Sciencemadness Discussion Board
Not logged in [Login - Register]
Go To Bottom

Printable Version  
 Pages:  1  ..  17    19
Author: Subject: Synthesis of longer chain tertiary alcohols

Posts: 12
Registered: 18-8-2008
Member Is Offline

Mood: No Mood

[*] posted on 2-1-2017 at 17:27

Where I live, 1-pentanol and "octyl alcohol" are easily available. I am however not sure, if the latter is 1-octanol or some branched isomer. 1-butanol I have in the lab.
I will try to prepare some 2-methyl-2pentanol, 2-methyl-2hexanol and 3-methyl-3-heptanol.

As to quantities: If I remember blogfasts posts correctly, he used about 5 .. 6 grams of alcohol for each of his potassium runs. 25 g should therefore be a quantity that allows a few of these experiments.
View user's profile View All Posts By User
Hazard to Others

Posts: 111
Registered: 11-5-2015
Member Is Offline

Mood: No Mood

[*] posted on 17-4-2017 at 05:30

In the meantime I had two new ideas about obtaining long chain tertiary alcohols.

My first idea was to alkylate raspberry ketone and perform a Grignard afterwards. The advtantage is to deal with solid products, thus easy purification compared to high boiling and badly crystallyzing liquids.

Second, cyclization of citronellol with an acid in order to obtain either the alkene with further addition of water or dihydro terpineol directly. A problem is to obtain citronellol. An alterternative synthesis is starting from citronellal, which needs to be reduced to citronellol first. A general problem is to identfy reaction products. The advantage is to avoid reducing an alkene compared to the previously discussed synthesis of terpineol followed by precious metal reduction to dihydro terpineol.

I think I'll try the raspberry ketone based synthesis first as I expect less pitfalls and the same iodoalkane can be used for both steps. Nevertheless this may take a while...

[Edited on 17-4-2017 by Alice]
View user's profile View All Posts By User

Posts: 10
Registered: 20-1-2014
Location: Brazil
Member Is Offline

Mood: No Mood

[*] posted on 11-7-2017 at 13:51

Yesterday I was reading Semimicro and Macro Organic Chemistry by Nicholas Cheronis looking for sources on alcohol oxidation to carboxylic acids and something caugh my atention: "The use of permanganate with alcohols
which contain tertiary hydrogen (branched chains), as for example,
isobutyl alcohol, (CH3)2CHCH2OH, involves the danger of oxidation
in other parts of the molecules." (page 199). I looked into more information on the internet about this and, while little was found, two papers (on the end of the message) talk about the oxidation of tertiary hydrogens to hydroxyl groups.

Wouldn't be possible to oxidate the tertiary hydrogen on Isovaleric acid to 3-metil-3-hydroxybutanoic acid and then decarboxylate this to T-butanol?

Sketch of the reaction:

[bad img][/bad img]

View user's profile View All Posts By User
 Pages:  1  ..  17    19

  Go To Top