Sciencemadness Discussion Board
Not logged in [Login ]
Go To Bottom

Printable Version  
 Pages:  1  2    4
Author: Subject: Very OTC Sodium NItrite
Antiswat
International Hazard
*****




Posts: 1589
Registered: 12-12-2012
Location: Dysrope (aka europe)
Member Is Offline

Mood: dangerously practical

[*] posted on 18-3-2022 at 09:34


im gonna try the starch method asap. however it seems quite dark on my end as i have just tried using pure NaNO2, cold water and HCl with some IPA- the reaction quickly gets very hot and 2 layers seperate very quickly- quite contrary to anything ive achieved so far

i believe i also did flour, KNO3 and Ca(OH)2 - as well as without calcium hydroxide and got around same results, if not infact a bit worse
as for what im seeing, 30% yield seems incredibly optimistic. now i typically do use potassium nitrate, which is stable at much higher temperature (300*C higher?) and for now i can only pick between sodium sulfate contaminated NaNO3 or god forbid- sodium chlorate contaminated sodium nitrate. the latter can cause a spike in adrenaline. if sodium hydroxide and glucose is used, even in small amounts- didnt bother more with that yet.

as my results are not very interesting so far ill share what ive gone through

CaSO3 (well contaminated with Ca(OH)2 ) - seemed to do nothing at all
calcium sulfamate - total negative
steel wool- great potential
flour and hydroxide- great potential
lead- it should work but not having much success
ascorbic acid, reacted in solution - dont bother- very violent if mixed dry but does also work to some extent- maybe stoichiometry will make this work, or downing reaction speed with gypsum or similar.. sand?
MgAl- powder/chunks- some potential, mixture may with even very large pieces in closed atmosphere turn into a gigantic flare
sodium dithionate- total negative (solution)
iron oxalate- does work but not impressive yield



to be tried out: NaOH + NO2
NO2 from HNO3+ Cu, ascorbic can also work but will probably eat up a bunch of the formed NO2
it reacts accordingly: NaOH + NO2 = NaNO2 + NaNO3
oswald reactor leading into NaOH or even better KOH would work well, reference KNO2/KNO3 solubilities

as for crashing out KNO3, having a somewhat concentrated solution and added maybe 10-20% IPA (or ethanol) and then putting it in freezer should crash out mostly the nitrate

yet to try is Cr2O3 fused with KNO3, yielding K2CrO4 and KNO2

as for thermal decomposition- KNO3 is much more resistant to heat, i did in the past have some luck decomposing NaNO3 on hotplate (700*C hot)- ive tried this again with a new hotplate that only reaches 500*C and its just barely a slight positive for nitrite. ideally the sodium nitrite has to reach up to 800*C to efficiently decompose into sodium nitrite


purification of the nitrite can be done by converting it into IPN, distilling it off and reacting with a strong base, to create IPA and corresponding nitrite salt

cobalt and potassium combines with nitrite ions, or rather HNO2 to form a well insoluble complex called potassium cobolt hexanitrite. it does eat up some nitrite in the formation, and the complex appears very stable towards acids- so reaction with base is one of few ways ive found viable to make the nitrite useful in it- i didnt try concentrated sulfuric acid on it.

otherwise to have the crude portion precipitated out as KNO2/KNO3 in freezer with some alcohol added would remove most of the nitrate. KNO3 is 16g/100mL at 0*C in water, lower temperature aswell as alcoholic solution will further down the solubility while KNO2 is soluble at 200+g/100mL




~25 drops = 1mL @dH2O viscocity - STP
Truth is ever growing - but without context theres barely any such.

https://en.wikipedia.org/wiki/Solubility_table
http://www.trimen.pl/witek/calculators/stezenia.html
View user's profile View All Posts By User
clearly_not_atara
International Hazard
*****




Posts: 2310
Registered: 3-11-2013
Member Is Offline

Mood: Big

[*] posted on 18-3-2022 at 10:22


After some further consideration, it seems like the goal is a less energetic reducing agent. Perhaps a formate salt would be ideal:

2 KNO3 + 2 KHCO2 >> K2CO3 + 2 KNO2 + CO2 + H2O (g)

Or maybe even oxalate (if it reacts):

KNO3 + Na2C2O4 >> KNO2 + Na2CO3 + CO2

A sodium-potassium nitrate eutectic might be useful, but potassium formate already melts at 165 C with decomposition from 280-335 C:

https://pubs.acs.org/doi/pdf/10.1021/es60044a002

[Edited on 18-3-2022 by clearly_not_atara]




[Edited on 04-20-1969 by clearly_not_atara]
View user's profile View All Posts By User
Lionel Spanner
Harmless
*




Posts: 27
Registered: 14-12-2021
Location: South Yorkshire, UK
Member Is Offline


[*] posted on 18-3-2022 at 11:48


Quote: Originally posted by S.C. Wack  
Nitrite can be determined quantitatively by titration of a solution with permanganate in warm dilute sulfuric acid: 2KMnO4 + 5KNO2 + 3H2SO4 -> 5KNO3 + 3H2O + 2MnSO4 + K2SO4

[Edited on 17-3-2022 by S.C. Wack]

Another way is titration with ceric sulphate with ferroin as an indicator. This is advantageous if, like me, you don't have the patience for permanganate titrations.

(At my last job, I often carried out permanganate titrations to determine hydrogen peroxide content of peroxide cream, and it'd get painfully slow towards the end point; a single titration would typically take around 30-40 minutes.)

[Edited on 18-3-2022 by Lionel Spanner]




Industrial chemist rediscovering the practical pleasures of pure chemistry.
View user's profile View All Posts By User
Keras
International Hazard
*****




Posts: 530
Registered: 20-8-2018
Location: (48, 2)
Member Is Offline


[*] posted on 21-3-2022 at 00:55


Quote: Originally posted by Keras  
Still, I’m surprised that the sodium dithionite method doesn’t work. If I follow the CRC Handbook, we have:

NO₃⁻ + H₂O + 2 e⁻ ⇋ NO₂⁻ + 2 OH⁻ e = 0.01 V
2 SO₃⁻ + 2 H₂O + 2 e⁻ ⇋ S₂O₄²⁻ + 4 OH⁻ e = -1.12 V

So logically, this reaction:

NO₃⁻ + 2 OH⁻ + S₂O₄²⁻ → NO₂⁻ + 2 SO₃⁻

should have e = 1.13 V, which is a pretty high K and should be almost quantitative, no?



Darn, that was totally wrong :(

Should be:

NO₃⁻ + S₂O₄²⁻ + 2 OH⁻ → NO₂⁻ + 2 SO₃²⁻ + H₂O

In any case, it doesn’t seem to work. I tried to heat the solution, and still no luck; so the problem is not kinetic. Why this does not work is beyond me.
View user's profile View All Posts By User
clearly_not_atara
International Hazard
*****




Posts: 2310
Registered: 3-11-2013
Member Is Offline

Mood: Big

[*] posted on 21-3-2022 at 06:27


The ions electrostatically repel; there is no mechanism to bring them together. Kinetically, decomposition of dithionite is probably faster than rxn with nitrate under any realistic conditions. Maybe you could reduce an alkyl nitrate with dithionite, but that's a poor choice safety-wise.



[Edited on 04-20-1969 by clearly_not_atara]
View user's profile View All Posts By User
Antiswat
International Hazard
*****




Posts: 1589
Registered: 12-12-2012
Location: Dysrope (aka europe)
Member Is Offline

Mood: dangerously practical

[*] posted on 21-3-2022 at 07:14


@clearly_not_atara
KNO3/NaNO3 mix have been used as a thermally stable salt mix for solar panels or something relating to solar panels
avoid KNO3.

ive had great success using lead, finally. but it requires sodium nitrate
you get about 200g Pb3O4 per 80g of nitrite, so you will need a bunch of lead if you wanna try it or utilize it
i havent looked much into turning Pb3O4 into Pb, which would be very handy..

procedure was as simply as just dump NaNO3 and Pb into a crucible, put on hotplate and cover with insulated pot, Al2O3 wool secured through a hole with a bolt+washer. my hotplate gets to 500*C which is plenty fine, you wanna stir the mixture up a few times as the reaction happens at the surface of the lead and Pb3O4 forms
it seems quite effective, best to do is to pour the molten content from crucible out into a metal tray, discard most of the lead for further use and then dissolve it in hot water, filter it and then turn it into IPN right away
then you suck out the IPN and store in bulk, distill it at 40*C and hydrolyze with NaOH to get- practically pure NaNO2

as it appears KNO3 + Pb doesnt work, i would steer clear of fractionally crystallizing nitrate/nitrite

if one was to construct oswald device and pump the NOx into KOH, one would get KNO3/KNO2 mix, which then can be fractionally crystallized, 60g is doable a day in industrial setup, maybe 30g with a really great homebuilt setup- loose number ive gotten from setups found on youtube with vague explanations of yield
NO would react with NaOH to form NaNO2- but forming NO doesnt as i see it seem viable, if NOx could be turned into NO that would make for very great yields with oswald

in any case, making nitrite it appears that you wanna avoid using potassium nitrate as starting material as its quite stable compared to sodium nitrate. i did also do 100g KNO3 + 50g Ca(OH)2 + 32g flour and it had some yields but not super impressive, i highly doubt it was as high as 30% yield, but it does appear to increase yields when you scale it up




~25 drops = 1mL @dH2O viscocity - STP
Truth is ever growing - but without context theres barely any such.

https://en.wikipedia.org/wiki/Solubility_table
http://www.trimen.pl/witek/calculators/stezenia.html
View user's profile View All Posts By User
clearly_not_atara
International Hazard
*****




Posts: 2310
Registered: 3-11-2013
Member Is Offline

Mood: Big

[*] posted on 21-3-2022 at 09:04


Nitrate salt eutectics are used as heat storage fluids with a wide liquid range and low corrosive potential in solar thermal installations to allow dispatchable electricity generation; could this be what you mean?

Nitrate salt decomposition is not exothermic in the absence of acids (incl. CO2) so as long as these salts are sealed they work great. In fact:
2 Na2O + 2 N2 + 5 O2 >> 4 NaNO3
is "exothermic" but kinetically impossible (for all we know).




[Edited on 04-20-1969 by clearly_not_atara]
View user's profile View All Posts By User
Keras
International Hazard
*****




Posts: 530
Registered: 20-8-2018
Location: (48, 2)
Member Is Offline


[*] posted on 21-3-2022 at 11:57


Quote: Originally posted by clearly_not_atara  
The ions electrostatically repel; there is no mechanism to bring them together. Kinetically, decomposition of dithionite is probably faster than rxn with nitrate under any realistic conditions. Maybe you could reduce an alkyl nitrate with dithionite, but that's a poor choice safety-wise.


Of course, you’re right. I’m dumb.

By the way, I just tested sodium dithionite with ferrous chloride, and that gave me iron powder, which immediately oxidised when exposed to air.

[Edited on 21-3-2022 by Keras]
View user's profile View All Posts By User
Keras
International Hazard
*****




Posts: 530
Registered: 20-8-2018
Location: (48, 2)
Member Is Offline


[*] posted on 22-3-2022 at 01:08


Is there any reason why zinc or iron could not reduced nitrates?

Since NO₃⁻ + H₂O + 2 e⁻ ⇋ NO₂⁻ + 2 OH⁻ e = 0.01 V, every metal that HCl oxidised should be able to reduce nitrates to nitrites, no?
Like: NO₃⁻ + Zn + H₂O → Zn(OH)₂ + NO₂⁻
View user's profile View All Posts By User
Keras
International Hazard
*****




Posts: 530
Registered: 20-8-2018
Location: (48, 2)
Member Is Offline


[*] posted on 22-3-2022 at 11:47


Update: I did that. I just dropped a screw made of zinc plated steel into a solution of a few hundredths of milligrams of KNO₃.

Heated it up a bit, let it evaporate at r.t.

Got some beautiful transparent, needle like crystals. Does that correspond to potassium nitrate?


IMG_1011.JPG - 1.2MB
View user's profile View All Posts By User
Antiswat
International Hazard
*****




Posts: 1589
Registered: 12-12-2012
Location: Dysrope (aka europe)
Member Is Offline

Mood: dangerously practical

[*] posted on 22-3-2022 at 15:01


@keras please read the other posts in this thread

interesting with dithionite and iron, this in solution could maybe work for nitrite- it could maybe work to produce zinc powder? i have a bit of it that stuff- honestly i feel done with experimenting with producing nitrites, i have found working methods by now




~25 drops = 1mL @dH2O viscocity - STP
Truth is ever growing - but without context theres barely any such.

https://en.wikipedia.org/wiki/Solubility_table
http://www.trimen.pl/witek/calculators/stezenia.html
View user's profile View All Posts By User
Antiswat
International Hazard
*****




Posts: 1589
Registered: 12-12-2012
Location: Dysrope (aka europe)
Member Is Offline

Mood: dangerously practical

[*] posted on 14-6-2022 at 03:21


NOCl + NaOH = NaNO2 + NaCl + H2O

HCl + KNO3 would form NOCl? this is much like NO2 + NaOH except- this one may be more selective as all the nitrogen compounds goes to NaNO2 where for instance NO2 + NaOH turns into i believe 1:1 nitrate/nitrite

https://pubs.acs.org/doi/abs/10.1021/jp972143m

i did also find other - seemingly automated saying:
NOCl + NaOH = NaNO3 + NO + NaCl + H2O
NaOH + NOCl = NaCl + HNO2





~25 drops = 1mL @dH2O viscocity - STP
Truth is ever growing - but without context theres barely any such.

https://en.wikipedia.org/wiki/Solubility_table
http://www.trimen.pl/witek/calculators/stezenia.html
View user's profile View All Posts By User
clearly_not_atara
International Hazard
*****




Posts: 2310
Registered: 3-11-2013
Member Is Offline

Mood: Big

[*] posted on 14-6-2022 at 06:07


I think it could work, but it's my understanding that the offgas from aqua regia is a lot more complicated than just NOCl. There's also some NO2, NO, and Cl2 in there.

Also, the variation I had heard most often was sending just nitric oxide -- NO without NO2 -- through NaOH, which apparently still gives nitrite (and nitrous? or something?). But I'm not sure how to generate this reliably in a controlled fashion -- the dilution of your HNO3 will change as it reacts, if you use metal reduction, so obtaining a steady stream of NO is non-obvious.




[Edited on 04-20-1969 by clearly_not_atara]
View user's profile View All Posts By User
Antiswat
International Hazard
*****




Posts: 1589
Registered: 12-12-2012
Location: Dysrope (aka europe)
Member Is Offline

Mood: dangerously practical

[*] posted on 19-6-2022 at 03:43


i did a run where i used 100ish mL of HNO3 and maybe 15g copper, boiled down the solution a bit before reacting it with IPA + HCl, acquired about 25mL IPN - a slight bit tainted with IPA, it appears the IPA can both be in the water phase but also gets pulled out into the IPN
the IPN formed quickly pulls the IPA out of solution and seperates

i need to scale this up with proper dripping mechanism
i have 1 reaction flask with HNO3 being dripped into it, 1 airpump going in to force the gasses through (and eventually clean apparatus, and avoid suckback)
and then distillation bridge going to next flask to collect water, HNO3 and avoid suckback, then hose attachment comes out of this to bubble into NaOH

biggest challenge in this whole thing is keeping apparatus cold, getting the nitric acid and also having a working setup- dripping funnel, this can maybe be discarded by using lower conc HNO3 and dumping copper in like that

you get your second crop of NO2 by decomposing Cu(NO3)2 at 220*C, this gives same amount of NO2 as the nitric acid reaction does




~25 drops = 1mL @dH2O viscocity - STP
Truth is ever growing - but without context theres barely any such.

https://en.wikipedia.org/wiki/Solubility_table
http://www.trimen.pl/witek/calculators/stezenia.html
View user's profile View All Posts By User
clearly_not_atara
International Hazard
*****




Posts: 2310
Registered: 3-11-2013
Member Is Offline

Mood: Big

[*] posted on 19-6-2022 at 06:16


How are you differentiating isopropyl nitrite from isopropyl nitrate?



[Edited on 04-20-1969 by clearly_not_atara]
View user's profile View All Posts By User
BAV Chem
Harmless
*




Posts: 16
Registered: 9-5-2021
Location: In the shed
Member Is Offline

Mood: Mad at yellow sulfur chem

[*] posted on 20-6-2022 at 02:54


Quote: Originally posted by Antiswat  
i did a run where i used 100ish mL of HNO3 and maybe 15g copper, boiled down the solution a bit before reacting it with IPA + HCl, acquired about 25mL IPN - a slight bit tainted with IPA, it appears the IPA can both be in the water phase but also gets pulled out into the IPN
the IPN formed quickly pulls the IPA out of solution and seperates

i need to scale this up with proper dripping mechanism
i have 1 reaction flask with HNO3 being dripped into it, 1 airpump going in to force the gasses through (and eventually clean apparatus, and avoid suckback)
and then distillation bridge going to next flask to collect water, HNO3 and avoid suckback, then hose attachment comes out of this to bubble into NaOH


Hey Antiswat, I can't quite follow this procedure here. I would think you added IPA and HCl to a solution of Cu(NO3)2 ...which produced isopropyl nitrite? Now that seems like it wouldn't work.
Or did you just react IPA, HCl, HNO3 and Cu directly to afford a whole slew of reactions which end up producing isopropyl nitrite amongst other things.

Either way this brings me to another idea which might just work to make nice and pure alkali nitrite.
I'm thinking if you react nitric acid with a large excess of EtOH you'll get a whole bunch of interesting reaction products: NOx gasses, HNO2, Acetaldehyde, Acetic acid, CO2... and eventually Ethyl nitrite. The latter is a gas and could easily be bubbled through an ethanolic solution of NaOH or KOH, affording the corresponding alkali nitrite which precipitates out.

I've already done some test with ethanol and nitric acid. If a large excess of EtOH is used the resulting gas is colorless and certainly smells like Ethyl nitrite. It also burns with the characteristic white flame of nitrite esters.
Quite possibly one could even substitute nitric acid for a nitrate salt and a mineral acid.

What do you think about this approach?

[Edited on 20-6-2022 by BAV Chem]




You forget what you know but alas you don't know what you forgot...
View user's profile View All Posts By User
Antiswat
International Hazard
*****




Posts: 1589
Registered: 12-12-2012
Location: Dysrope (aka europe)
Member Is Offline

Mood: dangerously practical

[*] posted on 20-6-2022 at 06:53


the procedure was reacting Cu with HNO3 to form Cu(NO3)2 and NOx, was was pumped into NaOH to yield NaNO3/NaNO2- this solution was reduced and then reacted with IPA/HCl to form IPN

i have thought of directly pumping it into IPN but it might give other compounds as well that you then have to deal with seperating, volatile ones, potentially explosive.

HNO3 and EtOH? interesting. ascorbic acid also works despite the ascorbic acid reacts with the NOx

https://en.wikipedia.org/wiki/Calcium_nitrite

this would explain that NOx + hydroxide is indeed a quite viable method. burning dry ammonia is also an idea, but thats a more complicated apparatus, imo. oh i might also stress... ethyl nitrate may derive from HNO3+ EtOH. methyl nitrate is a high-explosive with decent sensitivity. thiscould be a dangerous reaction.

upon reading your writings on Etnitrite- thats very interesting... Etnitrite is like 13*C boiling point or something iirc, i would try this with IPA where the resulting nitrite is boiling at about- hm 40*C? this is much easier to handle, less volatile, you will need to react this chemical with NaOH to once again produce the desired nitrite salt.

NaHSO4 + nitrate could do yeah, though i think activating the NaHSO4 takes some heat- you might have to distill on it seperately first, thus arriving at HNO3
cant platinum or something catalyse the decomposition of nitric acid? there has got to be some more simple way to this

i would indeed say the nitrite flame is quite likely .... buuut that could also be the same with nitrate? so acquire an amount of this material and test boiling point maybe, i usually just put digital thermometer into a testtube and carefully heat it

maybe we should look further into the decomposition of HNO3? as i mentioned, Cu(NO3)2 - which can be made by Ca(NO3)2 + CuSO4 decomposes at 220*C to yield decent amounts of NO2 as it turns into CuO. if some NO forms thats actually much better than NO2, maybe we wanna also look into turning NO2 into NO? my last searches on this yielded not much




~25 drops = 1mL @dH2O viscocity - STP
Truth is ever growing - but without context theres barely any such.

https://en.wikipedia.org/wiki/Solubility_table
http://www.trimen.pl/witek/calculators/stezenia.html
View user's profile View All Posts By User
Hexabromobenzene
Hazard to Self
**




Posts: 55
Registered: 27-4-2021
Member Is Offline


[*] posted on 22-6-2022 at 17:40


Sodium nitrite is a byproduct of the production of nitric acid from the air. Absorbing gases after water by sodium carbonate solution you will have pure nitrite with almost no nitrate

To get pure nitrite, you need an equivalent mixture of NO and NO2.

If you do not want to get nitric acid from the air, then you can get nitrite directly from the air. Reduce the maximum volume of the oxidation chamber for nitrous gases

You will need a transformer from neon lamps for 7-15 kilovolts.
You can easily have a nitric acid output of up to 10 grams per kilowatt hour or more.
Nitric acid and sodium nitrite can be free if you find a wire with 220 volts without an electric meter))

[Edited on 23-6-2022 by Hexabromobenzene]
View user's profile View All Posts By User
clearly_not_atara
International Hazard
*****




Posts: 2310
Registered: 3-11-2013
Member Is Offline

Mood: Big

[*] posted on 23-6-2022 at 06:05


So what you're saying is, if you feed NOx through neutral water first, and the unabsorbed gases through alkali, the second flask will contain almost exclusively nitrite?

It makes sense, since the secondary flow should be mostly NO with little NO2. It may be relevant in this context that iron (III) nitrate releases practically all of its NOx at just over 150 C:

https://link.springer.com/content/pdf/10.1023/A:101011281401...


[Edited on 23-6-2022 by clearly_not_atara]




[Edited on 04-20-1969 by clearly_not_atara]
View user's profile View All Posts By User
 Pages:  1  2    4

  Go To Top