% FeB, 0.40% Fe₂B liquids: 24.00% B₂O₃ gases: 1.19% B₂O₃, 0.69% (BO)₂ simplified equation at 20.1% fuel: 5B + 3FeO → B₂O₃ + 3FeB
 - T1 corresponds to the maximum amount of Fe.
 - From 6.0% to 6.5% fuel, the temperature is limited to 1644 K by the FeO(s-l) transition.
 - From 7.4% to 8.0% fuel, the temperature is limited to 1811 K by the Fe(s-l) transition.
 - From 20.3% to 23.4% fuel, the temperature appears to be limited by the vaporization of boron oxides from B(s)/B₂O₃(l) mixtures, which occurs at 2192 K.

- From 15.0% to 20.1% fuel, the temperature appears to be limited to 2252 K by the reaction of B₂O₃(l) and FeB(s) which forms Fe₂B(s) and (BO)₂(g). Some B₂O₃ is also vaporized.
- From 14.3% to 14.9% fuel, the temperature appears to be limited to 2274 K by the reaction of B₂O₃(l) and Fe₂B(s) which forms Fe(l) and (BO)₂(g). Some B₂O₃ is also vaporized.
- G1. 20.3% fuel, 2.99% gas produced, 2191.59 K—*peak gas* solids: 73.94% FeB liquids: 23.01% B₂O₃ gases: 1.79% (BO)₂, 1.14% B₂O₃ simplified equation at 20.1% fuel: 5B + 3FeO → B₂O₃ + 3FeB

23.15 BORON + Fe_3O_4

FIGURE 23.20 Adiabatic equilibrium temperature profile, B (fuel) + Fe_3O_4 (oxidizer).

- **T1.** 11.1% fuel, 2113.36 K solids: 0.35% Fe₂B liquids: 64.01% Fe, 35.64% B₂O₃ gases: none simplified equation at 11.1% fuel: 8B + 3Fe₃O₄ \rightarrow 4B₂O₃ + 9Fe
- T2. 16.3% fuel, 1.65% gas produced, 2273.75 K—peak temperature solids: 66.01% Fe₂B liquids: 31.98% B₂O₃, 0.37% Fe gases: 1.19% B₂O₃, 0.42% (BO)₂ simplified equation at 16.3% fuel: 25B + 6Fe₃O₄ → 8B₂O₃ + 9Fe₂B
- **T3.** 21.0% fuel, 2.79% gas produced, 2252.47 K solids: 67.69% FeB, 0.49% Fe₂B liquids: 29.03% B_2O_3 gases: 1.73% B_2O_3 , 1.01% (BO)₂ simplified equation at 20.9% fuel: 17B + 3Fe₃O₄ \rightarrow 4B₂O₃ + 9FeB
 - T1 corresponds to the maximum amount of Fe.
 - From 7.3% to 8.0% fuel, the temperature is limited to 1644 K by the FeO(s-l) transition.
 - From 8.9% to 9.4% fuel, the temperature is limited to 1811 K by the Fe(s-l) transition.
 - From 21.2% to 25.2% fuel, the temperature appears to be limited by the vaporization of boron oxides from B(s)/B₂O₃(l) mixtures, which occurs at 2192 K.
 - From 16.4% to 21.0% fuel, the temperature appears to be limited to 2252 K by the reaction of B₂O₃(l) and FeB(s) which forms Fe₂B(s) and (BO)₂(g). Some B₂O₃ is also vaporized.
 - From 14.6% to 16.3% fuel, the temperature appears to be limited to 2274 K by the reaction of B₂O₃(l) and Fe₂B(s) which forms Fe(l) and (BO)₂(g). Some B₂O₃ is also vaporized.

FIGURE 23.21 Adiabatic equilibrium gas production profile, B (fuel) + Fe_3O_4 (oxidizer).

G1. 21.2% fuel, 3.87% gas produced, 2191.59 K—*peak gas* solids: 68.06% FeB liquids: 28.05% B₂O₃ gases: 2.32% (BO)₂, 1.48% B₂O₃ a combination of two reactions: (20.9% fuel) 17B + 3Fe₃O₄ \rightarrow 4B₂O₃ + 9FeB (24.6% fuel) 7B + Fe₃O₄ \rightarrow 2(BO)₂ + 3FeB

23.16 BORON + Fe_2O_3

FIGURE 23.22 Adiabatic equilibrium temperature profile, B (fuel) + Fe_2O_3 (oxidizer).

FIGURE 23.23 Adiabatic equilibrium gas production profile, B (fuel) + Fe_2O_3 (oxidizer).

- **T1.** 4.3% fuel, 1125.79 K solids: 85.53% FeO (wüstite), 0.62% Fe₃O₄ (magnetite) liquids: 13.85% B₂O₃ gases: none simplified equation at 4.3% fuel: $2B + 3Fe_2O_3 \rightarrow B_2O_3 + 6FeO$
- **T2.** 11.9% fuel, 2261.69 K solids: none liquids: 61.40% Fe, 38.32% B_2O_3 , 0.29% FeO gases: none simplified equation at 11.9% fuel: $2B + Fe_2O_3 \rightarrow B_2O_3 + 2Fe$
- **T3.** 16.9% fuel, 4.31% gas produced, 2273.75 K—*peak temperature* solids: 62.29% Fe₂B liquids: 32.10% B₂O₃ gases: 3.11% B₂O₃, 1.11% (BO)₂ simplified equation at 16.9% fuel: $3B + Fe_2O_3 \rightarrow B_2O_3 + Fe_2B$
- **T4.** 21.5% fuel, 5.27% gas produced, 2252.47 K solids: 65.23% FeB, 0.27% Fe₂B liquids: 29.23% B_2O_3 gases: 3.26% B_2O_3 , 1.90% (BO)₂ simplified equation at 21.3% fuel: 4B + Fe₂O₃ \rightarrow B₂O₃ + 2FeB

- T2 corresponds to the maximum amount of Fe.
- From 7.2% to 8.1% fuel, the temperature is limited to 1644 K by the FeO(s-l) transition.
- From 9.0% to 9.3% fuel, the temperature is limited to 1811 K by the Fe(s-l) transition.
- From 21.8% to 27.9% fuel, the temperature appears to be limited by the vaporization of boron oxides from B(s)/B₂O₃(l) mixtures, which occurs at 2192 K.
- From 17.1% to 21.5% fuel, the temperature appears to be limited to 2252 K by the reaction of B₂O₃(l) and FeB(s) which forms Fe₂B(s) and (BO)₂(g). Some B₂O₃ is also vaporized.
- From 12.1% to 17.0% fuel, the temperature appears to be limited to 2274 K by the reaction of B₂O₃(l) and Fe₂B(s) which forms Fe(l) and (BO)₂(g). Some B₂O₃ is also vaporized.
- G1. 21.7% fuel, 6.14% gas produced, 2196.70 K—peak gas solids: 65.36% FeB liquids: 28.50% B₂O₃ gases: 3.58% (BO)₂, 2.45% B₂O₃, 0.10% BO a combination of two reactions:
 (21.3% fuel) 4B + Fe₂O₃ → B₂O₃ + 2FeB (25.3% fuel) 10B + 2Fe₂O₃ → 3(BO)₂ + 4FeB

FIGURE 23.24 Adiabatic equilibrium temperature profile, B (fuel) + CoO (oxidizer).

FIGURE 23.25 Adiabatic equilibrium gas production profile, B (fuel) + CoO (oxidizer).

- **T1.** 8.7% fuel, 0.61% gas produced, 2322.23 K—*peak temperature* solids: none liquids: 71.14% Co, 27.41% B_2O_3 , 0.84% CoO gases: 0.60% B_2O_3 simplified equation at 8.8% fuel: 2B + 3CoO \rightarrow B_2O_3 + 3Co
- **T2.** 14.5% fuel, 14.23% gas produced, 2309.75 K solids: 72.87% Co₂B liquids: 12.45% B₂O₃, 0.45% Co gases: 13.03% B₂O₃, 1.01% (BO)₂, 0.14% BO simplified equation at 14.4% fuel: 7B + 6CoO → 2B₂O₃ + 3Co₂B
- **T3.** 19.7% fuel, 15.08% gas produced, 2283.40 K solids: 73.86% CoB, 0.80% Co₂B liquids: 10.27% B₂O₃ gases: 11.63% B₂O₃, 3.20% (BO)₂, 0.23% BO a combination of two reactions: (19.4% fuel) 5B + 3CoO \rightarrow B₂O₃ + 3CoB (22.4% fuel) 4B + 2CoO \rightarrow (BO)₂ + 2CoB
 - The maximum amount of cobalt, 71.56% Co(l), occurs at 8.8% fuel and 2309.75 K.
 - From 5.2% to 5.6% fuel, the temperature is limited to 1768 K by the Co(s-l) transition.
 - From 7.4% to 7.7% fuel, the temperature is limited to 2103 K by the CoO(s-l) transition.
 - From 20.4% to 34.0% fuel, the temperature appears to be limited by the vaporization of boron oxides from B(s)/B₂O₃(l) mixtures, which occurs at 2192 K.

- From 14.8% to 19.7% fuel, the temperature appears to be limited to 2283 K by the reaction of B₂O₃(l) and CoB(s) which forms Co₂B(s), (BO)₂(g), and BO(g). Some B₂O₃ is also vaporized.
- From 8.8% to 14.5% fuel, the temperature appears to be limited to 2310 K by the reaction of B₂O₃(l) and Co₂B(s) which forms Co(l), (BO)₂(g), and BO(g). Some B₂O₃ is also vaporized.
- **G1.** 14.5% fuel, 14.23% gas produced, 2309.75 K see T2 for details
- **G2.** 19.7% fuel, 15.08% gas produced, 2283.40 K—*peak gas* see T3 for details

23.18 BORON + Co_3O_4

FIGURE 23.26 Adiabatic equilibrium temperature profile, B (fuel) + Co_3O_4 (oxidizer).

B + Co₃O₄

Adiabatic Equilibrium Gas Products

100

90

80

70

20

gas products (wt-%)

FIGURE 23.27 Adiabatic equilibrium gas production profile, B (fuel) + Co_3O_4 (oxidizer).

- **T1.** 2.9% fuel, 1365.09 K solids: 90.65% CoO liquids: 9.34% B_2O_3 gases: none simplified equation at 2.9% fuel: $2B + 3Co_3O_4 \rightarrow B_2O_3 + 9CoO$
- **T2.** 10.7% fuel, 10.55% gas produced, 2322.61 K—*peak temperature* solids: none liquids: 65.53% Co, 23.92% B_2O_3 gases: 10.42% B_2O_3 simplified equation at 10.7% fuel: 8B + $3Co_3O_4 \rightarrow 4B_2O_3 + 9Co$
- **T3.** 15.9% fuel, 21.90% gas produced, 2309.74 K solids: 66.59% Co₂B liquids: 10.83% B₂O₃, 0.68% Co gases: 20.05% B₂O₃, 1.55% (BO)₂, 0.22% BO simplified equation at 15.8% fuel: 25B + 6Co₃O₄ → 8B₂O₃ + 9Co₂B
- **T4.** 20.8% fuel, 21.90% gas produced, 2283.40 K solids: 68.60% CoB, 0.18% Co₂B liquids: 9.32% B₂O₃ gases: 16.89% B₂O₃, 4.64% (BO)₂, 0.34% BO a combination of two reactions: (20.3% fuel) 17B + 3Co₃O₄ → 4B₂O₃ + 9CoB (23.9% fuel) 7B + Co₃O₄ → 2(BO)₂ + 3CoB

100

- T2 corresponds to the maximum amount of Co.
- From 6.6% to 7.5% fuel, the temperature is limited to 2103 K by the CoO(s-l) transition.
- From 21.7% to 39.2% fuel, the temperature appears to be limited by the vaporization of boron oxides from B(s)/B₂O₃(1) mixtures, which occurs at 2192 K.
- From 16.4% to 20.8% fuel, the temperature appears to be limited to 2283 K by the reaction of B₂O₃(l) and CoB(s) which forms Co₂B(s), (BO)₂(g), and BO(g). Some B₂O₃ is also vaporized.
- From 10.8% to 15.9% fuel, the temperature appears to be limited to 2310 K by the reaction of $B_2O_3(l)$ and $Co_2B(s)$ which forms Co(l), $(BO)_2(g)$, and BO(g). Some B_2O_3 is also vaporized.
- From 8.5% to 10.7% fuel, the temperature is limited to about 2323 K by the vaporization of $B_2O_3(l)$.
- **G1.** 15.9% fuel, 21.90% gas produced, 2309.74 K—*peak gas* see T3 for details
- **G2.** 20.8% fuel, 21.90% gas produced, 2283.40 K—*peak gas* see T4 for details

FIGURE 23.28 Adiabatic equilibrium temperature profile, B (fuel) + NiO (oxidizer).

FIGURE 23.29 Adiabatic equilibrium gas production profile, B (fuel) + NiO (oxidizer).

- T1. 8.8% fuel, 0.92% gas produced, 2323.08 K—peak temperature solids: none liquids: 71.66% Ni, 27.42% B₂O₃ gases: 0.91% B₂O₃ simplified equation at 8.8% fuel: 2B + 3NiO → B₂O₃ + 3Ni
- **T2.** 19.6% fuel, 15.85% gas produced, 2306.47 K solids: 74.77% NiB liquids: 9.38% B₂O₃ gases: 14.22% B₂O₃, 1.41% (BO)₂, 0.17% BO simplified equation at 19.4% fuel: 5B + 3NiO → B₂O₃ + 3NiB
 - T1 corresponds to the maximum amount of Ni.
 - From 4.9% to 5.4% fuel, the temperature is limited to 1728 K by the Ni(s-l) transition.
 - From 20.5% to 34.4% fuel, the temperature appears to be limited by the vaporization of boron oxides from B(s)/B₂O₃(l) mixtures, which occurs at 2192 K.
 - From 8.9% to 19.5% fuel, the temperature appears to be limited to 2310 K by the reaction of B₂O₃(l) and NiB(s) which forms Ni(l), (BO)₂(g), and BO(g). Some B₂O₃ is also vaporized.
- **G1.** 19.6% fuel, 15.85% gas produced, 2306.47 K—*peak gas* see T2 for details

23.20 BORON + Cu_2O

FIGURE 23.30 Adiabatic equilibrium temperature profile, B (fuel) + Cu_2O (oxidizer).

FIGURE 23.31 Adiabatic equilibrium gas production profile, B (fuel) + Cu_2O (oxidizer).

- **T1.** 4.8% fuel, 2.06% gas produced, 2314.36 K—*peak temperature* solids: none liquids: 84.45% Cu, 13.49% B_2O_3 gases: 1.92% B_2O_3 , 0.10% Cu simplified equation at 4.8% fuel: $2B + 3Cu_2O \rightarrow B_2O_3 + 6Cu$
 - T1 corresponds to the maximum amount of Cu.
 - From 30.3% to 34.0% fuel, the temperature is limited to 1358 K by the Cu(s-l) transition.
 - From 2.4% to 2.9% fuel, the temperature is limited to 1517 K by the Cu₂O(s-l) transition.
 - The plateau from 5.1% to 8.9% fuel (2189 K) could not be attributed to a simple transition or reaction; species in this region include (BO)₂(g), B₂O₃(g), Cu(l), B₂O₃(l), and B(s). The vaporization of boron oxides from B(s)/B₂O₃(l) mixtures is expected to occur at 2192 K.

G1. 5.1% fuel, 3.04% gas produced, 2189.18 K—peak gas solids: none liquids: 84.22% Cu, 12.67% B₂O₃ gases: 1.79% (BO)₂, 1.13% B₂O₃ simplified equation at 4.8% fuel: 2B + 3Cu₂O → B₂O₃ + 6Cu

23.21 BORON + CuO

FIGURE 23.32 Adiabatic equilibrium temperature profile, B (fuel) + CuO (oxidizer).

- **T1.** 4.3% fuel, 1956.58 K solids: none liquids: 86.08% Cu₂O, 13.84% B₂O₃ gases: none simplified equation at 4.3% fuel: $2B + 6CuO \rightarrow B_2O_3 + 3Cu_2O$
- T2. 8.3% fuel, 23.66% gas produced, 2316.70 K—*peak temperature* solids: none liquids: 72.07% Cu, 4.27% B₂O₃ gases: 22.31% B₂O₃, 1.17% Cu, 0.14% BO₂ simplified equation at 8.3% fuel: 2B + 3CuO → B₂O₃ + 3Cu
 - The maximum amount of copper, 72.61% Cu(l) and 0.93% Cu(g), occurs at 7.9% fuel and 2299.82 K.
 - From 52.6% to 54.1% fuel, the temperature is limited to 1358 K by the Cu(s-l) transition.
 - From 2.0% to 2.7% fuel, the temperature appears to be limited by the 4CuO(s) \rightarrow 2Cu₂O(s) + O₂(g) decomposition, which occurs at 1397 K.
 - From 3.0% to 3.6% fuel, the temperature is limited to 1517 K by the Cu₂O(s-l) transition.
 - The plateau from 9.9% to 29.5% fuel (2189 K) could not be attributed to a simple transition or reaction; species in this region include (BO)₂(g), B₂O₃(g), Cu(g), BO(g), Cu(l), B₂O₃(l), and B(s). The vaporization of boron oxides from B(s)/B₂O₃(l) mixtures is expected to occur at 2192 K.
 - The plateau from 5.1% to 7.8% fuel (2300 K) could not be attributed to a simple transition or reaction; species include B₂O₃(g), O₂(g), Cu(g), BO₂(g), Cu(l), Cu₂O(l), and B₂O₃(l).

G1. 8.3% fuel, 23.66% gas produced, 2316.70 K—*peak gas* see T2 for details

FIGURE 23.33 Adiabatic equilibrium gas production profile, B (fuel) + CuO (oxidizer).

 $B + Ag_2O$

Adiabatic Equilibrium Gas Products

23.22 BORON + Ag_2O

FIGURE 23.34 Adiabatic equilibrium temperature profile, B (fuel) + Ag₂O (oxidizer).

FIGURE 23.35 Adiabatic equilibrium gas production profile, B (fuel) + Ag_2O (oxidizer).

fuel (wt-%)

100

- **T1.** 3.0% fuel, 17.78% gas produced, 2261.91 K—*peak temperature* solids: none liquids: 81.27% Ag, 0.95% B₂O₃ gases: 8.67% Ag, 8.60% B₂O₃, 0.37% Ag₂, 0.13% BO₂ simplified equation at 3.0% fuel: 2B + $3Ag_2O \rightarrow B_2O_3 + 6Ag$
 - Ag₂O(s) is unstable above 468 K. The maximum amount of silver, 92.72% Ag(s), occurs at just 0.4% fuel and 639.07 K.

100

90

80

70

20

10

0

0

10 20 30 40 50 60 70 80 90

- From 39.8% to 41.5% fuel, the temperature is limited to 1234 K by the Ag(s-l) transition.
- The plateau from 3.8% to 16.9% fuel (2165 K) could not be attributed to a simple transition or reaction; species in this region include (BO)₂(g), B₂O₃(g), Ag(g), Ag₂(g), BO(g), Ag(l), B₂O₃(l), and B(s). The vaporization of boron oxides from B(s)/B₂O₃(l) mixtures is expected to occur at 2192 K.
- **G1.** 3.0% fuel, 17.78% gas produced, 2261.91 K—*peak gas* see T1 for details

23.23 BORON + ZnO

FIGURE 23.36 Adiabatic equilibrium temperature profile, B (fuel) + ZnO (oxidizer).

T1. 8.2% fuel, 1176.98 K—peak temperature solids: none liquids: 73.75% Zn, 26.18% B₂O₃ gases: none simplified equation at 8.1% fuel: 2B + 3ZnO → B₂O₃ + 3Zn

- T1 corresponds to the maximum amount of Zn.
- From 47.7% to 51.1% fuel, the temperature is limited to 693 K by the Zn(s-l) transition.
- From 40.0% to 44.6% fuel, the temperature is limited to 723 K by the $B_2O_3(s-l)$ transition.

23.24 BORON + CdO

FIGURE 23.37 Adiabatic equilibrium temperature profile, B (fuel) + CdO (oxidizer).

FIGURE 23.38 Adiabatic equilibrium gas production profile, B (fuel) + CdO (oxidizer).

- **T1.** 5.3% fuel, 82.66% gas produced, 1094.04 K—*peak temperature* solids: 0.27% CdO liquids: 17.07% B_2O_3 gases: 82.66% Cd simplified equation at 5.3% fuel: $2B + 3CdO \rightarrow B_2O_3 + 3Cd$
 - G1 corresponds to the maximum amount of Cd.
 - From 1.5% to 4.8% and 7.1% to 38.3% fuel, the temperature is limited to 1040K by the Cd(l-g) transition.
- **G1.** 5.4% fuel, 82.81% gas produced, 1092.86 K—*peak gas* solids: none liquids: 17.10% B_2O_3 gases: 82.81% Cd simplified equation at 5.3% fuel: 2B + 3CdO $\rightarrow B_2O_3$ + 3Cd

23.25 BORON + HgO

FIGURE 23.39 Adiabatic equilibrium temperature profile, B (fuel) + HgO (oxidizer).

FIGURE 23.40 Adiabatic equilibrium gas production profile, B (fuel) + HgO (oxidizer).

- **T1.** 1.9% fuel, 94.54% gas produced, 1911.26 K solids: none liquids: 5.46% B_2O_3 gases: 89.66% Hg, 2.93% O_2 , 1.16% HgO, 0.62% B_2O_3 , 0.12% Hg₂ a combination of two reactions with excess oxidizer remaining: (3.2% fuel) 2B + 3HgO \rightarrow B_2O_3 + 3Hg (decomposition) 2HgO \rightarrow 2Hg + O_2
- **T2.** 3.2% fuel, 100% gas produced, 2550.78 K—*peak temperature* solids: none liquids: none gases: 89.54% Hg, 9.92% B_2O_3 , 0.33% BO_2 simplified equation at 3.2% fuel: $2B + 3HgO \rightarrow B_2O_3 + 3Hg$
 - HgO(s) is unstable above 716 K.
 - T1 and T2 correspond to the maximum amounts of Hg.
- The system produces 100% gas from 2.9% to 3.9% fuel.
- **G1.** 3.2% fuel, 100% gas produced, 2550.78 K—*peak gas* see T2 for details

23.26 BORON + SnO

FIGURE 23.41 Adiabatic equilibrium temperature profile, B (fuel) + SnO (oxidizer).

FIGURE 23.42 Adiabatic equilibrium gas production profile, B (fuel) + SnO (oxidizer).

- T1. 5.1% fuel, 2103.30 K—peak temperature solids: none liquids: 83.63% Sn, 16.35% B₂O₃ gases: none simplified equation at 5.1% fuel: 2B + 3SnO → B₂O₃ + 3Sn
 - T1 corresponds to the maximum amount of Sn.
 - From 4.2% to 4.6% fuel, the temperature appears to be limited by the vaporization of SnO from Sn(1)/SnO₂(s) mixtures, which occurs at about 1820 K.

G1. 4.7% fuel, 7.47% gas produced, 1835.18 K—*peak gas* solids: none liquids: 77.41% Sn, 15.12% B_2O_3 gases: 3.40% (SnO)₂, 1.54% SnO, 1.31% (SnO)₄, 1.20% (SnO)₃ one reaction with excess oxidizer remaining: (5.1% fuel) 2B + 3SnO $\rightarrow B_2O_3 + 3Sn$

23.27 BORON + SnO_2

FIGURE 23.43 Adiabatic equilibrium temperature profile, B (fuel) + SnO₂ (oxidizer).

FIGURE 23.44 Adiabatic equilibrium gas production profile, B (fuel) + SnO₂ (oxidizer).

- T1. 8.7% fuel, 3.94% gas produced, 2302.71 K—peak temperature solids: none liquids: 71.02% Sn, 25.04% B₂O₃ gases: 2.92% B₂O₃, 0.68% SnO, 0.27% Sn simplified equation at 8.7% fuel: 4B + 3SnO₂ → 2B₂O₃ + 3Sn
- The maximum amount of tin, 71.54% Sn(l) and 0.26% Sn(g), occurs at 8.8% fuel and 2287.07 K.
- From 5.4% to 7.2% fuel, the temperature appears to be limited by the vaporization of SnO from Sn(1)/SnO₂(s) mixtures, which occurs at about 1820 K.
- The plateau from 9.1% to 13.8% fuel (2189 K) could not be attributed to a simple transition or reaction; species in this region include $(BO)_2(g)$, $B_2O_3(g)$, Sn(g), Sn(l), $B_2O_3(l)$, and B(s). The vaporization of boron oxides from $B(s)/B_2O_3(l)$ mixtures is expected to occur at 2192 K.

G1. 7.3% fuel, 29.33% gas produced, 1821.06 K—peak gas solids: none liquids: 47.21% Sn, 23.47% B₂O₃ gases: 12.97% (SnO)₂, 5.88% (SnO)₄, 5.44% SnO, 4.98% (SnO)₃ a combination of two reactions:
(4.6% fuel) 2B + 3SnO₂ → B₂O₃ + 3SnO (8.7% fuel) 4B + 3SnO₂ → 2B₂O₃ + 3Sn

fuel (wt-%)

23.28 BORON + PbO

FIGURE 23.45 Adiabatic equilibrium temperature profile, B (fuel) + PbO (oxidizer).

T1. 2.2% fuel, 19.08% gas produced, 1935.98 K solids: 29.47% PbB₂O₄ liquids: 51.46% Pb gases: 11.71% Pb, 7.20% PbO one reaction with excess oxidizer remaining: (2.4% fuel) 2B + 4PbO → PbB₂O₄ + 3Pb

T2. 3.1% fuel, 33.93% gas produced, 2006.15 K—*peak temperature* solids: none liquids: 56.66% Pb, 9.41% B₂O₃ gases: 32.17% Pb, 0.90% PbO, 0.57% B₂O₃, 0.29% Pb₂ simplified equation at 3.1% fuel: 2B + 3PbO → B₂O₃ + 3Pb

- The maximum amount of lead, 59.50% Pb(l), 30.10% Pb(g), and 0.26% Pb₂(g), occurs at 3.2% fuel and 1998.62 K.
- From 1.6% to 2.0% fuel, the temperature appears to be limited by the vaporization of Pb and PbO from Pb(1)/PbO(1) mixtures, which occurs at 1780 K.
- From 2.3% to 2.8% fuel, the temperature appears to be limited by the vaporization of Pb, PbO, and B₂O₃ from Pb(1)/PbB₂O₄(s) mixtures, which occurs at 1960 K.
- The plateau from 3.3% to 10.7% fuel (1991 K) could not be attributed to a simple transition or reaction; species in this region include Pb(g), Pb₂(g), (BO)₂(g), B₂O₃(g), Pb(l), B₂O₃(l), and B(s). Alone, Pb(l) is expected to vaporize at 2020 K.
- G1 3.1% fuel, 33.93% gas produced, 2006.15 K—*peak gas* see T2 for details

FIGURE 23.46 Adiabatic equilibrium gas production profile, B (fuel) + PbO (oxidizer).

23.29 BORON + Pb_3O_4

FIGURE 23.47 Adiabatic equilibrium temperature profile, B (fuel) + Pb_3O_4 (oxidizer).

FIGURE 23.48 Adiabatic equilibrium gas production profile, B (fuel) + Pb_3O_4 (oxidizer).

T1. 1.0% fuel, 0.34% gas produced, 1663.01 K solids: 13.54% PbB_2O_4 liquids: 86.12% PbO gases: 0.25% PbO simplified equation at 1.0% fuel: $2B + 3Pb_3O_4 \rightarrow PbB_2O_4 + 8PbO$

T2. 4.0% fuel, 75.61% gas produced, 2008.01 K—peak temperature solids: none liquids: 12.82% Pb, 11.58% B₂O₃ gases: 72.50% Pb, 1.30% B₂O₃, 1.14% PbO, 0.65% Pb₂ simplified equation at 4.0% fuel: 8B + 3Pb₃O₄ → 4B₂O₃ + 9Pb

- The maximum amount of lead, 15.31% Pb(l), 71.00% Pb(g), and 0.64% Pb₂(g), occurs at 4.1% fuel and 2005.75 K.
- From 1.1% to 2.2% fuel, the temperature appears to be limited by the vaporization of Pb and PbO from Pb(l)/PbO(l) mixtures, which occurs at 1780 K.
- From 2.8% to 3.5% fuel, the temperature appears to be limited by the vaporization of Pb, PbO, and B₂O₃ from Pb(l)/PbB₂O₄(s) mixtures, which occurs at 1960 K.
- The plateau from 4.3% to 19.2% fuel (1991 K) could not be attributed to a simple transition or reaction; species in this region include Pb(g), Pb₂(g), (BO)₂(g), B₂O₃(g), Pb(l), B₂O₃(l), and B(s). Alone, Pb(l) is expected to vaporize at 2020 K.
- **G1.** 4.0% fuel, 75.61% gas produced, 2008.01 K—*peak gas* see T2 for details

23.30 BORON + PbO_2

FIGURE 23.49 Adiabatic equilibrium temperature profile, B (fuel) + PbO₂ (oxidizer).

- **T1.** 2.4% fuel, 63.30% gas produced, 1795.56 K solids: 32.48% PbB₂O₄ liquids: 4.23% PbO gases: 61.08% PbO, 1.27% O₂, 0.94% Pb a combination of two reactions: (2.9% fuel) 2B + 3PbO₂ \rightarrow PbB₂O₄ + 2PbO (decomposition) 2PbO₂ \rightarrow 2PbO + O₂
- T2. 3.1% fuel, 69.82% gas produced, 2084.98 K solids: 30.18% PbB₂O₄ liquids: none gases: 58.11% PbO, 8.63% Pb, 2.73% B₂O₃, 0.25% O₂ a combination of two reactions:
 (2.9% fuel) 2B + 3PbO₂ → PbB₂O₄ + 2PbO (5.7% fuel) 4B + 3PbO₂ → 2B₂O₃ + 3Pb
- T3. 5.7% fuel, 94.28% gas produced, 2188.92 K—peak temperature solids: none liquids: 5.72% B₂O₃ gases: 81.07% Pb, 12.38% B₂O₃, 0.39% Pb₂, 0.24% PbO, 0.15% (BO)₂ simplified equation at 5.7% fuel: 4B + 3PbO₂ → 2B₂O₃ + 3Pb
 - The maximum amount of lead, 81.17% Pb(g) and 0.39% Pb₂(g), occurs at 5.8% fuel and 2180.12 K.
 - The plateau from 17.1% to 31.6% fuel (1991 K) could not be attributed to a simple transition or reaction; species in this region include Pb(g), Pb₂(g), (BO)₂(g), B₂O₃(g), Pb(l), B₂O₃(l), and B(s). Alone, Pb(l) is expected to vaporize at 2020 K.
- **G1.** 5.7% fuel, 94.28% gas produced, 2188.92 K—*peak gas* see T3 for details

FIGURE 23.50 Adiabatic equilibrium gas production profile, B (fuel) + PbO_2 (oxidizer).

23.31 BORON + Sb_2O_3

 $B + Sb_2O_3$ Adiabatic Equilibrium Gas Products gas products (wt-%) fuel (wt-%)

FIGURE 23.51 Adiabatic equilibrium temperature profile, B (fuel) + Sb_2O_3 (oxidizer).

FIGURE 23.52 Adiabatic equilibrium gas production profile, B (fuel) + Sb₂O₃ (oxidizer).

- T1. 6.9% fuel, 79.22% gas produced, 2017.54 K—*peak temperature* solids: none liquids: 20.79% B₂O₃ gases: 61.16% Sb₂, 11.95% Sb₄, 4.32% Sb, 1.29% B₂O₃, 0.39% SbO, 0.10% (BO)₂ simplified equation at 6.9% fuel: 2B + Sb₂O₃ → B₂O₃ + 2Sb
 - The maximum amount of antimony, 3.88% Sb(g), 60.17% Sb₂(g), and 13.60% Sb₄(g), occurs at 7.0% fuel and 1995.05 K.
 - The plateau from 12.0% to 21.3% fuel (1890 K) could not be attributed to a simple transition or reaction; species in this region include Sb_n(g), (BO)₂(g), B₂O₃(g), Sb(l), B₂O₃(l), and B(s). Alone, Sb(l) is expected to vaporize at 1899 K.
- **G1.** 2.5% fuel, 64.02% gas produced, 1117.38 K solids: none liquids: 27.93% Sb, 8.05% B_2O_3 gases: 63.74% Sb_4O_6 , 0.19% Sb_4 one reaction with excess oxidizer remaining: (6.9% fuel) $2B + Sb_2O_3 \rightarrow B_2O_3 + 2Sb$
- G2. 6.2% fuel, 80.16% gas produced, 1825.29 K—peak gas solids: none liquids: 19.84% B₂O₃ gases: 39.75% Sb₂, 24.46% Sb₄, 14.47% SbO, 1.35% Sb, 0.12% B₂O₃ a combination of two reactions:
 (2.4% fuel) 2B + 3Sb₂O₃ → B₂O₃ + 6SbO (6.9% fuel) 2B + Sb₂O₃ → B₂O₃ + 2Sb

23.32 BORON + Bi_2O_3

B + Bi₂O₃ Adiabatic Equilibrium Gas Products 100 90 80 70 gas products (wt-%) 60 50 40 30 20 10 0 30 60 70 80 0 10 20 40 50 90 100 fuel (wt-%)

FIGURE 23.53 Adiabatic equilibrium temperature profile, B (fuel) + Bi_2O_3 (oxidizer).

FIGURE 23.54 Adiabatic equilibrium gas production profile, B (fuel) + Bi_2O_3 (oxidizer).

- **T1.** 4.4% fuel, 87.57% gas produced, 2039.42 K—*peak temperature* solids: none liquids: 12.43% B₂O₃ gases: 50.71% Bi, 34.07% Bi₂, 1.73% B₂O₃, 1.05% BiO simplified equation at 4.4% fuel: 2B + Bi₂O₃ \rightarrow B₂O₃ + 2Bi
- The maximum amount of bismuth, 50.13% Bi(g) and 35.53% Bi₂(g), occurs at 4.5% fuel and 2027.49 K.
- From 2.0% to 3.3% fuel, the temperature appears to be limited by the vaporization of BiO and Bi from Bi(l)/Bi₂O₃(l) mixtures, which occurs at 1827 K.
- The plateau from 11.1% to 22.1% fuel (1842 K) could not be attributed to a simple transition or reaction; species in this region include Bi(g), Bi₂(g), (BO)₂(g), B₂O₃(g), Bi(l), B₂O₃(l), and B(s). Alone, Bi(l) is expected to vaporize at 1846 K.

G1. 4.7% fuel, 87.92% gas produced, 1974.96 K—peak gas solids: none liquids: 12.01% B₂O₃ gases: 45.17% Bi, 40.31% Bi₂, 1.56% (BO)₂, 0.85% B₂O₃ simplified equation at 4.4% fuel: 2B + Bi₂O₃ → B₂O₃ + 2Bi

24 Aluminum–Oxidizer Systems

24.1 OVERVIEW

This chapter concerns the adiabatic properties of the aluminum–oxygen system and another thirtytwo aluminum–oxidizer combinations. Equation 24.1 is a general description of the chemical reactions in question, and Table 24.1 provides a broad overview of the most basic results. The thermochemical descriptions within this chapter were derived from the *FactPS* and *FToxid* databases of

TABLE 24.1 Aluminum-Oxidizer Systems			
24.2	804	O_2	4006
24.3	806	TiO ₂	2022
24.4	807	V_2O_5	3117
24.5	809	Nb_2O_5	2705
24.6	811	Ta_2O_5	2348
24.7	812	Cr_2O_3	2327
24.8	813	MoO ₃	3791
24.9	815	WO ₃	3874
24.10	817	MnO	2213
24.11	818	Mn_3O_4	2336
24.12	820	Mn_2O_3	2336
24.13	822	MnO_2	3380
24.14	824	FeO	2981
24.15	826	Fe ₃ O ₄	3124
24.16	828	Fe ₂ O ₃	3126
24.17	830	CoO	3189
24.18	832	Co_3O_4	3198
24.19	834	NiO	3182
24.20	836	Cu ₂ O	2837
24.21	837	CuO	2839
24.22	839	Ag_2O	2427
24.23	840	ZnO	1580
24.24	841	CdO	2576
24.25	843	HgO	3650
24.26	845	B_2O_3	2327
24.27	847	SiO ₂	1759
24.28	848	SnO	2839
24.29	850	SnO_2	2835
24.30	851	PbO	2327
24.31	853	Pb_3O_4	3103
24.32	855	PbO ₂	3647
24.33	857	Sb_2O_3	2703
24.34	859	Bi ₂ O ₃	3202

*FactSage 7.0.** Only pure substances were considered in the condensed phases. Gases were treated ideally, and ideal gas mixing was assumed. Charged species were not considered in any phase.

aluminum + oxidizer
$$\rightarrow$$
 adiabatic equilibrium products
($P = 1 \text{ atm}, T_i = 298.15 \text{ K}, T_{ad} = adiabatic equilibrium temperature$) (24.1)

Within each of the following sections, you will find one or two general figures as well as written descriptions of certain fuel-to-oxidizer ratios. Temperature points (T1, T2, and so on) describe features and points of interest along adiabatic temperature profiles. Similarly, gas points (G1, G2, and so on) refer to adiabatic gas production profiles. Some adiabatic temperature charts contain flat regions where the adiabatic temperature remains constant despite variations in the stoichiometry of the system. Some of these plateaus are described and explained (see Chapter 2 and Tables 2.10–2.15 for more information). The first part of Chapter 5 is also about aluminum.

24.2 ALUMINUM + O_2

FIGURE 24.1 Adiabatic equilibrium temperature profile, Al (fuel) + O₂ (oxidizer).

T1. 36% fuel, 3889.65 K

solids: none liquids: 52.30% Al₂O₃ major gases: 18.98% O, 16.19% O₂, 8.12% AlO other gases: 1.44% Al₂O₂, 1.19% Al, 0.99% Al₂O, 0.77% AlO₂ a combination of two reactions with excess oxidizer remaining: (52.9% fuel) $4Al + 3O_2 \rightarrow 2Al_2O_3$ (62.8% fuel) $2Al + O_2 \rightarrow 2AlO$

^{*} Bale, C. W.; Pelton, A. D.; Thompson, W. T.; Eriksson, G.; Hack, K.; Chartrand, P.; Decterov, S.; Jung, I.-H.; Melançon, J.; Petersen, S. *FactSage*, version 7.0; CRCT ThermFact, Inc. and GTT-Technologies, 2015; www.factsage.com (accessed September, 2019).

- **T2.** 53% fuel, 4006.19 K—peak temperature solids: none liquids: 34.93% Al₂O₃ major gases: 22.11% AlO, 12.47% O, 10.69% Al₂O, 7.78% Al, 6.55% Al₂O₂ other gases: 4.40% O₂, 0.99% AlO₂ a combination of reactions with unreacted fuel and oxidizer remaining: (52.9% fuel) 4Al + 3O₂ \rightarrow 2Al₂O₃ (62.8% fuel) 2Al + O₂ \rightarrow 2AlO (62.8% fuel) 2Al + O₂ \rightarrow Al₂O₂ (77.1% fuel) 4Al + O₂ \rightarrow 2Al₂O
- **T3.** 63% fuel, 3951.74 K

solids: none liquids: 38.06% Al₂O₃ major gases: 20.56% Al₂O, 17.66% AlO, 11.40% Al, 6.84% Al₂O₂ other gases: 4.21% O, 0.81% O₂, 0.41% AlO₂ a combination of reactions with unreacted fuel and oxidizer remaining: (52.9% fuel) $4Al + 3O_2 \rightarrow 2Al_2O_3$ (62.8% fuel) $2Al + O_2 \rightarrow 2AlO$ (62.8% fuel) $2Al + O_2 \rightarrow Al_2O_2$ (77.1% fuel) $4Al + O_2 \rightarrow 2Al_2O$

- **T4.** 77% fuel, 2534.93 K solids: none liquids: 8.35% Al₂O₃ gases: 83.34% Al₂O, 8.15% Al, 0.13% Al₂ a combination of two reactions with excess fuel remaining: (52.9% fuel) 4Al + 3O₂ \rightarrow 2Al₂O₃ (77.1% fuel) 4Al + O₂ \rightarrow 2Al₂O
- The first, third, and fourth points correspond to the maximum amounts of Al₂O₃, Al₂O₂, and Al₂O, respectively. The second point corresponds to the maximum amounts of AlO and AlO₂.
- From 78% to 91% fuel, the temperature appears to be limited by the vaporization of Al₂O and Al from Al(l)/Al₂O₃(l) mixtures, which occurs at 2470 K. Pure Al(l) vaporizes at 2790 K.
- Al₂O₃(l) decomposes into a gaseous mixture of AlO, O, Al₂O, Al, Al₂O₂, O₂, and AlO₂ at 4006 K. This appears to limit any further increase in temperature.
- Al(g) is present from 26% to 91% fuel. The maximum amount, 15.69%, occurs at 72% fuel.

24.3 ALUMINUM + TiO_2

FIGURE 24.2 Adiabatic equilibrium temperature profile, Al (fuel) + TiO₂ (oxidizer).

T1. 10.1% fuel, 1358.95 K

solids: 80.32% Ti₂O₃, 19.08% Al₂O₃ (corundum), 0.59% Ti₃O₅ liquids: none gases: none simplified equation at 10.1% fuel: $2AI + 6TiO_2 \rightarrow Al_2O_3 + 3Ti_2O_3$

- **T2.** 18.4% fuel, 1819.31 K solids: 65.22% TiO, 34.74% Al_2O_3 (corundum) liquids: none gases: none simplified equation at 18.4% fuel: $2Al + 3TiO_2 \rightarrow Al_2O_3 + 3TiO_3$
- T3. 44.1% fuel, 2022.42 K—peak temperature solids: 52.34% TiAl, 47.58% Al₂O₃ (corundum) liquids: none gases: none simplified equation at 44.1% fuel: 7Al + 3TiO₂ → 2Al₂O₃ + 3TiAl
- **T4.** 59.4% fuel, 1878.51 K solids: 65.39% TiAl₃, 34.56% Al₂O₃ (corundum) liquids: none gases: none simplified equation at 59.4% fuel: $13Al + 3TiO_2 \rightarrow 2Al_2O_3 + 3TiAl_3$
- Elemental titanium is not predicted to occur at any point.

24.4 ALUMINUM + V_2O_5

FIGURE 24.3 Adiabatic equilibrium temperature profile, Al (fuel) + V_2O_5 (oxidizer).

- T1. 9.0% fuel, 1859.52 K solids: 17.01% Al₂O₃ (corundum) liquids: 82.99% VO₂ gases: none simplified equation at 9.0% fuel: $2A1 + 3V_2O_5 \rightarrow Al_2O_3 + 6VO_2$
- **T2.** 16.5% fuel, 2744.20 K solids: none liquids: 68.68% V₂O₃, 31.18% Al₂O₃, 0.15% VO₂ gases: none simplified equation at 16.5% fuel: 4Al + 3V₂O₅ → 2Al₂O₃ + 3V₂O₃
- T3. 22.9% fuel, 3117.01 K—peak temperature solids: none liquids: 56.75% VO, 43.21% Al₂O₃ gases: none simplified equation at 22.9% fuel: 2Al + V₂O₅ → Al₂O₃ + 2VO
- T4. 35.8% fuel, 7.45% gas produced, 3016.82 K solids: none liquids: 56.98% Al₂O₃, 35.58% V gases: 5.89% Al₂O, 1.06% Al, 0.25% V, 0.16% VO a combination of two reactions with excess fuel remaining: (33.1% fuel) 10Al + 3V₂O₅ → 5Al₂O₃ + 6V (59.7% fuel) 10Al + V₂O₅ → 5Al₂O + 2V

FIGURE 24.4 Adiabatic equilibrium gas production profile, Al (fuel) + V_2O_5 (oxidizer).

- T4 corresponds to the maximum amount of V.
- From 6.0% to 7.6% fuel, the temperature is limited to 1633 K by the VO₂(s-l) transition.
- From 66.3% to 67.3% fuel, the temperature is limited to 2190 K by the V(s-l) transition.
- From 11.3% to 12.1% and 58.1% to 64.1% fuel, the temperature is limited to 2327 K by the $Al_2O_3(s-l)$ transition.
- From 12.3% to 13.5% fuel, the temperature is limited to 2340 K by the $V_2O_3(s-1)$ transition.
- From 40.2% to 54.9% fuel, the temperature appears to be limited by the vaporization of Al₂O and Al from Al(l)/Al₂O₃(l) mixtures, which occurs at 2470 K.
- From 23.7% to 35.7% fuel, the temperature appears to be limited to 3022 K by the reaction of V(l) and Al₂O₃(l) which forms VO(l-g), Al₂O(g), and Al(g). Some of the V is vaporized as well.

G1. 40.2% fuel, 18.98% gas produced, 2469.55 K—peak gas solids: none liquids: 47.42% Al₂O₃, 33.49% V, 0.10% Al gases: 17.39% Al₂O, 1.56% Al a combination of two reactions with excess fuel remaining: (33.1% fuel) 10Al + 3V₂O₅ → 5Al₂O₃ + 6V (59.7% fuel) 10Al + V₂O₅ → 5Al₂O + 2V

24.5 ALUMINUM + Nb_2O_5

FIGURE 24.5 Adiabatic equilibrium temperature profile, Al (fuel) + Nb_2O_5 (oxidizer).

FIGURE 24.6 Adiabatic equilibrium gas production profile, Al (fuel) + Nb_2O_5 (oxidizer).

T1. 6.3% fuel, 1518.23 K

solids: 87.49% NbO₂, 11.90% Al₂O₃ (corundum), 0.60% Nb₂O₅ liquids: none gases: none simplified equation at 6.3% fuel: $2Al + 3Nb_2O_5 \rightarrow Al_2O_3 + 6NbO_2$

- **T2.** 16.9% fuel, 2221.56 K solids: 31.93% Al_2O_3 (corundum), 0.15% Nb liquids: 67.92% NbO gases: none simplified equation at 16.9% fuel: $2Al + Nb_2O_5 \rightarrow Al_2O_3 + 2NbO$
- T3. 25.3% fuel, 2704.64 K—peak temperature solids: 52.22% Nb liquids: 47.74% Al₂O₃ gases: none simplified equation at 25.3% fuel: 10Al + 3Nb₂O₅ → 5Al₂O₃ + 6Nb
 - T3 corresponds to the maximum amount of Nb.
 - From 11.2% to 13.3% fuel, the temperature is limited to 2175 K by the NbO₂(s-l) transition.
 - From 13.6% to 16.8% fuel, the temperature is limited to 2210 K by the NbO(s-l) transition.
 - From 17.6% to 21.2% and 35.5% to 45.1% fuel, the temperature is limited to 2327 K by the $Al_2O_3(s-l)$ transition.
 - From 27.0% to 31.6% fuel, the temperature appears to be limited by the vaporization of Al₂O and Al from Al(l)/Al₂O₃(l) mixtures, which occurs at 2470 K.

G1. 27.0% fuel, 3.95% gas produced, 2469.66 K—peak gas solids: 51.03% Nb liquids: 44.91% Al₂O₃, 0.11% Al gases: 3.62% Al₂O, 0.32% Al a combination of two reactions:
(25.3% fuel) 10Al + 3Nb₂O₅ → 5Al₂O₃ + 6Nb (50.4% fuel) 10Al + Nb₂O₅ → 5Al₂O + 2Nb

24.6 ALUMINUM + Ta_2O_5

FIGURE 24.7 Adiabatic equilibrium temperature profile, Al (fuel) + Ta₂O₅ (oxidizer).

T1. 16.9% fuel, 2347.88 K—peak temperature solids: 68.00% Ta liquids: 31.93% Al₂O₃ gases: none simplified equation at 16.9% fuel: 10A1 + 3Ta₂O₅ → 5Al₂O₃ + 6Ta

- T1 corresponds to the maximum amount of Ta.
- From 10.3% to 11.4% fuel, the temperature is limited to 2143 K by the $Ta_2O_5(s-1)$ transition.
- From 12.7% to 16.6% and 17.4% to 27.3% fuel, the temperature is limited to 2327 K by the $Al_2O_3(s-l)$ transition.

24.7 ALUMINUM + Cr_2O_3

FIGURE 24.8 Adiabatic equilibrium temperature profile, Al (fuel) + Cr_2O_3 (oxidizer).

T1. 19.5% fuel, 1944.22 K

solids: 36.85% Al₂O₃ (corundum), 28.95% Cr, 0.34% Cr₂O₃ liquids: 33.86% CrO gases: none a combination of two reactions: (10.6% fuel) 2Al + 3Cr₂O₃ \rightarrow Al₂O₃ + 6CrO (26.2% fuel) 2Al + Cr₂O₃ \rightarrow Al₂O₃ + 2Cr

- **T2.** 26.2% fuel, 2327.02 K—*peak temperature* solids: 9.96% Al₂O₃ (corundum) liquids: 50.49% Cr, 39.54% Al₂O₃ gases: none simplified equation at 26.2% fuel: 2Al + Cr₂O₃ \rightarrow Al₂O₃ + 2Cr
 - T2 corresponds to the maximum amount of Cr.
 - From 14.5% to 19.5% fuel, the temperature appears to be limited by the formation of CrO(1) from Cr(s)/Cr₂O₃(s) mixtures, which occurs at 1944 K.
 - From 21.2% to 22.0% and 40.9% to 44.4% fuel, the temperature is limited to 2180 K by the Cr(s-l) transition.
 - From 23.2% to 36.9% fuel, the temperature is limited to 2327 K by the Al₂O₃(s-l) transition.

24.8 ALUMINUM + MoO₃

FIGURE 24.9 Adiabatic equilibrium temperature profile, Al (fuel) + MoO₃ (oxidizer).

FIGURE 24.10 Adiabatic equilibrium gas production profile, Al (fuel) + MoO_3 (oxidizer).

40

50 60 70

fuel (wt-%)

80 90 100

AI + MoO₃

- T1. 7.9% fuel, 28.90% gas produced, 2288.93 K solids: 56.17% MoO₂, 14.93% Al₂O₃ (corundum) liquids: none gases: 23.68% (MoO₃)₃, 3.37% (MoO₃)₄, 1.54% (MoO₃)₂, 0.18% MoO₃, 0.11% (MoO₃)₅ one reaction with excess oxidizer remaining: (11.1% fuel) $2A1 + 3MoO_3 \rightarrow Al_2O_3 + 3MoO_2$
- T2. 27.3% fuel, 8.28% gas produced, 3790.99 K—peak temperature solids: none liquids: 47.79% Al₂O₃, 43.93% Mo major gases: 3.38% MoO, 1.85% MoO₂, 1.08% Al₂O, 0.67% AlO other gases: 0.58% A1, 0.27% Al₂O₂, 0.17% MoO₃, 0.14% Mo, 0.12% O simplified equation at 27.3% fuel: $2A1 + MoO_3 \rightarrow Al_2O_3 + Mo$
- **T3.** 30.1% fuel, 8.70% gas produced, 3651.05 K solids: none liquids: 45.89% Al₂O₃, 45.41% Mo gases: 4.48% Al₂O, 1.64% Al, 1.06% MoO, 0.72% AlO, 0.41% Al₂O₂, 0.24% MoO₂ a combination of two reactions with excess fuel remaining: (27.3% fuel) 2Al + MoO₃ \rightarrow Al₂O₃ + Mo $(52.9\% \text{ fuel}) 6\text{Al} + \text{MoO}_3 \rightarrow 3\text{Al}_2\text{O} + \text{Mo}$
 - T3 corresponds to the maximum amount of Mo.
 - From 8.0% to 11.1% fuel, the temperature appears to be limited by the vaporization of MoO_3 from $Mo(s)/MoO_2(s)$ mixtures, which occurs at 2308 K.

- From 11.2% to 12.6% and 62.3% to 66.1% fuel, the temperature is limited to 2327 K by the $Al_2O_3(s-l)$ transition.
- From 39.3% to 59.8% fuel, the temperature appears to be limited by the vaporization of Al₂O and Al from Al(l)/Al₂O₃(l) mixtures, which occurs at 2470 K.
- From 17.1% to 17.6% and 35.9% to 36.7% fuel, the temperature is limited to 2896 K by the Mo(s-l) transition.
- **G1.** 5.0% fuel, 54.98% gas produced, 1356.41 K solids: 35.57% MoO₂, 9.45% Al₂O₃ (corundum) liquids: none gases: 31.05% (MoO₃)₄, 17.71% (MoO₃)₃, 6.20% (MoO₃)₅ one reaction with excess oxidizer remaining: (11.1% fuel) 2Al + 3MoO₃ \rightarrow Al₂O₃ + 3MoO₂
- G2. 11.1% fuel, 59.29% gas produced, 2308.16 K—*peak gas* solids: 20.97% Al₂O₃ (corundum), 19.71% Mo liquids: none gases: 48.59% (MoO₃)₃, 6.69% (MoO₃)₄, 3.31% (MoO₃)₂, 0.42% MoO₃, 0.20% (MoO₃)₅ one reaction with excess oxidizer remaining: (27.3% fuel) 2A1 + MoO₃ → Al₂O₃ + Mo
- G3. 39.3% fuel, 29.67% gas produced, 2469.66 K solids: 40.46% Mo liquids: 29.78% Al₂O₃ gases: 27.19% Al₂O, 2.43% Al a combination of two reactions with excess fuel remaining: (27.3% fuel) 2A1 + MoO₃ → Al₂O₃ + Mo (52.9% fuel) 6A1 + MoO₃ → 3Al₂O + Mo

24.9 ALUMINUM + WO_3

FIGURE 24.11 Adiabatic equilibrium temperature profile, Al (fuel) + WO₃ (oxidizer).

100 90 80 70 gas products (wt-%) 60 50 40 30 20 10 0 70 0 10 20 30 40 50 60 80 90 100 fuel (wt-%)

AI + WO₃

Adiabatic Equilibrium Gas Products

FIGURE 24.12 Adiabatic equilibrium gas production profile, Al (fuel) + WO₃ (oxidizer).

T1. 4.3% fuel, 1920.99 K

solids: 54.70% $W_{18}O_{49}$, 37.17% WO_2 , 8.12% Al_2O_3 (corundum) liquids: none gases: none a combination of two reactions: (2.1% fuel) $10Al + 54WO_3 \rightarrow 5Al_2O_3 + 3W_{18}O_{49}$ (7.2% fuel) $2Al + 3WO_3 \rightarrow Al_2O_3 + 3WO_2$

- T2. 18.9% fuel, 3873.71 K—peak temperature solids: none liquids: 64.30% W, 35.63% Al₂O₃ gases: none simplified equation at 18.9% fuel: 2Al + WO₃ → Al₂O₃ + W
 - T2 corresponds to the maximum amount of W.
 - From 4.8% to 6.6% fuel, the temperature appears to be limited by the $3W_{18}O_{49}(s) \rightarrow 5W(s) + 49WO_3(l)$ decomposition, which occurs at 2011 K.
 - From 7.0% to 8.1% fuel, the temperature appears to be limited by the vaporization of WO₃ and W₃O₈ from W(s)/WO₃(l) mixtures, which occurs at 2087 K.
 - From 9.1% to 10.2% and 46.7% to 51.5% fuel, the temperature is limited to 2327 K by the $Al_2O_3(s-l)$ transition.
 - From 26.9% to 44.0% fuel, the temperature appears to be limited by the vaporization of Al₂O and Al from Al(l)/Al₂O₃(l) mixtures, which occurs at 2470 K.
 - From 17.4% to 17.9% and 19.7% to 20.2% fuel, the temperature is limited to 3680 K by the W(s-l) transition.

G1. 8.1% fuel, 57.78% gas produced, 2087.07 K—peak gas solids: 26.76% W, 15.31% Al₂O₃ (corundum) liquids: 0.15% WO₃ gases: 29.26% (WO₃)₃, 11.90% (WO₃)₄, 9.25% W₃O₈, 7.37% (WO₃)₂ a combination of two reactions with excess oxidizer remaining: (2.5% fuel) 2A1 + 9WO₃ → Al₂O₃ + 3W₃O₈ (18.9% fuel) 2A1 + WO₃ → Al₂O₃ + W

G2. 26.9% fuel, 17.76% gas produced, 2469.66 K solids: 57.97% W liquids: 24.24% Al₂O₃ gases: 16.27% Al₂O, 1.46% Al a combination of two reactions with excess fuel remaining: (18.9% fuel) 2A1 + WO₃ \rightarrow Al₂O₃ + W (41.1% fuel) 6A1 + WO₃ \rightarrow 3Al₂O + W

24.10 ALUMINUM + MnO

T1. 16.0% fuel, 1966.89 K

solids: 50.94% MnAl₂O₄ (galaxite), 0.19% Al₂O₃ (corundum) liquids: 48.87% Mn gases: none simplified equation at 16.0% fuel: 2Al + 4MnO \rightarrow MnAl₂O₄ + 3Mn

- T2. 20.2% fuel, 2212.56 K—peak temperature solids: 37.97% Al₂O₃ (corundum), 0.34% MnAl₂O₄ (galaxite) liquids: 61.70% Mn gases: none simplified equation at 20.2% fuel: 2Al + 3MnO → Al₂O₃ + 3Mn
 - The maximum amount of manganese, 61.72% Mn(l), occurs at 20.3% fuel and 2211.89 K.
 - From 10.0% to 10.7% and 43.3% to 46.2% fuel, the temperature is limited to 1519 K by the Mn(s-l) transition.

24.11 ALUMINUM + Mn_3O_4

FIGURE 24.14 Adiabatic equilibrium temperature profile, Al (fuel) + Mn_3O_4 (oxidizer).

FIGURE 24.15 Adiabatic equilibrium gas production profile, Al (fuel) + Mn_3O_4 (oxidizer).

T1. 7.3% fuel, 1927.71 K

solids: 76.57% MnO, 23.39% MnAl₂O₄ (galaxite) liquids: none gases: none simplified equation at 7.3% fuel: $2Al + 3Mn_3O_4 \rightarrow MnAl_2O_4 + 8MnO_3O_4$

- T2. 19.1% fuel, 10.94% gas produced, 2335.90 K—peak temperature solids: 60.95% MnAl₂O₄ (galaxite) liquids: 27.97% Mn, 0.14% Al₂O₃ gases: 10.94% Mn simplified equation at 19.1% fuel: 2Al + Mn₃O₄ → MnAl₂O₄ + 2Mn
- T3. 23.9% fuel, 4.04% gas produced, 2335.90 K—peak temperature solids: 0.29% MnAl₂O₄ (galaxite) liquids: 50.68% Mn, 44.98% Al₂O₃ gases: 4.04% Mn simplified equation at 23.9% fuel: 8Al + 3Mn₃O₄ → 4Al₂O₃ + 9Mn
 - The maximum amount of manganese, 50.78% Mn(l) and 3.97% Mn(g), occurs at 24.0% fuel and 2327.68 K.
 - From 59.8% to 61.1% fuel, the temperature is limited to 1519 K by the Mn(s-l) transition.
 - From 9.8% to 13.5% fuel, the temperature is limited to 2115 K by the MnO(s-l) transition.
 - The plateau from 25.8% to 40.8% fuel (2276 K) could not be attributed to a simple transition or reaction; species in this region include Mn(g), Al₂O(g), Al(g), Mn(l), Al(l), and Al₂O₃(s).
 - From 15.4% to 23.9% fuel, the temperature is limited to 2336 K by the Mn(l-g) transition.

- **G1.** 19.1% fuel, 10.94% gas produced, 2335.90 K see T2 for details
- G2. 24.3% fuel, 16.29% gas produced, 2325.66 K—peak gas solids: 44.62% Al₂O₃ (corundum) liquids: 39.09% Mn gases: 15.44% Mn, 0.73% Al₂O, 0.12% Al simplified equation at 23.9% fuel: 8Al + 3Mn₃O₄ → 4Al₂O₃ + 9Mn

24.12 ALUMINUM + Mn_2O_3

FIGURE 24.16 Adiabatic equilibrium temperature profile, Al (fuel) + Mn₂O₃ (oxidizer).

FIGURE 24.17 Adiabatic equilibrium gas production profile, Al (fuel) + Mn_2O_3 (oxidizer).

T1. 4.1% fuel, 1488.91 K

solids: 86.84% Mn_3O_4 , 13.14% $MnAl_2O_4$ (galaxite) liquids: none gases: none simplified equation at 4.1% fuel: $2Al + 8Mn_2O_3 \rightarrow MnAl_2O_4 + 5Mn_3O_4$

- **T2.** 10.2% fuel, 2200.29 K solids: 32.68% MnAl₂O₄ (galaxite) liquids: 67.29% MnO gases: none simplified equation at 10.2% fuel: 2A1 + $3Mn_2O_3 \rightarrow MnAl_2O_4 + 5MnO$
- T3. 20.4% fuel, 25.51% gas produced, 2335.96 K—peak temperature solids: 65.36% MnAl₂O₄ (galaxite) liquids: 9.09% Mn gases: 25.51% Mn simplified equation at 20.4% fuel: 6Al + 4Mn₂O₃ → 3MnAl₂O₄ + 5Mn
- **T4.** 25.5% fuel, 17.04% gas produced, 2335.25 K—*peak temperature* solids: none liquids: 48.10% Al₂O₃, 34.86% Mn gases: 16.99% Mn simplified equation at 25.5% fuel: 2A1 + Mn₂O₃ \rightarrow Al₂O₃ + 2Mn
- T4 corresponds to the maximum amount of Mn.
- From 66.5% to 67.4% fuel, the temperature is limited to 1519 K by the Mn(s-l) transition.

- From 6.2% to 7.7% fuel, the temperature appears to be limited by the $2Mn_3O_4(s) \rightarrow 6MnO(s) + O_2(g)$ decomposition, which occurs at 1925 K.
- From 8.4% to 9.9% fuel, the temperature is limited to 2115 K by the MnO(s-l) transition.
- The plateau from 28.6% to 50.4% fuel (2276 K) could not be attributed to a simple transition or reaction; species in this region include Mn(g), $Al_2O(g)$, Al(g), Mn(l), Al(l), and $Al_2O_3(s)$.
- From 11.3% to 25.4% fuel, the temperature is limited to 2336 K by the Mn(l-g) transition.
- **G1.** 20.4% fuel, 25.51% gas produced, 2335.96 K see T3 for details
- G2. 26.1% fuel, 29.62% gas produced, 2326.37 K—peak gas solids: 47.13% Al₂O₃ (corundum) liquids: 23.26% Mn gases: 28.18% Mn, 1.24% Al₂O, 0.20% Al simplified equation at 25.5% fuel: 2Al + Mn₂O₃ → Al₂O₃ + 2Mn

AI + MnO₂

Adiabatic Equilibrium Gas Products

100

90

80

70

60 50

24.13 ALUMINUM + MnO_2

FIGURE 24.18 Adiabatic equilibrium temperature profile, Al (fuel) + MnO₂ (oxidizer).

FIGURE 24.19 Adiabatic equilibrium gas production profile, Al (fuel) + MnO_2 (oxidizer).

- **T1.** 5.4% fuel, 4.70% gas produced, 1620.31 K solids: 78.00% Mn_2O_3 (bixbyite), 17.30% $MnAl_2O_4$ (galaxite) liquids: none gases: 4.70% O_2 a combination of two reactions: (11.0% fuel) $2Al + 5MnO_2 \rightarrow MnAl_2O_4 + 2Mn_2O_3$ (decomposition) $4MnO_2 \rightarrow 2Mn_2O_3 + O_2$
- **T2.** 7.0% fuel, 5.88% gas produced, 1915.37 K solids: 71.70% Mn_3O_4 , 22.43% $MnAl_2O_4$ (galaxite) liquids: none gases: 5.87% O_2 a combination of two reactions: (13.4% fuel) $2Al + 4MnO_2 \rightarrow MnAl_2O_4 + Mn_3O_4$ (decomposition) $3MnO_2 \rightarrow Mn_3O_4 + O_2$
- **T3.** 12.5% fuel, 4.99% gas produced, 2637.95 K solids: 40.05% $MnAl_2O_4$ (galaxite) liquids: 54.96% MnO gases: 4.92% O_2 a combination of two reactions: (17.1% fuel) $2Al + 3MnO_2 \rightarrow MnAl_2O_4 + 2MnO$ (decomposition) $2MnO_2 \rightarrow 2MnO + O_2$

T4. 17.2% fuel, 0.28% gas produced, 3379.96 K—peak temperature solids: none liquids: 67.23% MnO, 32.50% Al₂O₃ gases: 0.26% Mn simplified equation at 17.1% fuel: 2Al + 3MnO₂ → Al₂O₃ + 3MnO

T5. 29.3% fuel, 44.74% gas produced, 2490.38 K solids: none liquids: 55.26% Al₂O₃ gases: 44.68% Mn simplified equation at 29.3% fuel: 4Al + 3MnO₂ → 2Al₂O₃ + 3Mn

- T5 corresponds to the maximum amount of Mn.
- From 7.1% to 8.9% fuel, the temperature appears to be limited by the $2Mn_3O_4(s) \rightarrow 6MnO(s) + O_2(g)$ decomposition, which occurs at 1925 K.
- From 9.6% to 10.9% fuel, the temperature is limited to 2115 K by the MnO(s-l) transition.
- The plateau from 35.1% to 65.2% fuel (2276 K) could not be attributed to a simple transition or reaction; species in this region include Mn(g), Al₂O(g), Al(g), Mn(l), Al(l), and Al₂O₃(s). Alone, Mn(l) is expected to boil at 2336 K.
- From 30.5% to 33.6% fuel, the temperature is limited to 2327 K by the Al₂O₃(s-l) transition.
- From 12.6% to 14.1% and 27.2% to 28.5% fuel, the temperature appears to be limited by the $MnAl_2O_4(s) \rightarrow MnO(l) + Al_2O_3(l)$ decomposition, which occurs at 2647 K.
- G1. 33.8% fuel, 53.23% gas produced, 2298.64 K—peak gas solids: 46.78% Al₂O₃ (corundum) liquids: none gases: 41.83% Mn, 10.26% Al₂O, 1.12% Al a combination of two reactions with excess fuel remaining: (29.3% fuel) 4Al + 3MnO₂ → 2Al₂O₃ + 3Mn (55.4% fuel) 4Al + MnO₂ → 2Al₂O + Mn

24.14 ALUMINUM + FeO

FIGURE 24.20 Adiabatic equilibrium temperature profile, Al (fuel) + FeO (oxidizer).

- **T1.** 12.2% fuel, 2355.59 K solids: 39.29% FeAl₂O₄ (hercynite) liquids: 37.88% Fe, 22.83% FeO gases: none one reaction with excess oxidizer remaining: (15.8% fuel) 2Al + 4FeO \rightarrow FeAl₂O₄ + 3Fe
- T2. 20.0% fuel, 2981.01 K—peak temperature solids: none liquids: 62.09% Fe, 37.79% Al₂O₃, 0.12% FeO gases: none simplified equation at 20.0% fuel: 2Al + 3FeO → Al₂O₃ + 3Fe
- **T3.** 57.9% fuel, 2310.07 K

solids: 80.03% FeAl₃, 19.92% Al₂O₃ (corundum) liquids: none gases: none simplified equation at 57.9% fuel: 11Al + 3FeO \rightarrow Al₂O₃ + 3FeAl₃

- The maximum amount of iron, 61.97% Fe(l) and 0.14% Fe(g), occurs at 20.1% fuel and 2966.79 K.
- From 6.8% to 8.0% fuel, the temperature is limited to 1644 K by the FeO(s-l) transition.
- From 48.9% to 57.2% fuel, the temperature is limited to 2327 K by the $Al_2O_3(s-l)$ transition.
- From 12.3% to 14.8% fuel, the temperature appears to be limited by the $\text{FeAl}_2\text{O}_4(s) \rightarrow \text{FeO}(l) + \text{Al}_2\text{O}_3(l)$ decomposition, which occurs at 2360 K.
- From 23.4% to 38.0% fuel, the temperature appears to be limited to 2551 K by the reaction of FeAl₃(s) and Al₂O₃(l) which forms Al₂O(g), Al(g), and Fe(l-g).

FIGURE 24.21 Adiabatic equilibrium gas production profile, Al (fuel) + FeO (oxidizer).

G1. 23.4% fuel, 7.65% gas produced, 2550.80 K—peak gas solids: 0.20% FeAl₃
liquids: 59.15% Fe, 33.00% Al₂O₃
gases: 6.65% Al₂O, 0.67% Al, 0.31% Fe a combination of two reactions:
(20.0% fuel) 2Al + 3FeO → Al₂O₃ + 3Fe
(42.9% fuel) 2Al + FeO → Al₂O + Fe

AI + Fe₃O₄

Adiabatic Equilibrium Gas Products

24.15 ALUMINUM + Fe_3O_4

FIGURE 24.22 Adiabatic equilibrium temperature profile, Al (fuel) + Fe_3O_4 (oxidizer).

FIGURE 24.23 Adiabatic equilibrium gas production profile, Al (fuel) + Fe_3O_4 (oxidizer).

fuel (wt-%)

70

80 90 100

T1. 7.2% fuel, 1453.88 K

solids: 76.69% FeO (wüstite), 23.19% FeAl_2O_4 (hercynite), 0.12% Fe_3O_4 (magnetite) liquids: none gases: none simplified equation at 7.2% fuel: $2\text{Al} + 3\text{Fe}_3\text{O}_4 \rightarrow \text{FeAl}_2\text{O}_4 + 8\text{FeO}$

100

90

80

70

60

50

40

30

20

10

0

0 10 20 30 40 50 60

- T2. 13.8% fuel, 2348.11 K
 - solids: 44.45% FeAl₂O₄ (hercynite) liquids: 33.50% FeO, 22.05% Fe gases: none a combination of two reactions: $(7.2\% \text{ fuel}) 2Al + 3Fe_3O_4 \rightarrow FeAl_2O_4 + 8FeO$ $(18.9\% \text{ fuel}) 2Al + Fe_3O_4 \rightarrow FeAl_2O_4 + 2Fe$

T3. 16.8% fuel, 2359.74 K solids: none liquids: 36.17% FeO, 32.09% Fe, 31.74% Al_2O_3 gases: none a combination of two reactions: (7.2% fuel) 2A1 + 3Fe₃O₄ \rightarrow Al₂O₃ + 9FeO (23.7% fuel) 8A1 + 3Fe₃O₄ \rightarrow 4Al₂O₃ + 9Fe

T4. 23.7% fuel, 0.86% gas produced, 3124.47 K—peak temperature solids: none liquids: 54.36% Fe, 44.78% Al₂O₃ gases: 0.82% Fe simplified equation at 23.7% fuel: 8Al + 3Fe₃O₄ → 4Al₂O₃ + 9Fe

T5. 57.6% fuel, 2327.02 K solids: 75.07% FeAl₃, 2.52% Al₂O₃ (corundum) liquids: 22.37% Al₂O₃ gases: none simplified equation at 57.6% fuel: $35Al + 3Fe_3O_4 \rightarrow 4Al_2O_3 + 9FeAl_3$

- T4 corresponds to the maximum amount of Fe.
- From 8.4% to 9.8% fuel, the temperature is limited to 1644 K by the FeO(s-l) transition.
- From 56.8% to 61.3% fuel, the temperature is limited to 2327 K by the $Al_2O_3(s-l)$ transition.
- From 13.9% to 16.7% fuel, the temperature appears to be limited by the FeAl₂O₄(s) \rightarrow FeO(l) + Al₂O₃(l) decomposition, which occurs at 2360 K.
- From 28.4% to 46.9% fuel, the temperature appears to be limited to 2551 K by the reaction of FeAl₃(s) and Al₂O₃(l) which forms Al₂O(g), Al(g), and Fe(l-g).
- **G1.** 28.4% fuel, 11.34% gas produced, 2550.80 K—*peak gas* solids: 0.11% FeAl₃ liquids: 51.31% Fe, 37.24% Al₂O₃ gases: 9.87% Al₂O, 1.00% Al, 0.46% Fe a combination of two reactions with excess fuel remaining: (23.7% fuel) 8Al + 3Fe₃O₄ \rightarrow 4Al₂O₃ + 9Fe (48.2% fuel) 8Al + Fe₃O₄ \rightarrow 4Al₂O + 3Fe

24.16 ALUMINUM + Fe_2O_3

FIGURE 24.24 Adiabatic equilibrium temperature profile, Al (fuel) + Fe_2O_3 (oxidizer).

FIGURE 24.25 Adiabatic equilibrium gas production profile, Al (fuel) + Fe_2O_3 (oxidizer).

T1. 10.1% fuel, 1679.89 K

solids: 32.53% FeAl_2O_4 (hercynite), 0.34% Fe_3O_4 (magnetite) liquids: 67.13% FeOgases: none simplified equation at 10.1% fuel: $2\text{Al} + 3\text{Fe}_2O_3 \rightarrow \text{FeAl}_2O_4 + 5\text{FeO}$

- **T2.** 13.8% fuel, 2353.85 K
 - solids: 44.45% FeAl₂O₄ (hercynite) liquids: 42.85% FeO, 12.70% Fe gases: none a combination of two reactions: (10.1% fuel) 2Al + 3Fe₂O₃ \rightarrow FeAl₂O₄ + 5FeO (20.2% fuel) 6Al + 4Fe₂O₃ \rightarrow 3FeAl₂O₄ + 5Fe

T3. 16.8% fuel, 2364.24 K solids: none liquids: 45.20% FeO, 31.74% Al_2O_3 , 23.06% Fe gases: none a combination of two reactions: (10.1% fuel) $2Al + 3Fe_2O_3 \rightarrow Al_2O_3 + 6FeO$ (25.3% fuel) $2Al + Fe_2O_3 \rightarrow Al_2O_3 + 2Fe$

T4. 25.3% fuel, 4.23% gas produced, 3126.19 K—*peak temperature* solids: none liquids: 48.13% Fe, 47.64% Al_2O_3 gases: 4.10% Fe simplified equation at 25.3% fuel: $2Al + Fe_2O_3 \rightarrow Al_2O_3 + 2Fe$

- **T5.** 57.5% fuel, 2419.30 K solids: 72.81% FeAl₃ liquids: 27.14% Al₂O₃ gases: none simplified equation at 57.5% fuel: $8Al + Fe_2O_3 \rightarrow Al_2O_3 + 2FeAl_3$
 - T4 corresponds to the maximum amount of Fe.
 - From 7.8% to 9.7% fuel, the temperature is limited to 1644 K by the FeO(s-l) transition.
 - From 59.6% to 63.6% fuel, the temperature is limited to 2327 K by the Al_2O_3 (s-l) transition.
 - From 13.9% to 16.7% fuel, the temperature appears to be limited by the FeAl₂O₄(s) \rightarrow FeO(l) + Al₂O₃(l) decomposition, which occurs at 2360 K.
 - From 31.1% to 52.3% fuel, the temperature appears to be limited to 2551 K by the reaction of FeAl₃(s) and Al₂O₃(l) which forms Al₂O(g), Al(g), and Fe(l-g).
 - From 23.3% to 25.1% fuel, the temperature appears to be limited by the vaporization of Fe and FeO from Fe(1)/FeO(1) mixtures, which occurs at 3120 K.

G1. 31.1% fuel, 14.40% gas produced, 2550.80 K—peak gas solids: 0.15% FeAl₃
liquids: 47.55% Fe, 37.90% Al₂O₃
gases: 12.53% Al₂O, 1.27% Al, 0.58% Fe a combination of two reactions with excess fuel remaining: (25.3% fuel) 2A1 + Fe₂O₃ → Al₂O₃ + 2Fe (50.3% fuel) 6A1 + Fe₂O₃ → 3Al₂O + 2Fe

AI + CoO

24.17 ALUMINUM + CoO

FIGURE 24.26 Adiabatic equilibrium temperature profile, Al (fuel) + CoO (oxidizer).

FIGURE 24.27 Adiabatic equilibrium gas production profile, Al (fuel) + CoO (oxidizer).

- **T1.** 19.4% fuel, 2.15% gas produced, 3189.12 K—*peak temperature* solids: none liquids: 61.33% Co, 36.52% Al_2O_3 gases: 2.06% Co simplified equation at 19.4% fuel: 2Al + 3CoO $\rightarrow Al_2O_3$ + 3Co
- T2. 37.5% fuel, 3.83% gas produced, 3004.73 K solids: none liquids: 67.38% CoAl, 27.43% Al₂O₃, 1.36% Co gases: 1.86% Al₂O, 1.57% Co, 0.37% Al simplified equation at 37.5% fuel: 5Al + 3CoO → Al₂O₃ + 3CoAl
- **T3.** 66.6% fuel, 2300.19 K solids: 56.34% Co₂Al₅, 15.15% Al₂O₃ (corundum) liquids: 28.52% Al gases: none one reaction with excess fuel remaining: (53.3% fuel) 19Al + 6CoO \rightarrow 2Al₂O₃ + 3Co₂Al₅
- **T4.** 73.1% fuel, 1862.98 K solids: 50.22% CoAl₃, 12.20% Al₂O₃ (corundum) liquids: 37.58% Al gases: none one reaction with excess fuel remaining: (56.9% fuel) 11Al + 3CoO \rightarrow Al₂O₃ + 3CoAl₃

- **T5.** 76.0% fuel, 1721.95 K solids: 57.76% Co_2Al_9 , 10.89% Al_2O_3 (corundum) liquids: 31.35% Al gases: none one reaction with excess fuel remaining: (65.0% fuel) 31Al + 6CoO \rightarrow 2Al₂O₃ + 3Co₂Al₉
- The maximum amount of cobalt, 61.66% Co(l) and 1.89% Co(g), occurs at 19.2% fuel and 3158.75 K.
- From 74.9% to 75.9% fuel, the temperature appears to be limited by the $Co_2Al_9(s) \rightarrow 2CoAl_3(s) + 3Al(l)$ decomposition, which occurs at 1728 K.
- From 72.5% to 73.0% fuel, the temperature appears to be limited by the $2\text{CoAl}_3(s) \rightarrow \text{Co}_2\text{Al}_5(s) + \text{Al}(l)$ decomposition, which occurs at 1865 K.
- From 8.8% to 10.2% fuel, the temperature is limited to 2103 K by the CoO(s-l) transition.
- From 58.9% to 66.5% fuel, the temperature appears to be limited by the $Co_2Al_5(s) \rightarrow 2CoAl(l) + 3Al(l)$ decomposition, which occurs at 2302 K.
- From 11.4% to 12.8% and 54.8% to 58.4% fuel, the temperature is limited to 2327 K by the $Al_2O_3(s-l)$ transition.
- From 41.8% to 52.0% fuel, the temperature appears to be limited by the vaporization of Al₂O and Al from Al(l)/Al₂O₃(l) mixtures, which occurs at 2470 K.
- From 20.8% to 37.8% fuel, the temperature appears to be limited to 3005 K by the reaction of CoAl(l) and Al₂O₃(l) which forms Co(l-g), Al₂O(g), and Al(g).
- From 18.3% to 19.1% fuel, the temperature appears to be limited by the formation of Co(g) and O₂(g) from Co(1)/CoO(1) mixtures, which occurs at 3150 K.
- G1. 41.8% fuel, 12.37% gas produced, 2469.57 K—*peak gas* solids: none liquids: 66.72% CoAl, 20.89% Al₂O₃ gases: 11.33% Al₂O, 1.01% Al a combination of two reactions with excess fuel remaining: (37.5% fuel) 5Al + 3CoO → Al₂O₃ + 3CoAl (51.9% fuel) 3Al + CoO → Al₂O + CoAl

24.18 ALUMINUM + Co_3O_4

FIGURE 24.28 Adiabatic equilibrium temperature profile, Al (fuel) + Co_3O_4 (oxidizer).

- **T1.** 7.0% fuel, 1969.26 K solids: 86.60% CoO, 13.23% Al₂O₃ (corundum) liquids: 0.17% Co gases: none
- simplified equation at 7.0% fuel: $2AI + 3Co_3O_4 \rightarrow Al_2O_3 + 9CoO$ **T2.** 23.0% fuel, 11.42% gas produced, 3198.33 K—*peak temperature*

solids: none liquids: 45.18% Co, 43.40% Al_2O_3 gases: 11.36% Co simplified equation at 23.0% fuel: $8Al + 3Co_3O_4 \rightarrow 4Al_2O_3 + 9Co$

T3. 38.8% fuel, 10.61% gas produced, 3004.73 K solids: none liquids: 53.54% CoAl, 32.00% Al₂O₃, 3.85% Co gases: 5.15% Al₂O, 4.36% Co, 1.03% Al a combination of reactions with excess fuel remaining: (23.0% fuel) 8A1 + $3Co_3O_4 \rightarrow 4Al_2O_3 + 9Co$ (38.8% fuel) 17A1 + $3Co_3O_4 \rightarrow 4Al_2O_3 + 9CoAl$ (55.2% fuel) 11A1 + $Co_3O_4 \rightarrow 4Al_2O + 3CoAl$

T4. 70.3% fuel, 2301.45 K solids: 46.77% Co_2Al_5 , 16.77% Al_2O_3 (corundum) liquids: 36.47% Al gases: none one reaction with excess fuel remaining: (53.3% fuel) 61Al + 6 $Co_3O_4 \rightarrow 8Al_2O_3 + 9Co_2Al_5$

FIGURE 24.29 Adiabatic equilibrium gas production profile, Al (fuel) + Co_3O_4 (oxidizer).
- **T5.** 76.1% fuel, 1863.60 K solids: 41.65% CoAl₃, 13.49% Al₂O₃ (corundum) liquids: 44.86% Al gases: none one reaction with excess fuel remaining: (56.7% fuel) $35Al + 3Co_3O_4 \rightarrow 4Al_2O_3 + 9CoAl_3$
- **T6.** 78.5% fuel, 1727.57 K solids: 48.30% Co₂Al₉, 12.14% Al₂O₃ (corundum) liquids: 39.56% Al gases: none one reaction with excess fuel remaining: (64.4% fuel) 97Al + 6Co₃O₄ \rightarrow 8Al₂O₃ + 9Co₂Al₉
 - The maximum amount of cobalt, 49.13% Co(l) and 7.92% Co(g), occurs at 22.3% fuel and 3154.78 K.
 - From 3.6% to 4.7% fuel, the temperature appears to be limited by the $2Co_3O_4(s) \rightarrow 6CoO(s) + O_2(g)$ decomposition, which occurs at 1213 K.
 - From 77.8% to 78.5% fuel, the temperature appears to be limited by the $Co_2Al_9(s) \rightarrow 2CoAl_3(s) + 3Al(l)$ decomposition, which occurs at 1728 K.
 - From 7.9% to 10.1% fuel, the temperature is limited to 2103 K by the CoO(s-l) transition.
 - From 64.8% to 70.2% fuel, the temperature appears to be limited by the $Co_2Al_5(s) \rightarrow 2CoAl(l) + 3Al(l)$ decomposition, which occurs at 2302 K.
 - From 11.3% to 12.7% and 61.1% to 64.4% fuel, the temperature is limited to 2327 K by the $Al_2O_3(s-l)$ transition.
 - From 45.3% to 58.6% fuel, the temperature appears to be limited by the vaporization of Al₂O and Al from Al(l)/Al₂O₃(l) mixtures, which occurs at 2470 K.
 - From 26.5% to 39.8% fuel, the temperature appears to be limited to 3005 K by the reaction of CoAl(l) and Al₂O₃(l) which forms Co(l-g), Al₂O(g), and Al(g).
 - From 18.5% to 22.2% fuel, the temperature appears to be limited by the formation of Co(g) and $O_2(g)$ from Co(l)/CoO(l) mixtures, which occurs at 3150 K.
- G1. 45.2% fuel, 18.77% gas produced, 2472.21 K—peak gas solids: none liquids: 58.64% CoAl, 22.59% Al₂O₃ gases: 17.19% Al₂O, 1.54% Al a combination of two reactions with excess fuel remaining: (38.8% fuel) 17Al + 3Co₃O₄ → 4Al₂O₃ + 9CoAl (55.2% fuel) 11Al + Co₃O₄ → 4Al₂O + 3CoAl

24.19 ALUMINUM + NiO

FIGURE 24.30 Adiabatic equilibrium temperature profile, Al (fuel) + NiO (oxidizer).

FIGURE 24.31 Adiabatic equilibrium gas production profile, Al (fuel) + NiO (oxidizer).

- T1. 19.4% fuel, 1.97% gas produced, 3181.54 K—peak temperature solids: none liquids: 61.39% Ni, 36.65% Al₂O₃ gases: 1.93% Ni simplified equation at 19.4% fuel: 2Al + 3NiO → Al₂O₃ + 3Ni
- T2. 37.6% fuel, 3.93% gas produced, 3055.87 K solids: none liquids: 68.37% NiAl, 27.70% Al₂O₃ gases: 2.19% Ni, 1.39% Al₂O, 0.32% Al simplified equation at 37.6% fuel: 5Al + 3NiO → Al₂O₃ + 3NiAl
- **T3.** 66.3% fuel, 2281.12 K solids: 44.74% Ni₂Al₃, 15.33% Al₂O₃ (corundum) liquids: 39.92% Al gases: none one reaction with excess fuel remaining: (43.9% fuel) 13Al + 6NiO \rightarrow 2Al₂O₃ + 3Ni₂Al₃
- **T4.** 82.9% fuel, 1213.79 K solids: 31.97% NiAl₃, 7.78% Al₂O₃ (corundum) liquids: 60.25% Al gases: none one reaction with excess fuel remaining: (57.0% fuel) 11Al + 3NiO \rightarrow Al₂O₃ + 3NiAl₃

- The maximum amount of nickel, 63.69% Ni(l) and 0.58% Ni(g), occurs at 17.7% fuel and 2789.24 K.
- From 81.0% to 82.8% fuel, the temperature appears to be limited by the $2NiAl_3(s) \rightarrow Ni_2Al_3(s) + 3Al(l)$ decomposition, which occurs at 1219 K.
- From 9.4% to 10.6% fuel, the temperature is limited to 2230 K by the NiO(s-l) transition.
- From 59.6% to 66.2% fuel, the temperature appears to be limited by the Ni₂Al₃(s) \rightarrow 2NiAl(l) + Al(l) decomposition, which occurs at 2287 K.
- From 55.3% to 58.8% fuel, the temperature is limited to 2327 K by the Al₂O₃(s-l) transition.
- From 42.1% to 52.5% fuel, the temperature appears to be limited by the vaporization of Al₂O and Al from Al(l)/Al₂O₃(l) mixtures, which occurs at 2470 K.
- From 12.4% to 14.8% fuel, the temperature appears to be limited by the (NiO)(Al₂O₃)(s) \rightarrow NiO(l) + Al₂O₃(l) decomposition, which occurs at 2621 K.
- From 15.9% to 17.6% fuel, the temperature appears to be limited by the 2NiO(1) \rightarrow 2Ni(1-g) + O₂(g) decomposition, which occurs at 2783 K. Some of the NiO is vaporized as well.
- From 20.3% to 37.5% fuel, the temperature appears to be limited to 3056 K by the reaction of NiAl(l) and $Al_2O_3(l)$ which forms Ni(l-g), $Al_2O(g)$, and Al(g).

G1. 42.1% fuel, 12.83% gas produced, 2469.60 K—peak gas solids: none liquids: 66.41% NiAl, 20.64% Al₂O₃, 0.13% Al gases: 11.75% Al₂O, 1.05% Al a combination of two reactions with excess fuel remaining: (37.6% fuel) 5Al + 3NiO → Al₂O₃ + 3NiAl (52.0% fuel) 3Al + NiO → Al₂O + NiAl

24.20 ALUMINUM + Cu_2O

FIGURE 24.32 Adiabatic equilibrium temperature profile, Al (fuel) + Cu₂O (oxidizer).

FIGURE 24.33 Adiabatic equilibrium gas production profile, Al (fuel) + Cu_2O (oxidizer).

- **T1.** 11.2% fuel, 6.38% gas produced, 2837.23 K—*peak temperature* solids: none liquids: 72.55% Cu, 21.07% Al₂O₃ gases: 5.99% Cu, 0.33% Cu₂ simplified equation at 11.2% fuel: 2Al + 3Cu₂O \rightarrow Al₂O₃ + 6Cu
 - The maximum amount of copper, 77.47% Cu(l), 2.19% Cu(g), and 0.10% Cu₂(g), occurs at 10.1% fuel and 2695.50 K.
 - From 56.4% to 58.5% fuel, the temperature is limited to 1358 K by the Cu(s-l) transition.
 - From 3.4% to 4.4% fuel, the temperature is limited to 1517 K by the Cu₂O(s-l) transition.
 - From 7.2% to 7.8% and 29.7% to 34.3% fuel, the temperature is limited to 2327 K by the $Al_2O_3(s-l)$ transition.
 - The plateau from 15.2% to 26.9% fuel (2448 K) could not be attributed to a simple transition or reaction; species in this region include Al₂O(g), Cu(g), Al(g), Cu(l), Al₂O₃(l), and Al(l). The vaporization of Al₂O and Al from Al(l)/Al₂O₃(l) mixtures is expected to occur at 2470 K.
 - From 9.2% to 10.0% fuel, the temperature appears to be limited by the $2Cu_2O(l) \rightarrow 4Cu(l-g) + O_2(g)$ decomposition, which occurs at 2688 K.
- G1. 15.2% fuel, 9.23% gas produced, 2447.53 K—peak gas solids: none liquids: 74.11% Cu, 16.57% Al₂O₃ gases: 7.35% Al₂O, 1.18% Cu, 0.66% Al a combination of two reactions:
 (11.2% fuel) 2Al + 3Cu₂O → Al₂O₃ + 6Cu (27.4% fuel) 2Al + Cu₂O → Al₂O + 2Cu

24.21 ALUMINUM + CuO

FIGURE 24.34 Adiabatic equilibrium temperature profile, Al (fuel) + CuO (oxidizer).

- T1. 6.4% fuel, 3.72% gas produced, 1626.70 K solids: 29.06% Cu₂Al₂O₄ liquids: 67.22% Cu₂O gases: 3.72% O₂ a combination of two reactions: (10.2% fuel) 2A1 + 6CuO → Cu₂Al₂O₄ + 2Cu₂O (decomposition) 4CuO → 2Cu₂O + O₂
- T2. 10.2% fuel, 2640.41 K solids: none liquids: 80.40% Cu₂O, 19.27% Al₂O₃, 0.33% Cu gases: none simplified equation at 10.2% fuel: 2Al + 6CuO → Al₂O₃ + 3Cu₂O
- T3. 14.1% fuel, 14.57% gas produced, 2688.56 K solids: none liquids: 58.79% Cu, 26.64% Al₂O₃ gases: 9.04% Cu, 4.52% O₂, 0.50% CuO, 0.39% Cu₂, 0.11% O a combination of two reactions:
 (18.4% fuel) 2Al + 3CuO → Al₂O₃ + 3Cu (decomposition) 2CuO → 2Cu + O₂
- T4. 18.4% fuel, 33.57% gas produced, 2838.99 K—*peak temperature* solids: none liquids: 34.76% Al₂O₃, 31.66% Cu gases: 31.71% Cu, 1.76% Cu₂ simplified equation at 18.4% fuel: 2Al + 3CuO → Al₂O₃ + 3Cu

FIGURE 24.35 Adiabatic equilibrium gas production profile, Al (fuel) + CuO (oxidizer).

- T3 corresponds to the maximum amount of Cu.
- From 73.6% to 74.3% fuel, the temperature is limited to 1358 K by the Cu(s-l) transition.
- From 3.1% to 4.8% fuel, the temperature appears to be limited by the $4\text{CuO}(s) \rightarrow 2\text{Cu}_2\text{O}(s) + O_2(g)$ decomposition, which occurs at 1397 K.
- From 5.2% to 6.1% fuel, the temperature is limited to 1517 K by the $Cu_2O(s-1)$ transition.
- From 8.6% to 9.1% and 54.0% to 57.5% fuel, the temperature is limited to 2327 K by the $Al_2O_3(s-1)$ transition.
- The plateau from 29.2% to 51.8% fuel (2448 K) could not be attributed to a simple transition or reaction; species in this region include $Al_2O(g)$, Cu(g), Al(g), Cu(l), $Al_2O_3(l)$, and Al(l). The vaporization of Al_2O and Al from $Al(l)/Al_2O_3(l)$ mixtures is expected to occur at 2470 K.
- From 10.5% to 14.0% fuel, the temperature appears to be limited by the $2Cu_2O(l) \rightarrow 4Cu(l-g) + O_2(g)$ decomposition, which occurs at 2688 K.
- G1. 18.5% fuel, 33.71% gas produced, 2838.96 K—peak gas solids: none liquids: 34.78% Al₂O₃, 31.51% Cu gases: 31.84% Cu, 1.76% Cu₂ simplified equation at 18.4% fuel: 2A1 + 3CuO → Al₂O₃ + 3Cu

G2. 29.1% fuel, 27.11% gas produced, 2447.93 K solids: none liquids: 53.08% Cu, 19.81% Al₂O₃ gases: 21.57% Al₂O, 3.46% Cu, 1.94% Al a combination of two reactions with excess fuel remaining: (18.4% fuel) 2Al + 3CuO \rightarrow Al₂O₃ + 3Cu (40.4% fuel) 2Al + CuO \rightarrow Al₂O + Cu

24.22 ALUMINUM + Ag_2O

Adiabatic Equilibrium Gas Products fuel (wt-%)

AI + Ag₂O

FIGURE 24.36 Adiabatic equilibrium temperature profile, Al (fuel) + Ag₂O (oxidizer).

FIGURE 24.37 Adiabatic equilibrium gas production profile, Al (fuel) + Ag_2O (oxidizer).

- T1. 7% fuel, 40.13% gas produced, 2427.04 K—*peak temperature* solids: none liquids: 46.64% Ag, 13.23% Al₂O₃ gases: 37.77% Ag, 2.17% Ag₂, 0.19% O₂ simplified equation at 7.2% fuel: 2Al + 3Ag₂O → Al₂O₃ + 6Ag
 - Ag₂O(s) is unstable above 468 K. The maximum amount of silver, 92.17% Ag(s), occurs at just 1% fuel and 873.20 K.
 - From 33% to 35% fuel, the temperature is limited to 2327 K by the Al₂O₃(s-l) transition.
 - The plateau from 12% to 32% fuel (2332 K) could not be attributed to a simple transition or reaction; species in this region include Ag(g), Al₂O(g), Ag₂(g), Al(g), Ag(l), Al₂O₃(l), and Al(l). Alone, Ag(l) is expected to vaporize at 2430 K. The vaporization of Al₂O and Al from Al(l)/Al₂O₃(l) mixtures is expected to occur at 2470 K.
- **G1.** 7% fuel, 40.13% gas produced, 2427.04 K—*peak gas* see T1 for details

24.23 ALUMINUM + ZnO

FIGURE 24.38 Adiabatic equilibrium temperature profile, Al (fuel) + ZnO (oxidizer).

- **T1.** 14.2% fuel, 51.61% gas produced, 1497.11 K solids: 48.25% ZnAl₂O₄, 0.14% ZnO (zincite) liquids: none gases: 51.61% Zn simplified equation at 14.2% fuel: 2Al + 4ZnO \rightarrow ZnAl₂O₄ + 3Zn
- T2. 18.1% fuel, 65.79% gas produced, 1579.70 K—peak temperature solids: 34.18% Al₂O₃ (corundum) liquids: none gases: 65.79% Zn simplified equation at 18.1% fuel: 2Al + 3ZnO → Al₂O₃ + 3Zn
 - T2 corresponds to the maximum amount of Zn.
 - From 67.4% to 75.9% fuel, the temperature is limited to 933 K by the Al(s-l) transition.
 - From 4.6% to 10.2% and 31.2% to 59.9% fuel, the temperature is limited to 1181 K by the Zn(1-g) transition.
- **G1.** 18.1% fuel, 65.79% gas produced, 1579.70 K—*peak gas* see T2 for details

FIGURE 24.39 Adiabatic equilibrium gas production profile, Al (fuel) + ZnO (oxidizer).

24.24 ALUMINUM + CdO

FIGURE 24.40 Adiabatic equilibrium temperature profile, Al (fuel) + CdO (oxidizer).

- **T1.** 8.6% fuel, 63.29% gas produced, 1775.33 K solids: 36.71% (CdO)(Al₂O₃) liquids: none gases: 60.80% Cd, 1.48% CdO, 1.00% O₂ a combination of two reactions with excess oxidizer remaining: (9.5% fuel) 2Al + 4CdO \rightarrow (CdO)(Al₂O₃) + 3Cd (decomposition) 2CdO \rightarrow 2Cd + O₂
- T2. 12.3% fuel, 76.79% gas produced, 2575.55 K—peak temperature solids: none liquids: 23.21% Al₂O₃ gases: 76.77% Cd simplified equation at 12.3% fuel: 2Al + 3CdO → Al₂O₃ + 3Cd
 - The maximum amount of cadmium, 76.96% Cd(g), occurs at 10.9% fuel and 2271.09 K.
 - From 1.9% to 2.8% and 52.2% to 63.5% fuel, the temperature is limited to 1040 K by the Cd(l-g) transition.
 - From 11.0% to 11.7% and 13.4% to 15.0% fuel, the temperature is limited to 2327 K by the $Al_2O_3(s-l)$ transition.
- G1. 10.4% fuel, 80.35% gas produced, 1907.66 K—peak gas solids: 19.65% Al₂O₃ (corundum) liquids: none gases: 76.82% Cd, 1.85% CdO, 1.68% O₂ a combination of two reactions with excess oxidizer remaining: (12.3% fuel) 2Al + 3CdO → Al₂O₃ + 3Cd (decomposition) 2CdO → 2Cd + O₂

FIGURE 24.41 Adiabatic equilibrium gas production profile, Al (fuel) + CdO (oxidizer).

- G2. 15.4% fuel, 80.35% gas produced, 2213.28 K—peak gas solids: 19.64% Al₂O₃ (corundum) liquids: none gases: 74.06% Cd, 5.66% Al₂O, 0.63% Al a combination of two reactions:
 (12.3% fuel) 2Al + 3CdO → Al₂O₃ + 3Cd (29.6% fuel) 2Al + CdO → Al₂O + Cd
- **G3.** 29.6% fuel, 62.03% gas produced, 1950.41 K solids: 18.47% Al_2O_3 (corundum) liquids: 19.50% Al gases: 61.63% Cd, 0.35% Al_2O one reaction with excess fuel remaining: (12.3% fuel) 2Al + 3CdO $\rightarrow Al_2O_3 + 3Cd$

24.25 ALUMINUM + HgO

FIGURE 24.42 Adiabatic equilibrium temperature profile, Al (fuel) + HgO (oxidizer).

- **T1.** 3.4% fuel, 93.58% gas produced, 2052.23 K solids: 6.42% Al₂O₃ (corundum) liquids: none gases: 88.25% Hg, 4.02% O₂, 1.20% HgO, 0.11% Hg₂ a combination of two reactions with excess oxidizer remaining: $(7.7\% \text{ fuel}) 2\text{Al} + 3\text{HgO} \rightarrow \text{Al}_2\text{O}_3 + 3\text{Hg}$ (decomposition) $2\text{HgO} \rightarrow 2\text{Hg} + \text{O}_2$
- T2. 8.0% fuel, 88.45% gas produced, 3649.85 K—peak temperature solids: none liquids: 11.55% Al₂O₃ major gases: 85.03% Hg, 1.07% AlO, 0.66% Al₂O other gases: 0.54% O, 0.52% Al, 0.28% Al₂O₂, 0.14% O₂, 0.13% HgO simplified equation at 7.7% fuel: 2Al + 3HgO → Al₂O₃ + 3Hg
 - HgO(s) is unstable above 716 K.
 - T1 corresponds to the maximum amount of Hg.
- G1. 2.4% fuel, 95.46% gas produced, 715.47 K—*peak gas* solids: 4.53% Al₂O₃ (corundum) liquids: none gases: 80.10% Hg, 10.47% HgO, 4.30% O₂, 0.59% Hg₂

FIGURE 24.43 Adiabatic equilibrium gas production profile, Al (fuel) + HgO (oxidizer).

G2. 15.6% fuel, 93.55% gas produced, 2324.76 K solids: 6.42% Al_2O_3 (corundum) liquids: none gases: 78.10% Hg, 14.05% Al_2O , 1.31% A1 a combination of two reactions with excess fuel remaining: (7.7% fuel) $2Al + 3HgO \rightarrow Al_2O_3 + 3Hg$ (19.9% fuel) $2Al + HgO \rightarrow Al_2O + Hg$

G3. 19.9% fuel, 86.39% gas produced, 2310.26 K solids: 7.16% Al₂O₃ (corundum) liquids: 6.45% Al gases: 74.12% Hg, 11.14% Al₂O, 1.06% Al a combination of two reactions with excess fuel remaining: (7.7% fuel) 2A1 + 3HgO \rightarrow Al₂O₃ + 3Hg (19.9% fuel) 2A1 + HgO \rightarrow Al₂O + Hg

24.26 ALUMINUM + B_2O_3

FIGURE 24.44 Adiabatic equilibrium temperature profile, Al (fuel) + B_2O_3 (oxidizer).

FIGURE 24.45 Adiabatic equilibrium gas production profile, Al (fuel) + B_2O_3 (oxidizer).

- **T1.** 40.0% fuel, 2.12% gas produced, 2302.21 K solids: 80.21% (Al₂O₃)₉(B₂O₃)₂, 17.67% AlB₁₂ liquids: none gases: 1.09% (BO)₂, 0.72% B₂O₃, 0.25% AlBO₂ simplified equation at 40.7% fuel: 39Al + 22B₂O₃ → 2(Al₂O₃)₉(B₂O₃)₂ + 3AlB₁₂
- **T2.** 45.7% fuel, 2327.02 K—peak temperature solids: 36.31% Al₂O₃ (corundum), 20.37% AlB₁₂ liquids: 43.22% Al₂O₃, 0.10% Al gases: none simplified equation at 45.6% fuel: 13Al + 6B₂O₃ \rightarrow 6Al₂O₃ + AlB₁₂
- **T3.** 64.2% fuel, 2101.22 K solids: 52.43% Al₂O₃ (corundum), 24.99% AlB₂ liquids: 22.58% Al gases: none one reaction with excess fuel remaining: (53.8% fuel) $3Al + B_2O_3 \rightarrow Al_2O_3 + AlB_2$
 - Elemental boron is not predicted to occur at any point.
 - From 60.1% to 64.1% fuel, the temperature appears to be limited by the $6AlB_2(s) \rightarrow AlB_{12}(s) + 5Al(l)$ decomposition, which occurs at 2104 K.
 - From 37.0% to 39.3% fuel, the temperature appears to be limited to 2208 K by the reaction of B₂O₃(l) and AlB₁₂(s) which forms (BO)₂(g) and AlBO₂(g). Some of the B₂O₃ is also vaporized.

- From 40.1% to 43.5% fuel, the temperature appears to be limited to 2310 K by the reaction of AlB₁₂(s) and (Al₂O₃)₉(B₂O₃)₂(s) which forms Al₂O₃(s), (BO)₂(g), B₂O₃(g), AlBO₂(g), and BO(g).
- From 43.8% to 54.2% fuel, the temperature is limited to 2327 K by the Al₂O₃(s-l) transition.
- **G1.** 39.3% fuel, 3.75% gas produced, 2207.85 K solids: 78.92% $(Al_2O_3)_9(B_2O_3)_2$, 17.25% AlB_{12} liquids: none gases: 1.90% (BO)₂, 1.62% B₂O₃, 0.17% $AlBO_2$ one reaction with excess oxidizer remaining: $(40.7\% \text{ fuel}) 39Al + 22B_2O_3 \rightarrow 2(Al_2O_3)_9(B_2O_3)_2 + 3AlB_{12}$
- **G2.** 43.5% fuel, 5.37% gas produced, 2309.51 K—*peak gas* solids: 74.34% Al₂O₃ (corundum), 18.92% AlB₁₂, 1.37% (Al₂O₃)₉(B₂O₃)₂ liquids: none gases: 2.75% (BO)₂, 1.77% B₂O₃, 0.69% AlBO₂, 0.15% BO one reaction with excess oxidizer remaining: (45.6% fuel) 13Al + 6B₂O₃ \rightarrow 6Al₂O₃ + AlB₁₂

24.27 ALUMINUM + SiO_2

FIGURE 24.46 Adiabatic equilibrium temperature profile, Al (fuel) + SiO₂ (oxidizer).

T1. 26.4% fuel, 1671.55 K

solids: 79.28% Al₂SiO₅ (sillimanite), 20.61% Si, 0.11% SiO₂ (tridymite) liquids: none gases: none simplified equation at 26.4% fuel: $4A1 + 5SiO_2 \rightarrow 2Al_2SiO_5 + 3Si$

- T2. 37.5% fuel, 1759.40 K—peak temperature solids: 70.71% Al₂O₃ (corundum) liquids: 29.22% Si gases: none simplified equation at 37.5% fuel: 4Al + 3SiO₂ → 2Al₂O₃ + 3Si
 - T2 corresponds to the maximum amount of Si.
 - From 26.7% to 35.3% and 40.3% to 52.4% fuel, the temperature is limited to 1685 K by the Si(s-l) transition.

AI + SnO

Adiabatic Equilibrium Gas Products

24.28 ALUMINUM + SnO

gas products (wt-%) fuel (wt-%)

FIGURE 24.47 Adiabatic equilibrium temperature profile, Al (fuel) + SnO (oxidizer).

FIGURE 24.48 Adiabatic equilibrium gas production profile, Al (fuel) + SnO (oxidizer).

- T1. 11.8% fuel, 8.98% gas produced, 2839.43 K—peak temperature solids: none liquids: 68.95% Sn, 22.07% Al₂O₃ gases: 7.38% Sn, 0.93% Sn₂, 0.52% SnO, 0.11% Al₂O simplified equation at 11.8% fuel: 2Al + 3SnO → Al₂O₃ + 3Sn
 - The maximum amount of tin, 68.77% Sn(l), 7.59% Sn(g), and 0.96% Sn₂(g), occurs at 11.9% fuel and 2834.99 K.
 - From 4.4% to 7.1% fuel, the temperature appears to be limited by the vaporization of SnO from Sn(1)/SnO₂(s) mixtures, which occurs at about 1820 K.
 - From 9.2% to 9.8% and 26.7% to 32.0% fuel, the temperature is limited to 2327 K by the $Al_2O_3(s-l)$ transition.
 - The plateau from 14.9% to 24.3% fuel (2449 K) could not be attributed to a simple transition or reaction; species in this region include Al₂O(g), Al(g), Sn(g), Sn₂(g), Sn(l), Al₂O₃(l), and Al(l). The vaporization of Al₂O and Al from Al(l)/Al₂O₃(l) mixtures is expected to occur at 2470 K.
- G1. 7.2% fuel, 38.89% gas produced, 1828.56 K—peak gas solids: 13.60% Al₂O₃ (corundum) liquids: 47.50% Sn gases: 17.49% (SnO)₂, 7.62% SnO, 7.31% (SnO)₄, 6.45% (SnO)₃ one reaction with excess oxidizer remaining: (11.8% fuel) 2Al + 3SnO → Al₂O₃ + 3Sn

G2. 14.9% fuel, 8.05% gas produced, 2448.81 K solids: none liquids: 73.29% Sn, 18.65% Al_2O_3 gases: 5.81% Al_2O , 1.59% Sn, 0.52% Al, 0.11% Sn₂ a combination of two reactions: (11.8% fuel) $2Al + 3SnO \rightarrow Al_2O_3 + 3Sn$ (28.6% fuel) $2Al + SnO \rightarrow Al_2O + Sn$

AI + SnO₂

24.29 ALUMINUM + SnO_2

FIGURE 24.49 Adiabatic equilibrium temperature profile, Al (fuel) + SnO_2 (oxidizer).

FIGURE 24.50 Adiabatic equilibrium gas production profile, Al (fuel) + SnO_2 (oxidizer).

- T1. 19% fuel, 31.36% gas produced, 2835.21 K—peak temperature solids: none liquids: 35.66% Al₂O₃, 32.98% Sn gases: 24.82% Sn, 3.26% SnO, 3.13% Sn₂ a combination of two reactions:
 (10.7% fuel) 2Al + 3SnO₂ → Al₂O₃ + 3SnO (19.3% fuel) 4Al + 3SnO₂ → 2Al₂O₃ + 3Sn
 - The maximum amount of tin, 35.80% Sn(1), 23.57% Sn(g), and 2.93% Sn₂(g), occurs at 20% fuel and 2825.04 K.
 - From 6% to 11% fuel, the temperature appears to be limited by the vaporization of SnO from Sn(l)/SnO₂(s) mixtures, which occurs at about 1820 K.
 - From 45% to 49% fuel, the temperature is limited to 2327 K by the Al₂O₃(s-l) transition.
 - The plateau from 26% to 41% fuel (2449 K) could not be attributed to a simple transition or reaction; species in this region include Al₂O(g), Al(g), Sn(g), Sn₂(g), Sn(l), Al₂O₃(l), and Al(l). The vaporization of Al₂O and Al from Al(l)/Al₂O₃(l) mixtures is expected to occur at 2470 K.
- G1. 11% fuel, 76.49% gas produced, 1821.42 K—peak gas solids: 20.78% Al₂O₃ (corundum), 0.15% SnO₂ (cassiterite) liquids: 2.58% Sn gases: 33.88% (SnO)₂, 15.38% (SnO)₄, 14.20% SnO, 13.01% (SnO)₃ a combination of two reactions:
 (10.7% fuel) 2A1 + 3SnO₂ → Al₂O₃ + 3SnO (19.3% fuel) 4A1 + 3SnO₂ → 2Al₂O₃ + 3Sn
- **G2.** 19% fuel, 31.36% gas produced, 2835.21 K see T1 for details

24.30 ALUMINUM + PbO

FIGURE 24.51 Adiabatic equilibrium temperature profile, Al (fuel) + PbO (oxidizer).

FIGURE 24.52 Adiabatic equilibrium gas production profile, Al (fuel) + PbO (oxidizer).

- T1. 7.5% fuel, 85.94% gas produced, 2327.01 K—peak temperature solids: 9.49% Al₂O₃ (corundum) liquids: 4.57% Al₂O₃ gases: 85.39% Pb, 0.48% Pb₂ simplified equation at 7.5% fuel: 2A1 + 3PbO → Al₂O₃ + 3Pb
 - T1 corresponds to the maximum amount of Pb.
 - From 1.2% to 1.5% fuel, the temperature is limited to 1159 K by the PbO(s-l) transition.
 - From 2.6% to 4.5% fuel, the temperature appears to be limited by the vaporization of Pb and PbO from Pb(1)/PbO(1) mixtures, which occurs at 1780 K.
 - The plateau from 11.8% to 32.9% fuel (2016 K) could not be attributed to a simple transition or reaction; species in this region include Pb(g), Pb₂(g), Al₂O(g), Al(l), Pb(l), and Al₂O₃(s). Alone, Pb(l) is expected to vaporize at 2020 K.
 - From 7.2% to 7.8% fuel, the temperature is limited to 2327 K by the $Al_2O_3(s-l)$ transition.
- **G1.** 6.8% fuel, 87.15% gas produced, 2043.14 K—*peak gas* solids: 12.85% Al_2O_3 (corundum) liquids: none gases: 77.70% Pb, 8.82% PbO, 0.63% Pb₂ one reaction with excess oxidizer remaining: (7.5% fuel) 2A1 + 3PbO $\rightarrow Al_2O_3 + 3Pb$

G2. 8.3% fuel, 86.72% gas produced, 2135.65 K solids: 13.28% Al₂O₃ (corundum) liquids: none gases: 84.52% Pb, 1.41% Al₂O, 0.61% Pb₂, 0.18% Al a combination of two reactions: (7.5% fuel) 2Al + 3PbO → Al₂O₃ + 3Pb (19.5% fuel) 2Al + PbO → Al₂O + Pb

24.31 ALUMINUM + Pb_3O_4

FIGURE 24.53 Adiabatic equilibrium temperature profile, Al (fuel) + Pb_3O_4 (oxidizer).

- **FIGURE 24.54** Adiabatic equilibrium gas production profile, Al (fuel) + Pb_3O_4 (oxidizer).
- **T1.** 2.6% fuel, 16.09% gas produced, 1806.15 K solids: 6.70% (PbO)(Al₂O₃)₆ liquids: 77.21% PbO gases: 15.22% PbO, 0.84% Pb simplified equation at 2.6% fuel: 12Al + 18Pb₃O₄ → (PbO)(Al₂O₃)₆ + 53PbO
- **T2.** 9.5% fuel, 82.32% gas produced, 3102.99 K—*peak temperature* solids: none liquids: 17.68% Al₂O₃ gases: 80.78% Pb, 1.19% PbO, 0.17% Pb₂ simplified equation at 9.5% fuel: 8Al + 3Pb₃O₄ \rightarrow 4Al₂O₃ + 9Pb
- T3. 9.9% fuel, 82.46% gas produced, 3031.17 K solids: none liquids: 17.54% Al₂O₃ gases: 81.22% Pb, 0.47% Al₂O, 0.31% PbO, 0.22% Al, 0.18% Pb₂ simplified equation at 9.5% fuel: 8Al + 3Pb₃O₄ → 4Al₂O₃ + 9Pb
 - T3 corresponds to the maximum amount of Pb.
 - From 3.1% to 5.1% fuel, the temperature appears to be limited by the vaporization of Pb and PbO from Pb(1)/PbO(1) mixtures, which occurs at 1780 K.
 - The plateau from 29.8% to 43.5% fuel (2016 K) could not be attributed to a simple transition or reaction; species in this region include Pb(g), Pb₂(g), Al₂O(g), Al(l), Pb(l), and Al₂O₃(s). Alone, Pb(l) is expected to vaporize at 2020 K.
 - From 6.7% to 7.4% and 12.5% to 13.5% fuel, the temperature is limited to 2327 K by the $Al_2O_3(s-l)$ transition.

G1. 6.1% fuel, 88.47% gas produced, 1906.21 K—peak gas solids: 11.53% Al₂O₃ (corundum) liquids: none gases: 46.57% PbO, 41.67% Pb, 0.24% Pb₂ a combination of two reactions:
(2.6% fuel) 2A1 + 3Pb₃O₄ → Al₂O₃ + 9PbO (9.5% fuel) 8A1 + 3Pb₃O₄ → 4Al₂O₃ + 9Pb

G2. 13.7% fuel, 86.56% gas produced, 2277.61 K solids: 13.44% Al₂O₃ (corundum) liquids: none gases: 77.90% Pb, 7.55% Al₂O, 0.75% Al, 0.35% Pb₂ a combination of two reactions: (9.5% fuel) 8Al + 3Pb₃O₄ → 4Al₂O₃ + 9Pb (23.9% fuel) 8Al + Pb₃O₄ → 4Al₂O + 3Pb

24.32 ALUMINUM + PbO_2

FIGURE 24.55 Adiabatic equilibrium temperature profile, Al (fuel) + PbO₂ (oxidizer).

- **T1.** 7.0% fuel, 86.77% gas produced, 2388.59 K solids: none liquids: 13.23% Al₂O₃ gases: 69.68% PbO, 15.86% Pb, 1.20% O₂ a combination of reactions: (7.0% fuel) 2A1 + 3PbO₂ → Al₂O₃ + 3PbO (13.1% fuel) 4A1 + 3PbO₂ → 2Al₂O₃ + 3Pb (decomposition) PbO₂ → Pb + O₂
- T2. 13.1% fuel, 78.53% gas produced, 3646.89 K—*peak temperature* solids: none liquids: 21.47% Al₂O₃ major gases: 70.15% Pb, 5.45% PbO, 0.94% AlO, 0.64% Al₂O other gases: 0.49% Al, 0.42% O, 0.26% Al₂O₂, 0.10% O₂ simplified equation at 13.1% fuel: 4Al + 3PbO₂ → 2Al₂O₃ + 3Pb
- T3. 15.8% fuel, 78.92% gas produced, 3508.84 K solids: none liquids: 21.08% Al₂O₃ major gases: 71.52% Pb, 3.16% Al₂O, 1.46% Al, 1.45% PbO other gases: 0.81% AlO, 0.36% Al₂O₂ a combination of two reactions with excess fuel remaining: (13.1% fuel) 4Al + 3PbO₂ → 2Al₂O₃ + 3Pb (31.1% fuel) 4Al + PbO₂ → 2Al₂O + Pb

FIGURE 24.56 Adiabatic equilibrium gas production profile, Al (fuel) + PbO₂ (oxidizer).

- T3 corresponds to the maximum amount of Pb.
- The plateau from 49.4% to 56.6% fuel (2016 K) could not be attributed to a simple transition or reaction; species in this region include Pb(g), Pb₂(g), Al₂O(g), Al(l), Pb(l), and Al₂O₃(s). Alone, Pb(l) is expected to vaporize at 2020 K.
- From 6.4% to 6.8% and 27.6% to 31.9% fuel, the temperature is limited to 2327 K by the $Al_2O_3(s-l)$ transition.
- **G1.** 5.6% fuel, 89.42% gas produced, 1873.26 K—*peak gas* solids: 10.58% Al₂O₃ (corundum) liquids: none gases: 85.74% PbO, 2.17% Pb, 1.50% O₂ a combination of reactions: (7.0% fuel) 2A1 + 3PbO₂ \rightarrow Al₂O₃ + 3PbO (decomposition) 2PbO₂ \rightarrow 2PbO + O₂ (decomposition) PbO₂ \rightarrow Pb + O₂
- **G2.** 21.5% fuel, 85.42% gas produced, 2360.54 K solids: none liquids: 14.58% Al₂O₃ gases: 67.80% Pb, 15.91% Al₂O, 1.49% Al, 0.19% Pb₂ a combination of two reactions with excess fuel remaining: (13.1% fuel) 4Al + 3PbO₂ → 2Al₂O₃ + 3Pb (31.1% fuel) 4Al + PbO₂ → 2Al₂O + Pb

24.33 ALUMINUM + Sb_2O_3

FIGURE 24.57 Adiabatic equilibrium temperature profile, Al (fuel) + Sb_2O_3 (oxidizer).

FIGURE 24.58 Adiabatic equilibrium gas production profile, Al (fuel) + Sb_2O_3 (oxidizer).

T1. 15.5% fuel, 71.13% gas produced, 2703.45 K—peak temperature solids: none liquids: 28.87% Al₂O₃ gases: 36.21% Sb, 32.21% Sb₂, 2.39% SbO, 0.18% Al₂O simplified equation at 15.6% fuel: $2Al + Sb_2O_3 \rightarrow Al_2O_3 + 2Sb$

T2. 27.0% fuel, 37.83% gas produced, 2348.74 K solids: none liquids: 38.32% AlSb, 21.88% Al₂O₃, 1.97% Al gases: 21.01% Sb₂, 8.39% Sb, 7.51% Al₂O, 0.69% Al, 0.20% Sb₄ a combination of reactions with excess fuel remaining: $(15.6\% \text{ fuel}) 2\text{Al} + \text{Sb}_2\text{O}_3 \rightarrow \text{Al}_2\text{O}_3 + 2\text{Sb}$ $(27.0\% \text{ fuel}) 4\text{Al} + \text{Sb}_2\text{O}_3 \rightarrow \text{Al}_2\text{O}_3 + 2\text{AlSb}$ $(35.7\% \text{ fuel}) 6\text{Al} + \text{Sb}_2\text{O}_3 \rightarrow 3\text{Al}_2\text{O} + 2\text{Sb}$

T3. 42.4% fuel, 2344.37 K solids: none liquids: 58.78% AlSb, 21.08% Al, 20.15% Al₂O₃ gases: none one reaction with excess fuel remaining: $(27.0\% \text{ fuel}) 4\text{Al} + \text{Sb}_2\text{O}_3 \rightarrow \text{Al}_2\text{O}_3 + 2\text{AlSb}$

- The maximum amount of antimony, 34.26% Sb(g) and 34.98% Sb₂(g), occurs at 16.3% fuel • and 2663.40 K.
- From 65.1% to 68.9% fuel, the temperature is limited to 1333 K by the AlSb(s-l) transition.

80

90 100

- From 11.7% to 12.8%, 19.6% to 20.0%, and 42.8% to 47.2% fuel, the temperature is limited to 2327 K by the Al₂O₃(s-l) transition.
- From 25.5% to 42.3% fuel, the temperature appears to be limited by the vaporization of Sb, Al_2O , and Al from $AlSb(l)/Al_2O_3(l)$ mixtures, which occurs at 2349 K.
- **G1.** 3.4% fuel, 78.44% gas produced, 1092.86 K solids: 6.42% Al₂O₃ (corundum) liquids: 15.14% Sb gases: 78.19% Sb₄O₆, 0.18% Sb₄ one reaction with excess oxidizer remaining: (15.6% fuel) $2Al + Sb_2O_3 \rightarrow Al_2O_3 + 2Sb$
- G2. 9.4% fuel, 82.24% gas produced, 1581.32 K—peak gas solids: 17.76% Al₂O₃ (corundum) liquids: none gases: 55.64% SbO, 15.30% Sb₄, 10.55% Sb₂, 0.57% Sb₄O₆, 0.18% Sb a combination of two reactions:
 (5.8% fuel) 2Al + 3Sb₂O₃ → Al₂O₃ + 6SbO (15.6% fuel) 2Al + Sb₂O₃ → Al₂O₃ + 2Sb
- **G3.** 19.7% fuel, 75.73% gas produced, 2327.02 K solids: 1.32% Al₂O₃ (corundum) liquids: 22.95% Al₂O₃ gases: 50.65% Sb₂, 15.62% Sb, 7.85% Al₂O, 0.80% Sb₄, 0.79% Al a combination of two reactions: (15.6% fuel) 2Al + Sb₂O₃ → Al₂O₃ + 2Sb (35.7% fuel) 6Al + Sb₂O₃ → 3Al₂O + 2Sb

24.34 ALUMINUM + Bi_2O_3

Adiabatic Equilibrium Gas Products fuel (wt-%)

AI + Bi₂O₃

FIGURE 24.59 Adiabatic equilibrium temperature profile, Al (fuel) + Bi_2O_3 (oxidizer).

FIGURE 24.60 Adiabatic equilibrium gas production profile, Al (fuel) + Bi_2O_3 (oxidizer).

- T1. 10.4% fuel, 80.56% gas produced, 3201.96 K—peak temperature solids: none liquids: 19.44% Al₂O₃ gases: 79.32% Bi, 0.82% Bi₂, 0.25% BiO simplified equation at 10.4% fuel: 2Al + Bi₂O₃ → Al₂O₃ + 2Bi
 - The maximum amount of bismuth, 79.31% Bi(g) and 0.85% Bi₂(g), occurs at 10.5% fuel and 3189.63 K.
 - From 3.1% to 4.0% fuel, the temperature appears to be limited by the vaporization of BiO and Bi from Bi(l)/Bi₂O₃(l) mixtures, which occurs at 1827 K.
 - From 40.3% to 47.9% fuel, the temperature appears to be limited to 1845 K by the vaporization of Bi(l). Alone, Bi(l) is expected to vaporize at 1846 K.
 - From 8.0% to 8.5% and 13.9% to 15.0% fuel, the temperature is limited to 2327 K by the $Al_2O_3(s-l)$ transition.

G1. 7.2% fuel, 86.40% gas produced, 1992.12 K—peak gas solids: 13.60% Al₂O₃ (corundum) liquids: none gases: 37.74% Bi, 23.28% Bi₂, 22.93% BiO, 1.42% O₂, 1.03% Bi₂O₃ a combination of reactions with excess oxidizer remaining: (3.7% fuel) 2Al + 3Bi₂O₃ → Al₂O₃ + 6BiO (10.4% fuel) 2Al + Bi₂O₃ → Al₂O₃ + 2Bi (decomposition) 2Bi₂O₃ → 4Bi + 3O₂

G2. 15.1% fuel, 85.60% gas produced, 2307.77 K solids: 14.40% Al₂O₃ (corundum) liquids: none gases: 66.27% Bi, 9.88% Bi₂, 8.59% Al₂O, 0.84% Al a combination of two reactions: (10.4% fuel) $2Al + Bi_2O_3 \rightarrow Al_2O_3 + 2Bi$ (25.8% fuel) $6Al + Bi_2O_3 \rightarrow 3Al_2O + 2Bi$

25 Silicon–Oxidizer Systems

25.1 OVERVIEW

This chapter concerns the adiabatic properties of the silicon–oxygen system and another thirty-one silicon–oxidizer combinations. Equation 25.1 is a general description of the chemical reactions in question, and Table 25.1 provides a broad overview of the most basic results. The thermochemical descriptions within this chapter were derived from the *FactPS* and *FToxid* databases of

TABLE 25.1 Silicon–Oxidizer Systems			
Section	Pages	Oxidizer	Maximum T _{ad} (K)
25.2	862	O_2	3147
25.3	864	TiO ₂	1272
25.4	865	V ₂ O ₅	2633
25.5	867	Nb ₂ O ₅	2334
25.6	869	Ta ₂ O ₅	1705
25.7	870	Cr_2O_3	1941
25.8	871	MoO ₃	2905
25.9	873	WO ₃	2875
25.10	875	MnO	1770
25.11	877	Mn_3O_4	2168
25.12	879	Mn_2O_3	2304
25.13	881	MnO_2	3045
25.14	884	FeO	2481
25.15	886	Fe ₃ O ₄	2644
25.16	888	Fe_2O_3	2812
25.17	890	CoO	2862
25.18	892	Co_3O_4	3039
25.19	894	NiO	2843
25.20	896	Cu ₂ O	2791
25.21	897	CuO	2814
25.22	899	Ag ₂ O	2430
25.23	900	ZnO	1181
25.24	901	CdO	1781
25.25	902	HgO	2923
25.26	904	B_2O_3	1090
-	-	SiO_2	-
25.27	905	SnO	2573
25.28	906	SnO_2	2574
25.29	908	PbO	2019
25.30	909	Pb_3O_4	2411
25.31	911	PbO ₂	2876
25.32	913	Sb_2O_3	2262
25.33	915	Bi_2O_3	2559

*FactSage 7.0.** Only pure substances were considered in the condensed phases. Gases were treated ideally, and ideal gas mixing was assumed. Charged species were not considered in any phase.

silicon + oxidizer
$$\rightarrow$$
 adiabatic equilibrium products
(P = 1 atm, $T_i = 298.15$ K, T_{ad} = adiabatic equilibrium temperature) (25.1)

Within each of the following sections, you will find one or two general figures as well as written descriptions of certain fuel-to-oxidizer ratios. Temperature points (T1, T2, and so on) describe features and points of interest along adiabatic temperature profiles. Similarly, gas points (G1, G2, and so on) refer to adiabatic gas production profiles. Some adiabatic temperature charts contain flat regions where the adiabatic temperature remains constant despite variations in the stoichiometry of the system. Some of these plateaus are described and explained (see Chapter 2 and Tables 2.10–2.15 for additional information).

25.2 SILICON + O_2

FIGURE 25.1 Adiabatic equilibrium temperature profile, Si (fuel) + O₂ (oxidizer).

T1. 21% fuel, 3043.55 K solids: none liquids: 21.51% SiO₂ gases: 55.99% O₂, 14.31% SiO, 4.28% O, 3.92% SiO₂ a combination of two reactions with excess oxidizer remaining: (46.7% fuel) Si + O₂ \rightarrow SiO₂ (63.7% fuel) 2Si + O₂ \rightarrow 2SiO

^{*} Bale, C. W.; Pelton, A. D.; Thompson, W. T.; Eriksson, G.; Hack, K.; Chartrand, P.; Decterov, S.; Jung, I.-H.; Melançon, J.; Petersen, S. *FactSage*, version 7.0; CRCT ThermFact, Inc. and GTT-Technologies, 2015; www.factsage.com (accessed September, 2019).

T2. 47% fuel, 3147.42 K—*peak temperature* solids: none liquids: 0.85% SiO₂ gases: 67.02% SiO, 20.11% O₂, 8.36% SiO₂, 3.67% O a combination of two reactions with excess oxidizer remaining: (46.7% fuel) Si + O₂ \rightarrow SiO₂ (63.7% fuel) 2Si + O₂ \rightarrow 2SiO

T3. 64% fuel, 2859.63 K solids: none liquids: none gases: 99.19% SiO, 0.76% Si simplified equation at 63.7% fuel: $2Si + O_2 \rightarrow 2SiO$

- The first and third points correspond to the maximum amounts of SiO₂ and SiO, respectively.
- From 91% to 95% fuel, the temperature is limited to 1685 K by the Si(s-l) transition.
- From 71% to 88% fuel, the temperature appears to be limited by the vaporization of SiO from Si(l)/SiO₂(l) mixtures, which occurs at 2145 K.
- SiO₂(l) vaporizes and partially decomposes into gaseous SiO, O₂, and O at 3147 K. This appears to limit any further increase in temperature. SiO(g) is stable at much higher temperatures, with only minor decomposition expected at 4500 K.
- Si(l) is present from 65% to 95% fuel with the maximum amount (81.22%) occurring at 90% fuel. Si(g) is present from 64% to 68% fuel with the maximum amount (0.98%) occurring at 65% fuel. Pure Si(l) vaporizes at 3462 K.

25.3 SILICON + TiO_2

FIGURE 25.2 Adiabatic equilibrium temperature profile, Si (fuel) + TiO₂ (oxidizer).

T1. 41.3% fuel, 1271.61 K—peak temperature solids: 55.78% TiSi, 44.16% SiO₂ (tridymite) liquids: none gases: none simplified equation at 41.3% fuel: 2Si + TiO₂ → SiO₂ + TiSi

T2. 51.3% fuel, 1245.38 K solids: 63.15% TiSi₂, 36.64% SiO₂ (tridymite), 0.21% TiSi liquids: none gases: none simplified equation at 51.3% fuel: $3Si + TiO_2 \rightarrow SiO_2 + TiSi_2$

- Elemental titanium is not predicted to occur at any point.
- From 31.1% to 31.9% and 57.4% to 57.9% fuel, the temperature is limited to 1140 K by the quartz \rightarrow tridymite transition of SiO₂(s).

25.4 SILICON + V_2O_5

FIGURE 25.3 Adiabatic equilibrium temperature profile, Si (fuel) + V_2O_5 (oxidizer).

FIGURE 25.4 Adiabatic equilibrium gas production profile, Si (fuel) $+ V_2O_5$ (oxidizer).

T1. 7.2% fuel, 1633.00 K

solids: 26.98% VO₂, 15.40% SiO₂ (tridymite), 0.37% V₂O₃ liquids: 57.25% VO₂ gases: none simplified equation at 7.2% fuel: Si + $2V_2O_5 \rightarrow SiO_2 + 4VO_2$

- **T2.** 13.4% fuel, 2342.25 K solids: none liquids: 71.07% V₂O₃, 28.67% SiO₂, 0.26% VO gases: none simplified equation at 13.4% fuel: Si + V₂O₅ → SiO₂ + V₂O₃
- T3. 18.8% fuel, 2632.68 K—peak temperature solids: none liquids: 59.69% VO, 40.22% SiO₂ gases: none simplified equation at 18.8% fuel: 3Si + 2V₂O₅ → 3SiO₂ + 4VO
- **T4.** 36.4% fuel, 12.17% gas produced, 2375.23 K solids: 39.05% V₅Si₃ liquids: 40.53% SiO₂, 8.25% VO gases: 12.16% SiO a combination of reactions: (18.8% fuel) $3Si + 2V_2O_5 \rightarrow 3SiO_2 + 4VO$ (36.4% fuel) $37Si + 10V_2O_5 \rightarrow 25SiO_2 + 4V_5Si_3$ (48.9% fuel) $31Si + 5V_2O_5 \rightarrow 25SiO + 2V_5Si_3$

T5. 62.4% fuel, 1954.01 K

solids: 44.29% VSi₂, 31.05% SiO₂ (cristobalite) liquids: 24.66% Si gases: none one reaction with excess fuel remaining: $(50.1\% \text{ fuel}) \ 13\text{Si} + 2\text{V}_2\text{O}_5 \rightarrow 5\text{SiO}_2 + 4\text{VSi}_2$

- Elemental vanadium is not predicted to occur at any point.
- From 5.9% to 7.9% fuel, the temperature is limited to 1633 K by the VO₂(s-l) transition.
- From 65.5% to 75.8% fuel, the temperature is limited to 1685 K by the Si(s-l) transition.
- From 57.5% to 62.3% fuel, the temperature appears to be limited by the $5VSi_2(s) \rightarrow V_5Si_3(s) + 7Si(l)$ decomposition, which occurs at 1958 K.
- From 56.3% to 57.0% fuel, the temperature is limited to 1996 K by the SiO₂(s-1) transition.
- From 39.7% to 54.2% fuel, the temperature appears to be limited by the vaporization of SiO from Si(1)/SiO₂(1) mixtures, which occurs at 2145 K.
- From 11.4% to 13.3% fuel, the temperature is limited to 2340 K by the $V_2O_3(s-1)$ transition.
- From 19.8% to 39.1% fuel, the temperature appears to be limited by the $V_5Si_3(s) + 8SiO_2(l) \rightarrow 5VO(l) + 11SiO(g)$ reaction, which occurs at 2375 K.

G1. 39.7% fuel, 16.32% gas produced, 2144.86 K—*peak gas* solids: 44.95% V₅Si₃ liquids: 38.68% SiO₂ gases: 16.32% SiO a combination of two reactions: (36.4% fuel) 37Si + 10V₂O₅ → 25SiO₂ + 4V₅Si₃ (48.9% fuel) 31Si + 5V₂O₅ → 25SiO + 2V₅Si₃

25.5 SILICON + Nb₂O₅

FIGURE 25.5 Adiabatic equilibrium temperature profile, Si (fuel) + Nb_2O_5 (oxidizer).

FIGURE 25.6 Adiabatic equilibrium gas production profile, Si (fuel) + Nb_2O_5 (oxidizer).

fuel (wt-%)

100

90

80

70

20

10

0

0 10 20 30 40 50 60 70 80 90 100

- **T1.** 5.0% fuel, 1087.81 K solids: 88.95% NbO₂, 10.70% SiO₂ (quartz), 0.36% Nb₂O₅ liquids: none gases: none simplified equation at 5.0% fuel: Si + 2Nb₂O₅ → SiO₂ + 4NbO₂
- T2. 13.7% fuel, 1768.76 K solids: 70.64% NbO, 29.28% SiO₂ (cristobalite) liquids: none gases: none simplified equation at 13.7% fuel: 3Si + 2Nb₂O₅ → 3SiO₂ + 4NbO
- T3. 28.1% fuel, 2333.82 K—peak temperature solids: 59.35% Nb₅Si₃ liquids: 40.62% SiO₂ gases: none simplified equation at 28.1% fuel: 37Si + 10Nb₂O₅ → 25SiO₂ + 4Nb₅Si₃

T4. 40.7% fuel, 1860.13 K

solids: 33.51% SiO₂ (cristobalite), 29.62% NbSi₂, 27.17% Nb₅Si₃ liquids: 9.71% Si gases: none a combination of two reactions with excess fuel remaining: (28.1% fuel) $37Si + 10Nb_2O_5 \rightarrow 25SiO_2 + 4Nb_5Si_3$ (40.7% fuel) $13Si + 2Nb_2O_5 \rightarrow 5SiO_2 + 4NbSi_2$

T5. 44.8% fuel, 1855.78 K solids: 61.92% NbSi₂, 31.19% SiO₂ (cristobalite) liquids: 6.89% Si gases: none one reaction with excess fuel remaining: (40.7% fuel) 13Si + 2Nb₂O₅ \rightarrow 5SiO₂ + 4NbSi₂

- Elemental niobium is not predicted to occur at any point.
- From 47.3% to 54.2% fuel, the temperature is limited to 1685 K by the Si(s-l) transition.
- From 37.1% to 44.7% fuel, the temperature appears to be limited by the $5NbSi_2(s) \rightarrow Nb_5Si_3(s) + 7Si(l)$ decomposition, which occurs at 1860 K.
- From 18.4% to 19.8% and 33.8% to 34.9% fuel, the temperature is limited to 1996 K by the $SiO_2(s-1)$ transition.
- From 28.6% to 31.2% fuel, the temperature appears to be limited by the vaporization of SiO from Si(1)/SiO₂(1) mixtures, which occurs at 2145 K.
- From 25.1% to 26.6% fuel, the temperature is limited to 2210 K by the NbO(s-1) transition.

G1. 28.6% fuel, 1.99% gas produced, 2144.86 K—peak gas solids: 58.97% Nb₅Si₃ liquids: 38.99% SiO₂ gases: 1.99% SiO a combination of two reactions:
(28.1% fuel) 37Si + 10Nb₂O₅ → 25SiO₂ + 4Nb₅Si₃ (39.6% fuel) 31Si + 5Nb₂O₅ → 25SiO + 2Nb₅Si₃
25.6 SILICON + Ta_2O_5

FIGURE 25.7 Adiabatic equilibrium temperature profile, Si (fuel) + Ta_2O_5 (oxidizer).

T1. 18.2% fuel, 1687.43 K

solids: 71.94% Ta₂Si, 27.81% SiO₂ (tridymite), 0.26% Ta₅Si₃ liquids: none gases: none simplified equation at 18.2% fuel: $7Si + 2Ta_2O_5 \rightarrow 5SiO_2 + 2Ta_2Si$

- **T2.** 19.1% fuel, 1691.64 K solids: 72.05% Ta₅Si₃, 27.50% SiO₂ (tridymite), 0.45% TaSi₂ liquids: none gases: none simplified equation at 19.0% fuel: $37Si + 10Ta_2O_5 \rightarrow 25SiO_2 + 4Ta_5Si_3$
- T3. 29.2% fuel, 1705.10 K—peak temperature solids: 75.69% TaSi₂, 24.07% SiO₂ (tridymite), 0.25% Ta₅Si₃ liquids: none gases: none simplified equation at 29.2% fuel: 13Si + 2Ta₂O₅ → 5SiO₂ + 4TaSi₂
 - Elemental tantalum is not predicted to occur at any point.
 - From 29.5% to 29.8% fuel, the temperature is limited to 1685 K by the Si(s-1) transition.

25.7 SILICON + Cr_2O_3

FIGURE 25.8 Adiabatic equilibrium temperature profile, Si (fuel) + Cr_2O_3 (oxidizer).

T1. 21.7% fuel, 1698.18 K solids: 53.57% Cr, 46.42% SiO₂ (tridymite) liquids: none gases: none simplified equation at 21.7% fuel: $3Si + 2Cr_2O_3 \rightarrow 3SiO_2 + 4Cr$

- **T2.** 28.6% fuel, 1913.83 K solids: 57.54% Cr₃Si, 42.34% SiO₂ (cristobalite), 0.13% Cr₅Si₃ liquids: none gases: none simplified equation at 28.6% fuel: $13Si + 6Cr_2O_3 \rightarrow 9SiO_2 + 4Cr_3Si$
- T3. 33.3% fuel, 1941.33 K—peak temperature solids: 60.39% Cr₅Si₃, 39.55% SiO₂ (cristobalite) liquids: none gases: none simplified equation at 33.3% fuel: 27Si + 10Cr₂O₃ → 15SiO₂ + 4Cr₅Si₃
- **T4.** 50.4% fuel, 1729.34 K solids: 70.57% CrSi₂, 29.41% SiO₂ (tridymite) liquids: none gases: none simplified equation at 50.4% fuel: $11Si + 2Cr_2O_3 \rightarrow 3SiO_2 + 4CrSi_2$
 - T1 corresponds to the maximum amount of Cr.
 - From 51.2% to 52.1% fuel, the temperature is limited to 1685 K by the Si(s-l) transition.

25.8 SILICON + MoO_3

FIGURE 25.9 Adiabatic equilibrium temperature profile, Si (fuel) + MoO₃ (oxidizer).

T1. 9% fuel, 18.18% gas produced, 2308.05 K

FIGURE 25.10 Adiabatic equilibrium gas production profile, Si (fuel) + MoO₃ (oxidizer).

- solids: 56.10% MoO₂, 6.47% Mo liquids: 19.25% SiO₂ gases: 14.90% (MoO₃)₃, 2.05% (MoO₃)₄, 1.02% (MoO₃)₂, 0.13% MoO₃ a combination of two reactions with excess oxidizer remaining: (8.9% fuel) Si + 2MoO₃ \rightarrow SiO₂ + 2MoO₂ (22.6% fuel) 3Si + 2MoO₃ \rightarrow 3SiO₂ + 2Mo
- T2. 23% fuel, 14.92% gas produced, 2904.58 K—peak temperature solids: none liquids: 46.21% Mo, 38.87% SiO₂ major gases: 7.49% SiO, 2.38% MoO₃, 2.25% MoO₂, 1.23% (MoO₃)₃, 1.03% (MoO₃)₂ other gases: 0.37% MoO, 0.13% SiO₂ a combination of two reactions with excess oxidizer remaining: (22.6% fuel) 3Si + 2MoO₃ → 3SiO₂ + 2Mo (36.9% fuel) 3Si + MoO₃ → 3SiO + Mo
- **T3.** 27% fuel, 17.72% gas produced, 2584.49 K solids: 48.66% Mo liquids: 33.63% SiO₂ gases: 17.70% SiO a combination of two reactions: (22.6% fuel) 3Si + 2MoO₃ → 3SiO₂ + 2Mo (36.9% fuel) 3Si + MoO₃ → 3SiO + Mo
- **T4.** 31% fuel, 19.52% gas produced, 2458.84 K solids: 49.01% Mo₃Si, 1.57% Mo₅Si₃

```
liquids: 29.90% SiO<sub>2</sub>
gases: 19.51% SiO
a combination of two reactions:
(26.3% fuel) 11Si + 6MoO<sub>3</sub> \rightarrow 9SiO<sub>2</sub> + 2Mo<sub>3</sub>Si
(39.4% fuel) 10Si + 3MoO<sub>3</sub> \rightarrow 9SiO + Mo<sub>3</sub>Si
```

- **T5.** 34% fuel, 21.21% gas produced, 2233.73 K solids: 51.14% Mo₅Si₃, 0.79% MoSi₂ liquids: 26.87% SiO₂ gases: 21.20% SiO a combination of two reactions: (29.1% fuel) 21Si + 10MoO₃ → 15SiO₂ + 2Mo₅Si₃ (41.3% fuel) 18Si + 5MoO₃ → 15SiO + Mo₅Si₃
- **T6.** 44% fuel, 18.08% gas produced, 2230.10 K solids: 59.18% MoSi₂ liquids: 22.74% SiO₂ gases: 18.08% SiO a combination of two reactions: (40.6% fuel) 7Si + 2MoO₃ \rightarrow 3SiO₂ + 2MoSi₂ (49.4% fuel) 5Si + MoO₃ \rightarrow 3SiO + MoSi₂
 - T3 corresponds to the maximum amount of Mo.
 - From 65% to 77% fuel, the temperature is limited to 1685 K by the Si(s-l) transition.
 - From 45% to 59% fuel, the temperature appears to be limited by the vaporization of SiO from Si(l)/SiO₂(l) mixtures, which occurs at 2145 K.
 - From 34% to 43% fuel, the temperature appears to be limited by the $5MoSi_2(s) + 7SiO_2(l) \rightarrow Mo_5Si_3(s) + 14SiO(g)$ reaction, which occurs at 2234 K.
 - From 8% to 12% fuel, the temperature appears to be limited by the vaporization of MoO₃ from Mo(s)/MoO₂(s) mixtures, which occurs at 2308 K.
 - From 31% to 33% fuel, the temperature appears to be limited by the $3Mo_5Si_3(s) + 4SiO_2(l) \rightarrow 5Mo_3Si(s) + 8SiO(g)$ reaction, which occurs at 2459 K.
 - From 28% to 30% fuel, the temperature appears to be limited by the $Mo_3Si(s) + SiO_2(l) \rightarrow 3Mo(s) + 2SiO(g)$ reaction, which occurs at 2477 K.
- G1. 5% fuel, 43.74% gas produced, 1388.70 K—peak gas solids: 45.56% MoO₂, 10.70% SiO₂ (tridymite) liquids: none gases: 23.85% (MoO₃)₄, 15.54% (MoO₃)₃, 4.33% (MoO₃)₅ one reaction with excess oxidizer remaining: (8.9% fuel) Si + 2MoO₃ → SiO₂ + 2MoO₂
- G2. 13% fuel, 42.65% gas produced, 2403.78 K solids: 29.57% Mo liquids: 27.78% SiO₂ major gases: 34.81% (MoO₃)₃, 4.07% (MoO₃)₄, 3.00% (MoO₃)₂ other gases: 0.52% MoO₃, 0.11% (MoO₃)₅, 0.11% MoO₂ one reaction with excess oxidizer remaining: (22.6% fuel) 3Si + 2MoO₃ → 3SiO₂ + 2Mo
- **G3.** 34% fuel, 21.21% gas produced, 2233.73 K See T5 for details

25.9 SILICON + WO_3

FIGURE 25.11 Adiabatic equilibrium temperature profile, Si (fuel) + WO₃ (oxidizer).

FIGURE 25.12 Adiabatic equilibrium gas production profile, Si (fuel) + WO₃ (oxidizer).

- T1. 15% fuel, 11.97% gas produced, 2875.17 K—peak temperature solids: 60.65% W
 liquids: 27.39% SiO₂
 gases: 7.22% (WO₃)₂, 3.42% SiO, 0.74% W₃O₈, 0.40% (WO₃)₃
 a combination of two reactions with excess oxidizer remaining: (15.4% fuel) 3Si + 2WO₃ → 3SiO₂ + 2W
 (26.7% fuel) 3Si + WO₃ → 3SiO + W
- **T2.** 17% fuel, 6.83% gas produced, 2834.00 K solids: 65.43% W liquids: 27.74% SiO₂ gases: 6.30% SiO, 0.42% (WO₃)₂ a combination of two reactions: (15.4% fuel) $3Si + 2WO_3 \rightarrow 3SiO_2 + 2W$ (26.7% fuel) $3Si + WO_3 \rightarrow 3SiO + W$
- **T3.** 23% fuel, 10.25% gas produced, 2185.53 K solids: 65.91% W₅Si₃, 0.89% WSi₂ liquids: 22.95% SiO₂ gases: 10.25% SiO a combination of two reactions: (20.3% fuel) 21Si + 10WO₃ → 15SiO₂ + 2W₅Si₃ (30.4% fuel) 18Si + 5WO₃ → 15SiO + W₅Si₃

- **T4.** 32% fuel, 9.25% gas produced, 2144.86 K solids: 70.40% WSi₂ liquids: 20.13% SiO₂, 0.22% Si gases: 9.25% SiO a combination of two reactions: (29.8% fuel) 7Si + 2WO₃ → 3SiO₂ + 2WSi₂ (37.7% fuel) 5Si + WO₃ → 3SiO + WSi₂
- T2 corresponds to the maximum amount of W.
- From 49% to 62% fuel, the temperature is limited to 1685 K by the Si(s-l) transition.
- From 32% to 42% fuel, the temperature appears to be limited by the vaporization of SiO from Si(l)/SiO₂(l) mixtures, which occurs at 2145 K.
- From 23% to 31% fuel, the temperature appears to be limited by the $5WSi_2(s) + 7SiO_2(l) \rightarrow W_5Si_3(s) + 14SiO(g)$ reaction, which occurs at 2186 K.
- From 19% to 22% fuel, the temperature appears to be limited by the $W_5Si_3(s) + 3SiO_2(l) \rightarrow 5W(s) + 6SiO(g)$ reaction, which occurs at 2316 K.
- G1. 10% fuel, 35.63% gas produced, 2261.46 K—peak gas solids: 42.99% W
 liquids: 21.39% SiO₂
 gases: 15.33% (WO₃)₃, 9.30% (WO₃)₂, 7.20% W₃O₈, 3.78% (WO₃)₄
 a combination of two reactions with excess oxidizer remaining:
 (2.0% fuel) Si + 6WO₃ → SiO₂ + 2W₃O₈
 (15.4% fuel) 3Si + 2WO₃ → 3SiO₂ + 2W

25.10 SILICON + MnO

FIGURE 25.13 Adiabatic equilibrium temperature profile, Si (fuel) + MnO (oxidizer).

T1. 9.0% fuel. 1083.88 K solids: 64.72% Mn₂SiO₄ (tephroite), 35.21% Mn liquids: none gases: none simplified equation at 9.0% fuel: $Si + 4MnO \rightarrow Mn_2SiO_4 + 2Mn$ T2. 14.2% fuel, 1321.23 K solids: 60.47% Mn₂SiO₄ (tephroite), 39.01% Mn₃Si, 0.51% MnSiO₃ (rhodonite) liquids: none gases: none simplified equation at 14.2% fuel: $5Si + 12MnO \rightarrow 3Mn_2SiO_4 + 2Mn_3Si$ **T3.** 18.0% fuel, 1457.50 K solids: 50.08% MnSiO₃ (rhodonite), 49.45% Mn₃Si, 0.47% Mn₂SiO₄ (tephroite) liquids: none gases: none simplified equation at 18.0% fuel: $5Si + 9MnO \rightarrow 3MnSiO_3 + 2Mn_3Si$ **T4.** 22.5% fuel, 1546.19 K solids: 52.27% Mn₅Si₃, 47.71% MnSiO₃ (rhodonite) liquids: none gases: none

simplified equation at 22.5% fuel: $11Si + 15MnO \rightarrow 5MnSiO_3 + 2Mn_5Si_3$

- **T5.** 30.3% fuel, 1728.04 K solids: 70.41% Mn_5Si_3 , 29.36% SiO₂ (tridymite), 0.23% $MnSiO_3$ (rhodonite) liquids: none gases: none simplified equation at 30.3% fuel: 11Si + 10MnO → $5SiO_2 + 2Mn_5Si_3$
- T6. 37.2% fuel, 1769.62 K—peak temperature solids: 72.79% MnSi, 26.60% SiO₂ (cristobalite), 0.61% Mn₅Si₃ liquids: none gases: none simplified equation at 37.3% fuel: 3Si + 2MnO → SiO₂ + 2MnSi
 - T1 corresponds to the maximum amount of Mn.
 - From 39.0% to 41.1% fuel, the temperature is limited to 1685 K by the Si(s-l) transition.

25.11 SILICON + Mn_3O_4

FIGURE 25.14 Adiabatic equilibrium temperature profile, Si (fuel) + Mn_3O_4 (oxidizer).

FIGURE 25.15 Adiabatic equilibrium gas production profile, Si (fuel) + Mn_3O_4 (oxidizer).

- **T1.** 5.8% fuel, 1578.16 K solids: 58.22% MnO, 41.71% Mn_2SiO_4 (tephroite) liquids: none gases: none simplified equation at 5.8% fuel: Si + $2Mn_3O_4 \rightarrow Mn_2SiO_4 + 4MnO$
- **T2.** 10.9% fuel, 1805.90 K solids: 78.38% Mn_2SiO_4 (tephroite), 0.37% MnO liquids: 21.25% Mn gases: none simplified equation at 10.9% fuel: Si + $Mn_3O_4 \rightarrow Mn_2SiO_4 + Mn_3O_4$
- **T3.** 14.1% fuel, 1967.61 K solids: 75.28% Mn_2SiO_4 (tephroite), 24.25% Mn_3Si , 0.47% $MnSiO_3$ (rhodonite) liquids: none gases: none simplified equation at 14.1% fuel: $4Si + 3Mn_3O_4 \rightarrow 3Mn_2SiO_4 + Mn_3Si$
- **T4.** 18.8% fuel, 2058.87 K solids: 62.00% MnSiO₃ (rhodonite), 37.85% Mn₃Si liquids: 0.15% Mn gases: none simplified equation at 18.8% fuel: $17Si + 9Mn_3O_4 \rightarrow 12MnSiO_3 + 5Mn_3Si$

- **T5.** 22.3% fuel, 2098.06 K solids: 59.13% MnSiO₃ (rhodonite), 40.74% Mn₅Si₃ liquids: 0.14% SiO₂ gases: none simplified equation at 22.3% fuel: 7Si + $3Mn_3O_4 \rightarrow 4MnSiO_3 + Mn_5Si_3$
- **T6.** 31.8% fuel, 2168.18 K—*peak temperature* solids: 64.17% Mn_5Si_3 liquids: 35.79% SiO_2 gases: none simplified equation at 31.8% fuel: 19Si + $5Mn_3O_4 \rightarrow 10SiO_2 + 3Mn_5Si_3$
- **T7.** 39.0% fuel, 2115.38 K solids: 66.40% MnSi liquids: 32.04% SiO₂, 1.56% Si gases: none one reaction with excess fuel remaining: (38.0% fuel) 5Si + Mn₃O₄ \rightarrow 2SiO₂ + 3MnSi
- T2 corresponds to the maximum amount of Mn.
- From 47.5% to 56.7% fuel, the temperature is limited to 1685 K by the Si(s-l) transition.
- From 15.4% to 17.4% fuel, the temperature appears to be limited by the $Mn_3Si(s) + 3Mn_2SiO_4(s) \rightarrow 5Mn(l) + 4MnSiO_3(s)$ reaction, which occurs at 1992 K.
- From 41.3% to 42.0% fuel, the temperature is limited to 1996 K by the SiO₂(s-l) transition.
- From 32.9% to 38.9% fuel, the temperature appears to be limited by the 5MnSi(s) \rightarrow Mn₅Si₃(s) + 2Si(l) decomposition, which occurs at 2119 K.

G1. 31.9% fuel, 0.40% gas produced, 2138.46 K—peak gas solids: 64.07% Mn₅Si₃ liquids: 35.51% SiO₂ gases: 0.38% SiO simplified equation at 31.8% fuel: 19Si + 5Mn₃O₄ → 10SiO₂ + 3Mn₅Si₃

25.12 SILICON + Mn_2O_3

FIGURE 25.16 Adiabatic equilibrium temperature profile, Si (fuel) + Mn_2O_3 (oxidizer).

FIGURE 25.17 Adiabatic equilibrium gas production profile, Si (fuel) + Mn_2O_3 (oxidizer).

- **T1.** 8% fuel, 0.21% gas produced, 2115.15 K solids: 57.53% Mn_2SiO_4 (tephroite), 26.51% MnO liquids: 15.75% MnO gases: 0.21% O_2 simplified equation at 8.2% fuel: Si + $2Mn_2O_3 \rightarrow Mn_2SiO_4 + 2MnO$
- **T2.** 11% fuel, 2304.34 K—peak temperature solids: 79.10% Mn_2SiO_4 (tephroite) liquids: 12.06% Mn, 8.84% MnO gases: none a combination of two reactions: (8.2% fuel) Si + 2Mn_2O_3 \rightarrow Mn_2SiO₄ + 2MnO (11.8% fuel) 3Si + 4Mn_2O_3 \rightarrow 3Mn_2SiO₄ + 2Mn
- **T3.** 12% fuel, 2.38% gas produced, 2275.12 K solids: 83.81% Mn₂SiO₄ (tephroite) liquids: 13.81% Mn gases: 1.84% Mn, 0.54% SiO simplified equation at 11.8% fuel: $3Si + 4Mn_2O_3 \rightarrow 3Mn_2SiO_4 + 2Mn_2O_3$
- **T4.** 15% fuel, 2.43% gas produced, 2255.15 K solids: 61.90% MnSiO₃ (rhodonite), 9.18% Mn₂SiO₄ (tephroite) liquids: 26.50% Mn gases: 1.71% Mn, 0.72% SiO a combination of two reactions: (11.8% fuel) $3Si + 4Mn_2O_3 \rightarrow 3Mn_2SiO_4 + 2Mn$ (15.1% fuel) $Si + Mn_2O_3 \rightarrow MnSiO_3 + Mn$

- **T5.** 22% fuel, 5.70% gas produced, 2230.54 K solids: 62.63% MnSiO₃ (rhodonite), 30.77% Mn₅Si₃ liquids: 0.90% Mn gases: 3.58% Mn, 2.12% SiO simplified equation at 22.2% fuel: 8Si + 5Mn₂O₃ → 5MnSiO₃ + Mn₅Si₃
- **T6.** 46% fuel, 2077.55 K solids: 56.80% MnSi liquids: 30.83% SiO₂, 12.38% Si gases: none one reaction with excess fuel remaining: (38.4% fuel) 7Si + 2Mn₂O₃ \rightarrow 3SiO₂ + 4MnSi
 - T4 corresponds to the maximum amount of Mn.
 - From 53% to 64% fuel, the temperature is limited to 1685 K by the Si(s-l) transition.
 - From 8% to 9% fuel, the temperature is limited to 2115 K by the MnO(s-l) transition.
 - From 41% to 45% fuel, the temperature appears to be limited by the 5MnSi(s) \rightarrow Mn₅Si₃(s) + 2Si(1) decomposition, which occurs at 2119 K.
 - The plateau from 34% to 40% fuel (2138 K) could not be attributed to a simple transition or reaction; species in this region include SiO(g), Mn(g), $SiO_2(l)$, Si(l), and $Mn_5Si_3(s)$. The vaporization of SiO from $Si(l)/SiO_2(l)$ mixtures is expected to occur at 2145 K.
 - From 23% to 32% fuel, the temperature appears to be limited by the $Mn_5Si_3(s) + 3SiO_2(l) \rightarrow 5Mn(g) + 6SiO(g)$ reaction, which occurs at 2227 K.
 - From 16% to 22% fuel, the temperature appears to be limited by the $2Mn_5Si_3(s) + 3MnSiO_3(s) \rightarrow 13Mn(l-g) + 9SiO(g)$ reaction, which occurs at 2231 K.
 - From 13% to 15% fuel, the temperature appears to be limited by the $Mn(l) + 3MnSiO_3(s) \rightarrow 2Mn_2SiO_4(s) + SiO(g)$ reaction, which occurs at 2255 K.
- G1. 22% fuel, 5.70% gas produced, 2230.54 K—*peak gas* See T5 for details
- **G2.** 31% fuel, 5.70% gas produced, 2226.96 K—*peak gas* solids: 54.00% Mn₅Si₃, 8.77% MnSiO₃ (rhodonite) liquids: 31.54% SiO₂ gases: 3.02% Mn, 2.67% SiO a combination of two reactions: (22.2% fuel) 8Si + 5Mn₂O₃ → 5MnSiO₃ + Mn₅Si₃ (32.4% fuel) 27Si + 10Mn₂O₃ → 15SiO₂ + 4Mn₅Si₃

25.13 SILICON + MnO_2

FIGURE 25.18 Adiabatic equilibrium temperature profile, Si (fuel) + MnO_2 (oxidizer).

FIGURE 25.19 Adiabatic equilibrium gas production profile, Si (fuel) + MnO_2 (oxidizer).

- **T1.** 5.7% fuel, 5.43% gas produced, 1606.24 K solids: 53.58% Mn_2O_3 (bixbyite), 40.99% Mn_2SiO_4 (tephroite) liquids: none gases: 5.43% O_2 a combination of two reactions: (13.9% fuel) Si + 2MnO₂ \rightarrow Mn₂SiO₄ (decomposition) 4MnO₂ \rightarrow 2Mn₂O₃ + O₂
- **T2.** 7.1% fuel, 6.01% gas produced, 1898.53 K solids: 51.06% Mn₂SiO₄ (tephroite), 42.94% Mn₃O₄ liquids: none gases: 6.00% O₂ a combination of two reactions: (13.9% fuel) Si + 2MnO₂ → Mn₂SiO₄ (decomposition) 3MnO₂ → Mn₃O₄ + O₂
- **T3.** 10.9% fuel, 4.00% gas produced, 2646.04 K solids: 78.33% Mn_2SiO_4 (tephroite) liquids: 17.67% MnO gases: 3.93% O_2 a combination of two reactions: (13.9% fuel) Si + 2MnO₂ \rightarrow Mn₂SiO₄ (decomposition) 2MnO₂ \rightarrow 2MnO + O₂

- **T4.** 12.0% fuel, 2.60% gas produced, 2792.14 K solids: 55.85% MnSiO₃ (rhodonite) liquids: 41.55% MnO gases: 2.47% O₂ a combination of two reactions: (13.9% fuel) Si + 2MnO₂ \rightarrow MnSiO₃ + MnO (decomposition) 2MnO₂ \rightarrow 2MnO + O₂
- T5. 13.9% fuel, 3044.64 K—peak temperature solids: none liquids: 70.25% MnO, 29.73% SiO₂ gases: none simplified equation at 13.9% fuel: Si + 2MnO₂ → SiO₂ + 2MnO
- **T6.** 21.2% fuel, 26.85% gas produced, 2230.98 K solids: 69.31% MnSiO₃ (rhodonite) liquids: 3.84% Mn gases: 16.89% Mn, 9.96% SiO a combination of two reactions: (17.7% fuel) 2Si + 3MnO₂ → 2MnSiO₃ + Mn (39.3% fuel) 2Si + MnO₂ → 2SiO + Mn
- **T7.** 37.5% fuel, 18.81% gas produced, 2144.16 K solids: 49.94% Mn_5Si_3 liquids: 31.25% SiO₂ gases: 17.53% SiO, 1.28% Mn a combination of two reactions: (34.1% fuel) 8Si + 5MnO₂ \rightarrow 5SiO₂ + Mn₅Si₃ (45.6% fuel) 13Si + 5MnO₂ \rightarrow 10SiO + Mn₅Si₃
- **T8.** 57.1% fuel, 2116.31 K solids: 40.97% MnSi liquids: 29.65% SiO₂, 29.38% Si gases: none one reaction with excess fuel remaining: (39.3% fuel) 2Si + MnO₂ \rightarrow SiO₂ + MnSi
 - T6 corresponds to the maximum amount of Mn.
 - From 63.1% to 76.1% fuel, the temperature is limited to 1685 K by the Si(s-l) transition.
 - From 7.2% to 8.2% fuel, the temperature appears to be limited by the $2Mn_3O_4(s) \rightarrow 6MnO(s) + O_2(g)$ decomposition, which occurs at 1925 K.
 - From 58.7% to 59.2% fuel, the temperature is limited to 1996 K by the $SiO_2(s-1)$ transition.
 - From 8.8% to 9.3% fuel, the temperature is limited to 2115 K by the MnO(s-l) transition.
 - From 54.6% to 57.0% fuel, the temperature appears to be limited by the 5MnSi(s) \rightarrow Mn₅Si₃(s) + 2Si(l) decomposition, which occurs at 2119 K.
 - The plateau from 37.6% to 54.2% fuel (2138 K) could not be attributed to a simple transition or reaction; species in this region include SiO(g), Mn(g), SiO₂(l), Si(l), and Mn₅Si₃(s). The vaporization of SiO from Si(l)/SiO₂(l) mixtures is expected to occur at 2145 K.

- From 23.8% to 33.9% fuel, the temperature appears to be limited by the $Mn_5Si_3(s) + 3SiO_2(1) \rightarrow 5Mn(g) + 6SiO(g)$ reaction, which occurs at 2227 K.
- From 21.3% to 22.1% fuel, the temperature appears to be limited by the $2Mn_5Si_3(s) + 3MnSiO_3(s) \rightarrow 13Mn(l-g) + 9SiO(g)$ reaction, which occurs at 2231 K.
- From 11.0% to 11.6% and 17.3% to 18.1% fuel, the temperature appears to be limited by the Mn₂SiO₄(s) → MnSiO₃(s) + MnO(l) decomposition, which occurs at 2665 K.
- From 12.1% to 13.2% and 14.9% to 16.3% fuel, the temperature appears to be limited by the MnSiO₃(s) → MnO(l) + SiO₂(l) decomposition, which occurs at 2818 K.

G1. 20.6% fuel, 28.17% gas produced, 2255.15 K—*peak gas* solids: 71.10% MnSiO₃ (rhodonite), 0.53% Mn₂SiO₄ (tephroite) liquids: 0.20% Mn gases: 19.87% Mn, 8.30% SiO a combination of two reactions: (17.7% fuel) 2Si + 3MnO₂ \rightarrow 2MnSiO₃ + Mn (39.3% fuel) 2Si + MnO₂ \rightarrow 2SiO + Mn

25.14 SILICON + FeO

FIGURE 25.20 Adiabatic equilibrium temperature profile, Si (fuel) + FeO (oxidizer).

FIGURE 25.21 Adiabatic equilibrium gas production profile, Si (fuel) + FeO (oxidizer).

- **T1.** 8.9% fuel, 1810.95 K solids: 64.57% Fe_2SiO_4 (fayalite), 23.15% Fe liquids: 12.25% Fe gases: none simplified equation at 8.9% fuel: Si + 4FeO \rightarrow Fe₂SiO₄ + 2Fe
- **T2.** 16.3% fuel, 2480.66 K—*peak temperature* solids: none liquids: 64.82% Fe, 34.87% SiO₂, 0.31% FeO gases: none simplified equation at 16.4% fuel: Si + 2FeO → SiO₂ + 2Fe
- **T3.** 38.1% fuel, 5.75% gas produced, 2280.81 K solids: 72.26% FeSi liquids: 21.99% SiO₂ gases: 5.72% SiO a combination of two reactions: (37.0% fuel) $3Si + 2FeO \rightarrow SiO_2 + 2FeSi$ (43.9% fuel) $2Si + FeO \rightarrow SiO + FeSi$
- **T4.** 43.9% fuel, 2.19% gas produced, 2144.85 K solids: 65.54% FeSi liquids: 21.97% SiO₂, 10.31% Si gases: 2.19% SiO a combination of two reactions with excess fuel remaining: (37.0% fuel) 3Si + 2FeO → SiO₂ + 2FeSi (43.9% fuel) 2Si + FeO → SiO + FeSi

T5. 52.6% fuel, 1852.10 K

- solids: 41.07% FeSi, 20.69% Fe₃Si₇, 19.82% SiO₂ (cristobalite) liquids: 18.42% Si gases: none
- a combination of two reactions with excess fuel remaining: (37.0% fuel) $3Si + 2FeO \rightarrow SiO_2 + 2FeSi$
- (52.6% fuel) 17Si + 6FeO \rightarrow 3SiO₂ + 2Fe₃Si₇
- **T6.** 56.6% fuel, 1845.17 K
 - solids: 73.32% Fe_3Si_7 , 18.15% SiO_2 (cristobalite) liquids: 8.53% Si gases: none one reaction with excess fuel remaining: (52.6% fuel) 17Si + 6FeO \rightarrow 3SiO₂ + 2Fe₃Si₇
- **T7.** 78.3% fuel, 1232.64 K solids: 57.09% Si, 33.83% FeSi₂, 9.07% SiO₂ (tridymite) liquids: none gases: none one reaction with excess fuel remaining: (49.4% fuel) 5Si + 2FeO \rightarrow SiO₂ + 2FeSi₂
- The maximum amount of iron, 64.98% Fe(1), occurs at 16.4% fuel and 2472.88 K.
- From 76.9% to 78.2% fuel, the temperature appears to be limited by the $3\text{FeSi}_2(s) + \text{Si}(s) \rightarrow \text{Fe}_3\text{Si}_7(s)$ reaction, which occurs at 1233 K.
- From 58.7% to 64.9% fuel, the temperature is limited to 1685 K by the Si(s-l) transition.
- From 8.8% to 9.4% fuel, the temperature is limited to 1811 K by the Fe(s-l) transition.
- From 51.1% to 56.5% fuel, the temperature appears to be limited by the Fe₃Si₇(s) \rightarrow 3FeSi(s) + 4Si(l) decomposition, which occurs at 1852 K.
- From 10.7% to 12.1% fuel, the temperature appears to be limited by the $Fe_2SiO_4(s) \rightarrow 2FeO(l) + SiO_2(s)$ decomposition, which occurs at 1933 K.
- From 38.5% to 46.1% fuel, the temperature appears to be limited by the vaporization of SiO from Si(1)/SiO₂(1) mixtures, which occurs at 2145 K.
- From 17.1% to 38.0% fuel, the temperature appears to be limited by the $FeSi(s) + SiO_2(l) \rightarrow Fe(l) + 2SiO(g)$ reaction, which occurs at 2290 K.
- G1. 38.5% fuel, 7.34% gas produced, 2144.85 K—peak gas solids: 71.84% FeSi liquids: 20.71% SiO₂ gases: 7.34% SiO a combination of two reactions: (37.0% fuel) 3Si + 2FeO → SiO₂ + 2FeSi (43.9% fuel) 2Si + FeO → SiO + FeSi

25.15 SILICON + Fe_3O_4

FIGURE 25.22 Adiabatic equilibrium temperature profile, Si (fuel) + Fe_3O_4 (oxidizer).

FIGURE 25.23 Adiabatic equilibrium gas production profile, Si (fuel) + Fe_3O_4 (oxidizer).

T1. 5.7% fuel, 1087.52 K solids: 58.32% FeO (wüstite), 41.36% Fe_2SiO_4 (fayalite), 0.32% Fe_3O_4 (magnetite) liquids: none gases: none

simplified equation at 5.7% fuel: $Si + 2Fe_3O_4 \rightarrow Fe_2SiO_4 + 4FeO_3O_4$

- **T2.** 10.8% fuel, 1810.95 K solids: 78.36% Fe_2SiO_4 (fayalite), 0.57% Fe liquids: 20.87% Fe, 0.21% FeO gases: none simplified equation at 10.8% fuel: Si + $Fe_3O_4 \rightarrow Fe_2SiO_4 + Fe$
- T3. 19.5% fuel, 2644.32 K—peak temperature solids: none liquids: 58.13% Fe, 41.72% SiO₂, 0.15% FeO gases: none simplified equation at 19.5% fuel: 2Si + Fe₃O₄ → 2SiO₂ + 3Fe
- **T4.** 39.2% fuel, 7.38% gas produced, 2266.17 K solids: 66.07% FeSi liquids: 26.55% SiO₂ gases: 7.34% SiO a combination of two reactions: (37.8% fuel) $5Si + Fe_3O_4 \rightarrow 2SiO_2 + 3FeSi$ (45.9% fuel) $7Si + Fe_3O_4 \rightarrow 4SiO + 3FeSi$

- **T5.** 45.9% fuel, 2.51% gas produced, 2144.85 K solids: 58.83% FeSi liquids: 26.37% SiO₂, 12.29% Si gases: 2.51% SiO a combination of two reactions with excess fuel remaining: (37.8% fuel) 5Si + Fe₃O₄ → 2SiO₂ + 3FeSi (45.9% fuel) 7Si + Fe₃O₄ → 4SiO + 3FeSi
- **T6.** 58.0% fuel, 1848.31 K solids: 66.05% Fe₃Si₇, 21.80% SiO₂ (cristobalite) liquids: 12.15% Si gases: none one reaction with excess fuel remaining: (52.2% fuel) 9Si + Fe₃O₄ \rightarrow 2SiO₂ + Fe₃Si₇
- **T7.** 79.9% fuel, 1230.12 K solids: 60.40% Si, 29.17% FeSi_2 , 10.43% SiO₂ (tridymite) liquids: none gases: none one reaction with excess fuel remaining: (49.2% fuel) 8Si + Fe₃O₄ \rightarrow 2SiO₂ + 3FeSi₂
- The maximum amount of iron, 58.15% Fe(1), occurs at 19.6% fuel and 2623.95 K.
- From 78.8% to 79.8% fuel, the temperature appears to be limited by the $3\text{FeSi}_2(s) + \text{Si}(s) \rightarrow \text{Fe}_3\text{Si}_7(s)$ reaction, which occurs at 1233 K.
- From 60.1% to 67.5% fuel, the temperature is limited to 1685 K by the Si(s-l) transition.
- From 53.3% to 57.9% fuel, the temperature appears to be limited by the $Fe_3Si_7(s) \rightarrow 3FeSi(s) + 4Si(l)$ decomposition, which occurs at 1852 K.
- From 12.1% to 14.0% fuel, the temperature appears to be limited by the $Fe_2SiO_4(s) \rightarrow 2FeO(l) + SiO_2(s)$ decomposition, which occurs at 1933 K.
- From 14.5% to 14.8% and 50.7% to 51.2% fuel, the temperature is limited to 1996 K by the $SiO_2(s-l)$ transition.
- From 39.6% to 48.4% fuel, the temperature appears to be limited by the vaporization of SiO from Si(1)/SiO₂(1) mixtures, which occurs at 2145 K.
- From 20.8% to 39.1% fuel, the temperature appears to be limited by the $FeSi(s) + SiO_2(l) \rightarrow Fe(l) + 2SiO(g)$ reaction, which occurs at 2290 K.
- G1. 39.5% fuel, 8.81% gas produced, 2149.83 K—peak gas solids: 65.79% FeSi liquids: 25.40% SiO₂ gases: 8.81% SiO a combination of two reactions:
 (37.8% fuel) 5Si + Fe₃O₄ → 2SiO₂ + 3FeSi (45.9% fuel) 7Si + Fe₃O₄ → 4SiO + 3FeSi

25.16 SILICON + Fe_2O_3

FIGURE 25.24 Adiabatic equilibrium temperature profile, Si (fuel) + Fe_2O_3 (oxidizer).

FIGURE 25.25 Adiabatic equilibrium gas production profile, Si (fuel) + Fe_2O_3 (oxidizer).

T1. 8.1% fuel, 1521.76 K

solids: 58.77% Fe_2SiO_4 (fayalite), 41.16% FeO (wüstite) liquids: none gases: none simplified equation at 8.1% fuel: $\text{Si} + 2\text{Fe}_2\text{O}_3 \rightarrow \text{Fe}_2\text{SiO}_4 + 2\text{FeO}$

- **T2.** 11.4% fuel, 1920.47 K solids: 82.71% Fe_2SiO_4 (fayalite) liquids: 14.35% Fe, 2.94% FeO gases: none a combination of two reactions: (8.1% fuel) Si + 2Fe_2O_3 \rightarrow Fe_2SiO₄ + 2FeO (11.7% fuel) 3Si + 4Fe_2O_3 \rightarrow 3Fe_2SiO₄ + 2Fe
- T3. 20.9% fuel, 0.22% gas produced, 2812.05 K—peak temperature solids: none liquids: 55.20% Fe, 44.50% SiO₂ gases: 0.16% SiO simplified equation at 20.9% fuel: 3Si + 2Fe₂O₃ → 3SiO₂ + 4Fe
- **T4.** 39.9% fuel, 9.22% gas produced, 2265.12 K solids: 63.12% FeSi liquids: 27.67% SiO₂ gases: 9.18% SiO a combination of two reactions: (38.1% fuel) 7Si + 2Fe₂O₃ \rightarrow 3SiO₂ + 4FeSi (46.8% fuel) 5Si + Fe₂O₃ \rightarrow 3SiO + 2FeSi

- **T5.** 46.8% fuel, 3.86% gas produced, 2144.85 K solids: 55.92% FeSi liquids: 27.40% SiO₂, 12.82% Si gases: 3.86% SiO a combination of two reactions with excess fuel remaining: (38.1% fuel) 7Si + 2Fe₂O₃ → 3SiO₂ + 4FeSi (46.8% fuel) 5Si + Fe₂O₃ → 3SiO + 2FeSi
- **T6.** 59.5% fuel, 1844.79 K solids: 61.57% Fe₃Si₇, 22.86% SiO₂ (cristobalite) liquids: 15.58% Si gases: none one reaction with excess fuel remaining: (52.0% fuel) 37Si + 6Fe₂O₃ → 9SiO₂ + 4Fe₃Si₇
- **T7.** 81.2% fuel, 1231.95 K solids: 63.01% Si, 26.38% FeSi₂, 10.61% SiO₂ (tridymite) liquids: none gases: none one reaction with excess fuel remaining: (49.2% fuel) 11Si + 2Fe₂O₃ \rightarrow 3SiO₂ + 4FeSi₂
- T3 corresponds to the maximum amount of Fe.
- From 80.3% to 81.1% fuel, the temperature appears to be limited by the $3\text{FeSi}_2(s) + \text{Si}(s) \rightarrow \text{Fe}_3\text{Si}_7(s)$ reaction, which occurs at 1233 K.
- From 9.0% to 9.6% fuel, the temperature is limited to 1644 K by the FeO(s-l) transition.
- From 61.5% to 69.7% fuel, the temperature is limited to 1685 K by the Si(s-l) transition.
- From 55.3% to 59.4% fuel, the temperature appears to be limited by the $Fe_3Si_7(s) \rightarrow 3FeSi(s) + 4Si(l)$ decomposition, which occurs at 1852 K.
- From 11.5% to 13.9% fuel, the temperature appears to be limited by the $Fe_2SiO_4(s) \rightarrow 2FeO(l) + SiO_2(s)$ decomposition, which occurs at 1933 K.
- From 52.7% to 53.2% fuel, the temperature is limited to 1996 K by the $SiO_2(s-1)$ transition.
- From 40.3% to 50.5% fuel, the temperature appears to be limited by the vaporization of SiO from Si(1)/SiO₂(1) mixtures, which occurs at 2145 K.
- From 22.7% to 39.8% fuel, the temperature appears to be limited by the $FeSi(s) + SiO_2(l) \rightarrow Fe(l) + 2SiO(g)$ reaction, which occurs at 2290 K.

G1. 40.2% fuel, 10.64% gas produced, 2149.33 K—*peak gas* solids: 62.86% FeSi liquids: 26.50% SiO₂ gases: 10.64% SiO a combination of two reactions: (38.1% fuel) 7Si + 2Fe₂O₃ \rightarrow 3SiO₂ + 4FeSi (46.8% fuel) 5Si + Fe₂O₃ \rightarrow 3SiO + 2FeSi

25.17 SILICON + CoO

FIGURE 25.26 Adiabatic equilibrium temperature profile, Si (fuel) + CoO (oxidizer).

FIGURE 25.27 Adiabatic equilibrium gas production profile, Si (fuel) + CoO (oxidizer).

- **T1.** 8.6% fuel, 1991.29 K solids: 63.76% Co_2SiO_4 , 0.15% SiO_2 (cristobalite) liquids: 36.09% Co gases: none simplified equation at 8.6% fuel: Si + 4CoO \rightarrow Co₂SiO₄ + 2Co
- T2. 15.8% fuel, 2861.89 K—peak temperature solids: none liquids: 66.20% Co, 33.71% SiO₂ gases: none simplified equation at 15.8% fuel: Si + 2CoO → SiO₂ + 2Co
- T3. 37.7% fuel, 8.50% gas produced, 2336.94 K solids: 72.29% CoSi liquids: 19.22% SiO₂ gases: 8.46% SiO a combination of two reactions: (36.0% fuel) 3Si + 2CoO → SiO₂ + 2CoSi (42.8% fuel) 2Si + CoO → SiO + CoSi
- **T4.** 42.8% fuel, 6.00% gas produced, 2144.86 K solids: 66.43% CoSi liquids: 18.84% SiO₂, 8.73% Si gases: 6.00% SiO a combination of two reactions with excess fuel remaining: (36.0% fuel) 3Si + 2CoO → SiO₂ + 2CoSi (42.8% fuel) 2Si + CoO → SiO + CoSi

- T2 corresponds to the maximum amount of cobalt.
- From 55.6% to 68.7% fuel, the temperature is limited to 1685 K by the Si(s-1) transition.
- From 6.9% to 7.3% fuel, the temperature is limited to 1768 K by the Co(s-l) transition.
- From 50.9% to 51.3% fuel, the temperature is limited to 1996 K by the $\rm SiO_2(s\text{-}l)$ transition.
- From 9.4% to 10.4% fuel, the temperature appears to be limited by the $Co_2SiO_4(s) \rightarrow 2CoO(s) + SiO_2(l)$ decomposition, which occurs at 2096 K.
- From 10.6% to 11.5% fuel, the temperature is limited to 2103 K by the CoO(s-l) transition.
- From 38.2% to 48.7% fuel, the temperature appears to be limited by the vaporization of SiO from Si(1)/SiO₂(1) mixtures, which occurs at 2145 K.
- From 17.4% to 37.6% fuel, the temperature appears to be limited by the $CoSi(s) + SiO_2(l) \rightarrow Co(l) + 2SiO(g)$ reaction, which occurs at 2354 K.
- **G1.** 38.2% fuel, 10.62% gas produced, 2144.86 K—*peak gas* solids: 71.77% CoSi liquids: 17.55% SiO₂ gases: 10.61% SiO a combination of two reactions: (36.0% fuel) $3Si + 2CoO \rightarrow SiO_2 + 2CoSi$ (42.8% fuel) $2Si + CoO \rightarrow SiO + CoSi$