Sciencemadness Discussion Board
Not logged in [Login ]
Go To Bottom

Printable Version  
 Pages:  1  ..  7    9    11  ..  13
Author: Subject: Trinitrotoluene preparation
Rosco Bodine
Banned





Posts: 6370
Registered: 29-9-2004
Member Is Offline

Mood: analytical

[*] posted on 27-11-2014 at 00:20


Here is one example US4084995

Attachment: US4084995 Preparation of a cap sensitive particulate explosive composition comprising calcium nitrate.pdf (1.2MB)
This file has been downloaded 876 times

View user's profile View All Posts By User
Hennig Brand
International Hazard
*****




Posts: 1284
Registered: 7-6-2009
Member Is Offline

Mood: No Mood

[*] posted on 27-11-2014 at 13:23


Thanks for the patent.

I just wanted to add that the DNT produced still had a slight smell of mononitrotoluene. If this was seen as a problem there are several things that could be done to push the nitration more into the DNT-TNT region and farther out of the MNT-DNT region. The 10% excess nitration mixture specified could be increased to 20% or more. The temperature could be increased from 80C to 90C for the 2 hours at the end of the nitration. The 2 hour end of nitration high temperature "nitration finisher" could also be run for more than 2 hours. There are probably other ways to push the nitration farther as well. 
 

[Edited on 28-11-2014 by Hennig Brand]




"A risk-free world is a very dull world, one from which we are apt to learn little of consequence." -Geerat Vermeij
View user's profile View All Posts By User
Rosco Bodine
Banned





Posts: 6370
Registered: 29-9-2004
Member Is Offline

Mood: analytical

[*] posted on 27-11-2014 at 20:26


Here is an interesting patent US2435314 attached

Another interesting patent is GB501034 attached


Attachment: US2435314 TNT Nitration method.pdf (462kB)
This file has been downloaded 731 times

Attachment: GB501034 nitration catalysts.pdf (212kB)
This file has been downloaded 617 times

[Edited on 28-11-2014 by Rosco Bodine]
View user's profile View All Posts By User
Hennig Brand
International Hazard
*****




Posts: 1284
Registered: 7-6-2009
Member Is Offline

Mood: No Mood

[*] posted on 27-11-2014 at 23:17


I am quite sure that I have successfully produced TNT using sodium nitrate and 98% sulfuric acid. I have a bunch more pictures to share, but I am having a little trouble logging onto the forum except using the 4G network and my phone. SO3 was used to soak up water in order to produce the 98% H2SO4 from less concentrated acid. The sodium nitrate was made from sodium bicarbonate and ammonium nitrate; a slight excess of ammonium nitrate was used and the two reactants were boiled in water until the smell of ammonia was extremely faint. More or less the same setup as was used to produce the DNT was used, but I ran into a little trouble with the process. I first made >99% H2SO4 and then I could only get ca. 1/4 to 1/3 of the sodium nitrate to dissolve in it. In a moment of unclear thinking I added an amount of water necessary to bring the acid down 1% to >98% which only seemed to increases the solubility a little. In retrospect 98% sulfuric acid is probably about right anyway, but adding water was not the way to achieve it. In twenty minutes or so I came up with "the plan"; the solid sodium nitrate would be dissolved by putting the nitration mixture into the flask and bringing it up to the reaction starting temperature (80C). The DNT was kept in a small beaker on a small warming tray and kept in the molten state enough above its solidification point that it would not plug the glass eye dropper/pipette used to add it to the reaction flask. The solid nitrate did dissolve at the elevated temperature and other than a few minor issues with DNT solidifying in the pipette everything went smoothly. I will explain in more detail with pictures and quantities used, etc, when I can log on from a full sized computer.


[Edited on 28-11-2014 by Hennig Brand]




"A risk-free world is a very dull world, one from which we are apt to learn little of consequence." -Geerat Vermeij
View user's profile View All Posts By User
Hennig Brand
International Hazard
*****




Posts: 1284
Registered: 7-6-2009
Member Is Offline

Mood: No Mood

[*] posted on 28-11-2014 at 07:17
TNT Production From DNT, Oven Dried NaNO3 and 98% H2SO4


I was using the article Rosco posted earlier, from "The Journal of Industrial and Engineering Chemistry", which had in it the tabulated results of a series of TNT synthesis experiments. I used experiment No. 16 as a rough guide. The article was based on MNT to TNT, but I still used the same mass fractions even though I was going from DNT.

Ammonium nitrate was used to nitrate the toluene to DNT, however, there are a lot of indications that sodium nitrate will not decompose the way ammonium nitrate does at higher temperatures. Ammonium nitrate decomposition products could cause damage to the intermediates or possibly the products of the reaction and will lower the strength of the nitration mixture at the very least. It was decided that sodium nitrate would be used for the last stage of nitration.

From DNT to TNT
Nitration Mixture Composition:
82% Sulfuric Acid
16% Nitric Acid
2% Water

(75% Excess Nitric Acid)

For 1g of DNT:

1g / (182.134g/mol) * 1.75 = 0.00961 moles of HNO3 Specified

HNO3 Production:
mass of NaNO3 needed = 0.00961 * (84.9947g/mol) = 0.8168g
mass of H2SO4 needed = 0.00961 * (98.079g/mol) = 0.9425g
produces 0.00961 moles * (63.01g/mol) = 0.6055g HNO3

Reaction Mixture H2SO4:
mass of H2SO4 needed for nitration mixture= 0.6055g/16 * 82 = 3.103g
mass of H2O specified for nitration mixture = 0.6055g/16 * 2 = 0.07569g

Per 1g of DNT use:
0.6055g HNO3
3.103g + 0.9425g = 4.0455g H2SO4 (anhydrous)
0.07569g H2O

Started off with H2SO4 of >95wt%. From previous experience it was known that 130g of NaHSO4 containing pH down would produce about 25g of SO3 and 1.2g of water by the method used. Since about 260-280g of NaHSO4 was used it was assumed that about 50g of SO3 and 2.4g of water would be produced.

10.67g SO3 to tie up assumed 2.4g water in SO3/Oleum produced
39.33g SO3 left from assumed total of 50g
39.33g SO3 / (80g/mol) * (18g/mol) = 8.85g of H2O it can convert to H2SO4

Assume starting with 95% H2SO4 and are aiming for 99%. There is enough SO3 (39.33g) to convert 8.85g of H2O to anhydrous H2SO4. The next time I would do it right and add enough H2SO4 to get to 98% acid and not add any water after the fact.

99% - 95% = 4% water needs to be removed

H2SO4 needed = 8.85g / 0.04 = 221.23g of 95% H2SO4 (I added 226g by mistake, but the acid still titrated at over 99% after the acid was added to the SO3)

95% H2SO4 added: 221.23g
SO3 plus H2O it binds with from SO3/Oleum produced: 13.07g
SO3 left from assumed 50g total: 39.33g
Total Produced = 273.63g of 99% H2SO4

Can Nitrate: 0.99 * 273.63g / 4.0455g = 67.0g of DNT
NaNO3 needed = 67.0 * (0.8168 g NaNO3/1g DNT) = 54.7g

Note:
Then I did something foolish and added 2.7g of H2O to bring the water concentration in the nitration mixture from about 1% to about 2%. This is not a bad thing in a way, as this amount of water can actually be advantageous for the reaction, but a lot more 98% sulfuric acid could have been produced by adding more 95% H2SO4 instead of water. This would have allowed me to nitrate much more DNT (84.2g instead of only 67.0g).

Procedure:
As stated above the oven dried sodium nitrate was added to the sulfuric acid and then put in the 1L reaction flask. The temperature was brought up to about 80C to start the reaction and then the pre-warmed and molten DNT was pipetted in to the reaction flask about 1mL at a time over the course of 2 hours. During the addition time the temperature was kept between 80 and 90C. After the addition was complete the temperature was slowly raised. By the end of the second hour the temperature was up to 130C and was kept in the 130-135C region for another 2 hours. I think I will use a lower maximum temperature next time (120-125C) since on reviewing the article previously mentioned looks as though this range generally gives the highest yield of the purest product.


SO3 Production Pictures:

Driving Off Water.jpg - 495kB SO3 Collection.jpg - 480kB SO3 Production Near End.jpg - 513kB Dissolving SO3 In Concentrated H2SO4.jpg - 354kB


Preparing Reactants: (adding the first bit of NaNO3 to the >99% H2SO4 caused it to fume profusely)

DNT and 99 percent H2SO4.jpg - 456kB Sodium Nitrate Added to 99 Percent H2SO4.jpg - 448kB


[Edited on 29-11-2014 by Hennig Brand]




"A risk-free world is a very dull world, one from which we are apt to learn little of consequence." -Geerat Vermeij
View user's profile View All Posts By User
Hennig Brand
International Hazard
*****




Posts: 1284
Registered: 7-6-2009
Member Is Offline

Mood: No Mood

[*] posted on 28-11-2014 at 07:35
Reaction Progression Pictures




DNT In Beaker And Sodium Nitrate-H2SO4 In Flask.jpg - 195kB DNT Addition Between 80 and 90C.jpg - 255kB Raising Temperature After Last DNT Addition.jpg - 261kB Beginning Of Hour 1.jpg - 263kB End of Hour 1.jpg - 231kB End of Hour 2.jpg - 244kB End of Hour 3.jpg - 255kB End of Hour 4.jpg - 240kB TNT Floating On Acid.jpg - 179kB TNT Solidifying On Acid.jpg - 181kB


[Edited on 28-11-2014 by Hennig Brand]




"A risk-free world is a very dull world, one from which we are apt to learn little of consequence." -Geerat Vermeij
View user's profile View All Posts By User
Hennig Brand
International Hazard
*****




Posts: 1284
Registered: 7-6-2009
Member Is Offline

Mood: No Mood

[*] posted on 28-11-2014 at 08:36
TNT Synthesis Post Reaction Work-Up


In total there were 2 hours of DNT addition and 4 hours of heating at elevated temperature to complete the reaction. The crude TNT was collected in two batches. The first batch, which is reported to be of much higher purity generally (COPAE, etc) is what floated and settled on the top of the mixed acid. The less pure crude TNT was precipitated from the spend nitration mixture by dilution. Since sodium nitrate was used a lot of sodium (bi)sulfate precipitated as well once the acid cooled. The mixture of crude TNT and sulfate was filtered out and well rinsed with clean water and then put into boiling water whereby the sodium (bi)sulfate dissolved and the crude TNT became molten and pooled on the bottom. The crude TNT was agitated with magnetic stirring for 15-20 minutes while molten to remove water soluble impurities. Some of the first crop of crystals (cake) collected from the surface of the nitration spent acid was recrystallized from methanol, which formed very well defined crystals and brought the melting point up from the low 70C range to around 80C. The last picture shows the very pale yellow, well formed crystals, of purified TNT.


Yield of washed and dried crude TNT was 44.6g from the first crop and 29.0g from the second crop, for a total yield of crude TNT of 73.6g.

Theoretical Yield = 67g / (182.134g/mol) * (227.13g/mol) = 83.55g

%Yield = 73.6g / 83.55g * 100% = 88.1%

Crude TNT Collecting on Acid Surface.jpg - 187kB TNT Crystals Forming and Rising.jpg - 170kB Post Reaction Dilution With Ice and Water.jpg - 173kB


Crude product from first crop washed to remove water soluble impurities.

Melting and Agitating Crude TNT Under Water 1.jpg - 216kB Melting and Agitating Crude TNT Under Water 3.jpg - 201kB Melting and Agitating Crude TNT Under Water 4.jpg - 199kB


Crude product from spent acid processing.

Crude TNT Recovered from Spent Nitration Mixture.jpg - 283kB Melting and Agitating Crude TNT Under Water 2.jpg - 213kB


First Picture: First crop on left & Second crop on right
Second Picture: Sample of first crop recrystallized from methanol with m.p. around 80C.

Crude TNT Products.jpg - 213kB TNT Melting Point Greater Than 80C After Recrystallization From Methanol.jpg - 248kB


[Edited on 29-11-2014 by Hennig Brand]




"A risk-free world is a very dull world, one from which we are apt to learn little of consequence." -Geerat Vermeij
View user's profile View All Posts By User
Rosco Bodine
Banned





Posts: 6370
Registered: 29-9-2004
Member Is Offline

Mood: analytical

[*] posted on 28-11-2014 at 08:37


Here are some more patents of interest attached
These are not directly on topic but related to sensitization schemes involving nitroaromatics including TNT and its lower nitrated precursors and analogous nitroaromatics used to sensitize NH4NO3. Small amounts of NH4ClO4 and metal salts of copper, manganese, iron, chromium, or lead can also sensitize NH4NO3 used for OB mixtures. Ca(NO3)2 and nitroparaffins are also sensitizers. Some of these more sensitive systems are sensitive even to a weakest strength available #1 blasting cap, and are probably sensitive enough for use as reactive target compositions, stump ejection convincer applications, beaver dam removers, instant hole in the ground installers, budget soft target demolition tasks, ect.

US4746380 and GB497145 and US3184351

Attachment: US4746380 glycine adduct with ammonium nitrate.pdf (572kB)
This file has been downloaded 720 times

Attachment: GB497145 Glycine Detonation Catalyst Nitronaphthalene.pdf (392kB)
This file has been downloaded 753 times

Attachment: US3184351_Trichlorethylene sensitized NH4NO3.pdf (307kB)
This file has been downloaded 636 times

View user's profile View All Posts By User
Hennig Brand
International Hazard
*****




Posts: 1284
Registered: 7-6-2009
Member Is Offline

Mood: No Mood

[*] posted on 28-11-2014 at 09:29
2.0g of TNT Initiated; 7.6mm id Al, 0.25g DDNP & 0.35g of LA (Unreinforced Configuration & ca. 6000psi Loading Pressure)


I initiated 2g of the purified TNT shown in the last picture of the last post. I used DDNP in spite of the fact that the only amount left that I had previously made was sitting on a filter paper on a bureau with dust bunnies in it, etc. It only weighed 0.25g even with all the months of accumulated dust. I decided to use it anyway and mixed it with 0.25g of lead azide and pressed that on top of the TNT. Another 0.10g of lead azide was pressed on top as well for a total of 0.35g of lead azide. A tiny bit of basic lead picrate was also used as a flash igniter. There was a detonation with a fairly large cloud of black smoke, but it wasn't very loud and the damage indicated low order detonation. A dent was made in one side of the witness plate and a nice scab was blown off the back however. It reminded me exactly of how picric acid acts when not overdriven hard enough. I have a bunch of sodium picramate stored, so I may make some DDNP soon and perform a decent test.



0.25g of Dirty DDNP.jpg - 199kB 0.25g of Lead Azide.jpg - 164kB 0.5g of 50-50 mix of DDNP and Lead Azide.jpg - 177kB Witness Plate and Cap.jpg - 150kB Set-up.jpg - 460kB Post Detonation.jpg - 277kB


The dent and scab on the right, in the witness plate shots, are from this test.

Top View of Witness Plate.jpg - 176kB Bottom view of Witness Plate.jpg - 166kB


[Edited on 29-11-2014 by Hennig Brand]




"A risk-free world is a very dull world, one from which we are apt to learn little of consequence." -Geerat Vermeij
View user's profile View All Posts By User
Rosco Bodine
Banned





Posts: 6370
Registered: 29-9-2004
Member Is Offline

Mood: analytical

[*] posted on 28-11-2014 at 09:48


You would likely get an easier initiation of TNT using an intermediate coupling charge of something more sensitive like styphnic acid, like a half gram increment substituted for a half gram of the TNT as a coupling charge and booster. The same would apply when picric acid is difficult to initiate ....using an increment of styphnic acid would have about the same effect as using half again as much initiator. The styphnic acid is distinctly easier to initiate than even picric acid, maybe requiring about 30% less initiator, and has about the same power as TNT.
View user's profile View All Posts By User
Hennig Brand
International Hazard
*****




Posts: 1284
Registered: 7-6-2009
Member Is Offline

Mood: No Mood

[*] posted on 28-11-2014 at 11:21


Sounds like a decent solution. The TNT did seem like it just needed a little more kick to get it into high gear. Even if it took as much as 0.6 or 0.7g of DDNP and 0.05 or 0.1g of lead azide to initiate TNT, it would still make reasonably sized caps. I did some research early this morning regarding critical diameters of powdered TNT. I re-found a document I had found half a year ago or so; "Critical Parameters For Detonation Propagation And Initiation of Solid Explosives". It is even more useful now, because of all the data in it regarding TNT. Here are a couple useful graphs which should help one design around any critical diameter issues. I have attached the whole document as well. The brief write-up before the second graph said that the researcher used consistent particle size and 1g/cc loading density for all tests for the graph on the right below.

Detonation Failure Limit Curves for TNT.jpg - 33kB Critical Diameter of Powdered TNT as a function of Initial Temperature.jpg - 49kB


Attachment: Critical Parameters For Detonation Propagation And Initiation of Solid Explosives (2).pdf (4.1MB)
This file has been downloaded 1436 times


[Edited on 29-11-2014 by Hennig Brand]




"A risk-free world is a very dull world, one from which we are apt to learn little of consequence." -Geerat Vermeij
View user's profile View All Posts By User
Hennig Brand
International Hazard
*****




Posts: 1284
Registered: 7-6-2009
Member Is Offline

Mood: No Mood

[*] posted on 30-11-2014 at 07:04


Here is a graph with associated equations for TNT & DNT solubility in methanol. Several of the data point values came from the text "Military Explosives" and a few came from other texts and journal articles. The solubility curves maybe shouldn't be crossing at the bottom, but the graph should be reasonable accurate at any rate. Attached is also a table taken from "Military Explosives", showing the approximate concentrations of impurities before and after purification. It is obvious that crude TNT recrystallization from alcohol, or sulfite washes, are not effective for separating DNTs from 2,4,6 TNT, but they are very effective methods for removing the other isomers of TNT. According to COPAE recrystallization from concentrated sulfuric acid is the most effective method, of the purification methods commonly used at the time, to remove DNT. However, the best solution is to run a good strong nitration and convert as much of the DNT to TNT as possible.


TNT & DNT Solubility In Methanol.jpg - 55kB Impurities Present in TNT - Before and After Purification.jpg - 82kB


[Edited on 1-12-2014 by Hennig Brand]




"A risk-free world is a very dull world, one from which we are apt to learn little of consequence." -Geerat Vermeij
View user's profile View All Posts By User
Hennig Brand
International Hazard
*****




Posts: 1284
Registered: 7-6-2009
Member Is Offline

Mood: No Mood

[*] posted on 8-12-2014 at 12:44


It looks as though the TNT purification method involving sulfuric acid from COPAE is a washing process and not a recrystallization. Apparently sulfuric acid washes were done as were/are sulfite washes. The crystals of crude TNT are agitated, as a slurry, for an extended period of time whereby chemical reactions take place with the impurities forming compounds which are much more water soluble and easily removed.



"A risk-free world is a very dull world, one from which we are apt to learn little of consequence." -Geerat Vermeij
View user's profile View All Posts By User
Hennig Brand
International Hazard
*****




Posts: 1284
Registered: 7-6-2009
Member Is Offline

Mood: No Mood

[*] posted on 13-1-2015 at 12:19
A couple updates


I didn't post this earlier because I have already posted so much in this thread in the last while.

A few weeks ago I ran another TNT synthesis. A few points of interest:

1. Maximum nitration temperature of 120-125C was used instead of 130-135C and the results were at least visually superior. Even the TNT which was precipitated from the spent nitration mixture was a nice pale yellow, not orange like the first synthesis where the temperature was taken all the way up to 135C. I suppose there could be other variables involved as well.

2. For production of DNT from toluene, when I stated earlier that the temperature should be gradually raised from 30C to 80-90C during the course of nitration mixture addition, that was an oversimplification. Especially during the first and even second nitro group addition care must be taken to prevent oxidation. Additions must be slow and even and temperature should not be allowed to climb too quickly or nitrogen dioxide will be produced in unacceptable amounts and oxidation will take place.

3. The best way to push the DNT from toluene nitration farther is to add more nitration mixture (increase from 10% excess to 20% excess perhaps). Increasing the final temperature from 80C to 90C did not appear to produce any better results at least when held for 2 hours as I did in both cases.

I got a better yield when producing SO3 the last time and made enough 98% H2SO4, from 95% H2SO4, to nitrate about 110g of DNT. Shown below is 76g of TNT from that batch, recrystallized from methanol, with melting point around 80C. There was much more product, but it was precipitated at a lower temperature, and some by dilution of the methanol with water, and was not in a dense well formed crystal structure as the sample shown was.


TNT 76g.jpg - 203kB


[Edited on 14-1-2015 by Hennig Brand]




"A risk-free world is a very dull world, one from which we are apt to learn little of consequence." -Geerat Vermeij
View user's profile View All Posts By User
Trotsky
Hazard to Others
***




Posts: 166
Registered: 6-2-2013
Location: US
Member Is Offline

Mood: No Mood

[*] posted on 18-1-2015 at 05:20


I have made some MNT using ammonium nitrate and toluene, following basically the same procedure I used for nc, though with important alterations, such as allowing the temp to remain much higher. I was worried about runaway in doing so, but either a runaway nitration of toluene is difficult or I was lucky.

I washed and rinsed with bicarb, and added it to a stronger nitration bath and allowed it to sit overnight. I plan on bringing the temp to 90C for 2hr and then cooling. Will this be sufficient to arrive at a reasonable yield of DNT?

My intent is to leave it there until I obtain WFNA or using it to sensitize ANFO enough that tannerite will be able to detonate it.
View user's profile Visit user's homepage View All Posts By User
Hennig Brand
International Hazard
*****




Posts: 1284
Registered: 7-6-2009
Member Is Offline

Mood: No Mood

[*] posted on 18-1-2015 at 09:34


If you could post the quantities and reaction conditions used it would be much easier to help you. I will offer the following though, the nitration of toluene to MNT, or even DNT, does not require the strongest acids and if run properly is a very efficient process resulting in very high yields with only a slight excess of nitric acid/nitrate. Check the stoichiometry or, even simpler, just look at the quantities I used a page back in this very thread.



"A risk-free world is a very dull world, one from which we are apt to learn little of consequence." -Geerat Vermeij
View user's profile View All Posts By User
Trotsky
Hazard to Others
***




Posts: 166
Registered: 6-2-2013
Location: US
Member Is Offline

Mood: No Mood

[*] posted on 18-1-2015 at 18:21


I'm away from my notebook but I can get you numbers if you want. I used 10% excess for the first nitration, and 20% for the second.

I wasn't sure if allowing it to sit in the nitration bath overnight before applying heat would hurt anything. This morning, however, before I went to apply heat I noticed that a mass of beautiful hairlike crystals had formed in it, descending down from a thin layer of the waxy stuff I produced in my first nitration. Obviously impossible to say for certain, but do you think this is just recrystallized MNT or has DNT formed without applying any additional heat beyond that generated when the MNT was added to the bath? I delayed the heating phase because I want to get a good photo of these crystals, they're the biggest I've made of an EM, about 2-2.5 inches in length, but ridiculously thin.
View user's profile Visit user's homepage View All Posts By User
Trotsky
Hazard to Others
***




Posts: 166
Registered: 6-2-2013
Location: US
Member Is Offline

Mood: No Mood

[*] posted on 19-1-2015 at 08:16


From MNT to DNT seems to have failed. The solution turned clear and a small, viscous layer formed on the surface, while small bubbles bubbled up. This was after 2hrs at 80C. Was this because I used AN and not KNO3? Did the AN decompose?

When the solution was poured over ice chips a very light yellow waxy looking stuff appeared and the solution turned milky and opaque, very unlike the clear solution I had before.

The almond smell is gone, but is this waxy stuff DNT? Melting pt test time I guess.


Edit: Actually, hennig, the product I had after.letting the MNT sit in nitration bath over night looked exactly.like your picture number two above. I then took that and heated it to 80C for two hours. Mistake?

[Edited on 19-1-2015 by Trotsky]
View user's profile Visit user's homepage View All Posts By User
TinkerKABOOM
Harmless
*




Posts: 2
Registered: 19-1-2015
Member Is Offline

Mood: No Mood

[*] posted on 19-1-2015 at 13:40


Can you add ammonium nitrate,sodium nitrate or potassium nitrate to the nitric acid to make a more stable yet powerful form of RDX?
View user's profile View All Posts By User
Metacelsus
International Hazard
*****




Posts: 2531
Registered: 26-12-2012
Location: Boston, MA
Member Is Offline

Mood: Double, double, toil and trouble

[*] posted on 19-1-2015 at 16:10


No. TNT and RDX are completely different, structurally.



As below, so above.

My blog: https://denovo.substack.com
View user's profile View All Posts By User
roXefeller
Hazard to Others
***




Posts: 463
Registered: 9-9-2013
Location: 13 Colonies
Member Is Offline

Mood: 220 221 whatever it takes

[*] posted on 19-1-2015 at 18:45


Ah come on. Throw him a bone. There both cyclic right? Even if RDX is heterocyclic. But to be serious he should really read more before posting.
View user's profile View All Posts By User
maleic
Harmless
*




Posts: 20
Registered: 24-12-2014
Member Is Offline

Mood: No Mood

[*] posted on 21-1-2015 at 19:40


The most powerful is probably ONC and HNIW now? Whatever, the preparation of these products are too dangerous.


View user's profile Visit user's homepage View All Posts By User
Microtek
National Hazard
****




Posts: 827
Registered: 23-9-2002
Member Is Offline

Mood: No Mood

[*] posted on 22-1-2015 at 01:05


I wouldn't say that the preparation of ONC or HNIW is particularly dangerous, however, it is difficult and expensive.

Some of the newer articles about energetic salts (eg. bis-dinitroethylnitramine derivatives) indicate a predicted performance that exceeds HNIW and is about on par with ONC.
Of course, this may be a group of materials that the software doesn't model well...
View user's profile View All Posts By User
Hawkguy
Hazard to Others
***




Posts: 326
Registered: 10-10-2014
Location: British Columbia (Canada eh!)
Member Is Offline

Mood: Body is Ready

[*] posted on 27-1-2015 at 21:47


Alright having problems. I nitrated some toluene for two hours at 20 - 25 degrees C. The result is a bright yellow solid, which melts at 30 degrees, is explosive, and forms nice crystals. I thought it was para - mononitrotoluene but the melting point is too low. I have doubts about ortho - mononitrotoluene as well because it sinks... Purification/ ideas on comp?
View user's profile View All Posts By User
Microtek
National Hazard
****




Posts: 827
Registered: 23-9-2002
Member Is Offline

Mood: No Mood

[*] posted on 27-1-2015 at 22:30


Why does its sinking affect your thinking on what it might be? Both o- and p-nitrotoluene has densities above 1 g/cc and should sink. The low melting point is probably because you have a mix of isomers, or otherwise impure product.
View user's profile View All Posts By User
 Pages:  1  ..  7    9    11  ..  13

  Go To Top