Sciencemadness Discussion Board
Not logged in [Login ]
Go To Bottom

Printable Version  
 Pages:  1  ..  41    43
Author: Subject: Acetic anhydride preparation
clearly_not_atara
International Hazard
*****




Posts: 2694
Registered: 3-11-2013
Member Is Offline

Mood: Big

[*] posted on 24-5-2023 at 07:30


P2O5 alone was tried and failed extensively. Using calcium chloride as a cofactor is new, though.



[Edited on 04-20-1969 by clearly_not_atara]
View user's profile View All Posts By User
ManyInterests
National Hazard
****




Posts: 841
Registered: 19-5-2019
Member Is Offline


[*] posted on 24-5-2023 at 07:55


Quote: Originally posted by clearly_not_atara  
P2O5 alone was tried and failed extensively. Using calcium chloride as a cofactor is new, though.


The word cofactor is new to me. I looked up what it means and I think I got the concept (organic chemistry isn't my focus). But to make it clear, do you think the simple use of anhydrous calcium chloride and glacial acetic acid is sufficient to produce acetic anhydride? As well as possible anhydrous sodium acetate?

Because if that is the case, I can probably make it quite easily without the need for difficult to obtain and/or very toxic chemicals.
View user's profile View All Posts By User
solo
International Hazard
*****




Posts: 3967
Registered: 9-12-2002
Location: Estados Unidos de La Republica Mexicana
Member Is Offline

Mood: ....getting old and drowning in a sea of knowledge

[*] posted on 24-5-2023 at 08:13


......this might help...solo


Reference Information

https://www.chegg.com/learn/topic/synthesis-of-acetic-anhydr...




It's better to die on your feet, than live on your knees....Emiliano Zapata.
View user's profile View All Posts By User
clearly_not_atara
International Hazard
*****




Posts: 2694
Registered: 3-11-2013
Member Is Offline

Mood: Big

[*] posted on 24-5-2023 at 08:27


CaCl2 alone will not do it. See:

https://pubs.acs.org/doi/pdf/10.1021/ja01852a002




[Edited on 04-20-1969 by clearly_not_atara]
View user's profile View All Posts By User
ManyInterests
National Hazard
****




Posts: 841
Registered: 19-5-2019
Member Is Offline


[*] posted on 24-5-2023 at 08:47


Quote: Originally posted by clearly_not_atara  
CaCl2 alone will not do it. See:

https://pubs.acs.org/doi/pdf/10.1021/ja01852a002


Yes I forgot, sulfuric acid is involved. But that is something I can easily obtain and have extensive experience with. It is no biggie. I will read that pub and edit this response later.
View user's profile View All Posts By User
dettoo456
Hazard to Others
***




Posts: 178
Registered: 12-9-2021
Member Is Offline


[*] posted on 24-5-2023 at 10:59


Quote: Originally posted by BAV Chem  
Quote: Originally posted by dicyanin  


GB299342 looks interesting as sodium metaphosphates are commercially available OTC. Sodium hexametaphosphate is a common food additive (E452i) and water softener, and sodium trimetaphosphate is used in construction. Calgon according to some sources is sodium polymetaphosphate Na2[Na4PO3]6 but polycarboxylate to others. Still I've seen 1lb bags of pure sodium hexametaphosphate offered for under 10 euros as a water softener.

The patent from 1927 claims "the production of acetic anhydride from a mixture of sodium metaphosphate, anhydrous sodium acetate, and infusorial earth moistened with glacial acetic acid, the reaction being effected at 150-180°C". Sounds too good to be true, but it could work, and yield wouldn't really be an issue considering the requirements. I've heard mixed results from a similar low-yielding process, heating sodium pyrosulfate with sodium acetate.



That patent (see attachment) also claims that acetic anhydride can be produced by heating a mixture of glacial acetic acid and sodium hexametaphosphate which doesn't work as far as I can tell.

Here's what I did:
127g of anhydrous sodium acetate and 170g of concentrated (~90%) phosphoric acid were thoroughly mixed and refluxed for some hours. I then distilled off the concentrated acetic acid that was formed in the reaction and heated the remaining sodium dihydrogen phosphate to ~700°C in order to convert it into some nice and glassy sodium hexametaphospate. This was broken up and ground to a more or less fine powder. Next all of the hexametaphosphate and acetic acid was refluxed in a round bottom flask for another several hours. During this time the solid really caked to the bottom of the flask (stirring would've helped). Finally I distilled everything to dryness but the vapour temperature never rose above 110°C. Everything I got was some (nearly) glacial acetic acid with a freezing point of 10°C.

Glacial acetic acid should freeze at 16°C
and it's meant to boil at ~120°C.
Acetic anhydride boils at ~140°C.


That doesn't quite mean it can't work at higher temperatures but simply boiling sodium hexametaphosphate in acetic acid doesn't do it. I'm kinda skeptical about the rest of that patent now.



[Edited on 9-4-2023 by BAV Chem]


BAV, I’m not sure if the hexametaphosphate salts would do the trick as described in that patent but metaphosphoric acid would definitely dehydrate GAA to Ac2O, along with most, if not all carboxylic acids to their anhydrides - I can’t find the patent at the moment but o know of at least two old ones from like the early 1900s that mentioned MPA and GAA with some other acyl anhydrides.

I’m not sure if someone else in the thread mentioned it before, but MPA (metaphosphoric acic) is a fantastic dehydrating agent. Magpie demonstrated its ability to generate oleum from 98-% H2SO4 even. You will need a quartz glass setup to run the rxns in though.

The SM thread ‘(HPO3)n Dehydrating agent (polyphosphoric or metaphosphoric acid)’ has some more info and Magpie’s write up is very detailed.
View user's profile View All Posts By User
Lionel Spanner
Hazard to Others
***




Posts: 163
Registered: 14-12-2021
Location: near Barnsley, UK
Member Is Offline


[*] posted on 24-5-2023 at 16:31


I posted this method for acetic anhydride a little while back, while apparently not seeing this stickied thread. It's probably better placed here than in its own thread.
https://www.sciencemadness.org/whisper/viewthread.php?tid=15...




Industrial chemist rediscovering the practical pleasures of pure chemistry.
Sometimes I make videos - https://www.youtube.com/@yorkshirechemist
View user's profile View All Posts By User
tyro
Harmless
*




Posts: 31
Registered: 22-12-2021
Member Is Offline


[*] posted on 15-8-2023 at 09:29


Quote: Originally posted by dettoo456  
Quote: Originally posted by BAV Chem  
Quote: Originally posted by dicyanin  


GB299342 looks interesting as sodium metaphosphates are commercially available OTC. Sodium hexametaphosphate is a common food additive (E452i) and water softener, and sodium trimetaphosphate is used in construction. Calgon according to some sources is sodium polymetaphosphate Na2[Na4PO3]6 but polycarboxylate to others. Still I've seen 1lb bags of pure sodium hexametaphosphate offered for under 10 euros as a water softener.

The patent from 1927 claims "the production of acetic anhydride from a mixture of sodium metaphosphate, anhydrous sodium acetate, and infusorial earth moistened with glacial acetic acid, the reaction being effected at 150-180°C". Sounds too good to be true, but it could work, and yield wouldn't really be an issue considering the requirements. I've heard mixed results from a similar low-yielding process, heating sodium pyrosulfate with sodium acetate.



That patent (see attachment) also claims that acetic anhydride can be produced by heating a mixture of glacial acetic acid and sodium hexametaphosphate which doesn't work as far as I can tell.

Here's what I did:
127g of anhydrous sodium acetate and 170g of concentrated (~90%) phosphoric acid were thoroughly mixed and refluxed for some hours. I then distilled off the concentrated acetic acid that was formed in the reaction and heated the remaining sodium dihydrogen phosphate to ~700°C in order to convert it into some nice and glassy sodium hexametaphospate. This was broken up and ground to a more or less fine powder. Next all of the hexametaphosphate and acetic acid was refluxed in a round bottom flask for another several hours. During this time the solid really caked to the bottom of the flask (stirring would've helped). Finally I distilled everything to dryness but the vapour temperature never rose above 110°C. Everything I got was some (nearly) glacial acetic acid with a freezing point of 10°C.

Glacial acetic acid should freeze at 16°C
and it's meant to boil at ~120°C.
Acetic anhydride boils at ~140°C.


That doesn't quite mean it can't work at higher temperatures but simply boiling sodium hexametaphosphate in acetic acid doesn't do it. I'm kinda skeptical about the rest of that patent now.



[Edited on 9-4-2023 by BAV Chem]


BAV, I’m not sure if the hexametaphosphate salts would do the trick as described in that patent but metaphosphoric acid would definitely dehydrate GAA to Ac2O, along with most, if not all carboxylic acids to their anhydrides - I can’t find the patent at the moment but o know of at least two old ones from like the early 1900s that mentioned MPA and GAA with some other acyl anhydrides.

I’m not sure if someone else in the thread mentioned it before, but MPA (metaphosphoric acic) is a fantastic dehydrating agent. Magpie demonstrated its ability to generate oleum from 98-% H2SO4 even. You will need a quartz glass setup to run the rxns in though.

The SM thread ‘(HPO3)n Dehydrating agent (polyphosphoric or metaphosphoric acid)’ has some more info and Magpie’s write up is very detailed.


When I read the patent, it seemed to indicate working under pressure to achieve higher temperatures when using the metaphosphate salts and only GAA (middle of page 9). And. In examples 1 and 2, where sodium metaphosphate, sodium acetate, and GAA is used, GAA is "added to the mixture at such speed that [it] appears just moist". Presumably gradual addition of the GAA, as stated in the latter case, would allow for higher reaction temperatures to be achieved at ambient pressure.

It might be worth giving this another shot. I may make an attempt when I have some free time again.
View user's profile View All Posts By User
clearly_not_atara
International Hazard
*****




Posts: 2694
Registered: 3-11-2013
Member Is Offline

Mood: Big

[*] posted on 15-8-2023 at 12:52


Quote:
BAV, I’m not sure if the hexametaphosphate salts would do the trick as described in that patent but metaphosphoric acid would definitely dehydrate GAA to Ac2O, along with most, if not all carboxylic acids to their anhydrides - I can’t find the patent at the moment but o know of at least two old ones from like the early 1900s that mentioned MPA and GAA with some other acyl anhydrides.

Previous tests reported in this thread by multiple users show that metaphosphoric acid does not produce any isolable AA under any conditions.

Trimetaphosphoric acid H3P3O9 is a superacid at the first deprotonation (pKa < -10) which catalyzes uncontrolled aldol condensation of carboxylic anhydrides. Whether it could be used for benzoic or pivalic anhydrides might be an interesting question; whether it works for AA has been answered with a resounding "no" and also a "why don't people read the thread before posting this crap?".




[Edited on 04-20-1969 by clearly_not_atara]
View user's profile View All Posts By User
tyro
Harmless
*




Posts: 31
Registered: 22-12-2021
Member Is Offline


[*] posted on 15-8-2023 at 16:54


clearly_not_atara - Apologies for resurrecting a previously disproven route. I've read through this thread casually a few times, but it's a considerable amount of information to retain.

I feel like it would be useful to have a table or some such which lists discussed routes along with whatever conclusions have been drawn for massive threads like this. Problem is, it would take a fair bit of effort, and I'm not sure how much it would help in the end. Adding a section in the wiki, a Google spreadsheet... etc. Aside from the maintenance of such a document, the key would be to have a good way of raising visibility in all parts of the thread in order to prevent cyclical comments.

I'd be interested in any thoughts you might have on this.
View user's profile View All Posts By User
WalterB
Harmless
*




Posts: 5
Registered: 1-12-2023
Location: FL black blotter
Member Is Offline

Mood: There's More Than One of Everything

[*] posted on 9-12-2023 at 21:15


Hi.
Just wondering. This online synthesis of Ac2O doesn´t work?
Anhydrous sodium acetate, dropping acetyl chloride, kept protected from moisture with calcium chloride tube.. than distilled 2x. of course there is more to do, this but this is the base.
View user's profile View All Posts By User
clearly_not_atara
International Hazard
*****




Posts: 2694
Registered: 3-11-2013
Member Is Offline

Mood: Big

[*] posted on 9-2-2024 at 08:18


I just don't think it's considered interesting. Mostly we're interested in preparing acetic anhydride without the use of the strong dehydrating reagents that require hazmat shipping and attract regulatory scrutiny.

But like the bromine thread, this one has mostly been "solved" by the acetonitrile + HCl method and/or the benzoic acid thermal dehydration (260 C) with catalytic phthalic acid (to benzoic anhydride, therefrom to Ac2O). The remaining interest is further simplifying those methods, like maybe you can use TsOH + NaCl in MeCN + AcOH instead of gassing. Maybe diglycolic acid or adipic acid is easier to use than phthalic. Etc.

EDIT: not adipic, unfortunately: https://pubs.rsc.org/en/content/articlelanding/1927/jr/jr927...

[Edited on 9-2-2024 by clearly_not_atara]




[Edited on 04-20-1969 by clearly_not_atara]
View user's profile View All Posts By User
Keras
National Hazard
****




Posts: 772
Registered: 20-8-2018
Location: (48, 2)
Member Is Offline


[*] posted on 9-2-2024 at 10:17


Quote: Originally posted by clearly_not_atara  
I just don't think it's considered interesting. Mostly we're interested in preparing acetic anhydride without the use of the strong dehydrating reagents that require hazmat shipping and attract regulatory scrutiny.


I’m not sure why the SCl route isn't more used. Sure it needs synthesising SCl, but that’s not such a hassle.
View user's profile View All Posts By User
clearly_not_atara
International Hazard
*****




Posts: 2694
Registered: 3-11-2013
Member Is Offline

Mood: Big

[*] posted on 9-2-2024 at 14:22


S2Cl2 is not so bad itself, but it's infamous for ruining any container you keep it in. So you probably want to use it all quickly after you make it. But that's difficult for the on-again, off-again work most of us do.



[Edited on 04-20-1969 by clearly_not_atara]
View user's profile View All Posts By User
Loptr
International Hazard
*****




Posts: 1347
Registered: 20-5-2014
Location: USA
Member Is Offline

Mood: Grateful

[*] posted on 10-2-2024 at 09:06


Quote: Originally posted by clearly_not_atara  
I just don't think it's considered interesting. Mostly we're interested in preparing acetic anhydride without the use of the strong dehydrating reagents that require hazmat shipping and attract regulatory scrutiny.

But like the bromine thread, this one has mostly been "solved" by the acetonitrile + HCl method and/or the benzoic acid thermal dehydration (260 C) with catalytic phthalic acid (to benzoic anhydride, therefrom to Ac2O). The remaining interest is further simplifying those methods, like maybe you can use TsOH + NaCl in MeCN + AcOH instead of gassing. Maybe diglycolic acid or adipic acid is easier to use than phthalic. Etc.

EDIT: not adipic, unfortunately: https://pubs.rsc.org/en/content/articlelanding/1927/jr/jr927...

[Edited on 9-2-2024 by clearly_not_atara]


clearlynotatara,

Has the benzoic acid dehydration with phthalic anhydride been discussed on this forum before? I tried to find it using Google to no avail.

That would be interesting because you can recycle the phthalic acid.

[Edited on 10-2-2024 by Loptr]




"Question everything generally thought to be obvious." - Dieter Rams
View user's profile View All Posts By User
clearly_not_atara
International Hazard
*****




Posts: 2694
Registered: 3-11-2013
Member Is Offline

Mood: Big

[*] posted on 10-2-2024 at 17:30


Loptr: It was discussed on the previous page. In order to better keep track of the enormous amount of information in this thread, I have updated the Wiki articles:

http://www.sciencemadness.org/smwiki/index.php/Organic_acid_...

http://www.sciencemadness.org/smwiki/index.php/Acyl_chloride

Perhaps the article "organic acid anhydride" should be moved to "carboxylic anhydride" in order to distinguish it from other anhydrides such as the sulfonic anhydrides, which are prepared differently.

Attached is the reference describing the preparation of acetic anhydride in excellent yields by pyrolysis of silver acetate at 380-400 C in an argon atmosphere. This reaction is widely discussed but poorly understood.

Attachment: kirshenbaum1953.pdf (667kB)
This file has been downloaded 66 times





[Edited on 04-20-1969 by clearly_not_atara]
View user's profile View All Posts By User
clearly_not_atara
International Hazard
*****




Posts: 2694
Registered: 3-11-2013
Member Is Offline

Mood: Big

[*] posted on 11-2-2024 at 22:21


I can't edit that post anymore, but I wanted to add that in the absence of phthalic acid, a high-boiling dicarboxylic acid can probably be obtained by the Diels-Alder cyclocondensation of itaconic anhydride, formed by pyrolysis of citric acid, with alpha-phellandrene, found in dill essential oil. I think this is a simpler than trying to oxidize naphthalene or naproxen. Dill oil is surprisingly popular among the hippies and is about 1/3 alpha-phellandrene; the other components probably won't interfere with the cyclization.



[Edited on 04-20-1969 by clearly_not_atara]
View user's profile View All Posts By User
solo
International Hazard
*****




Posts: 3967
Registered: 9-12-2002
Location: Estados Unidos de La Republica Mexicana
Member Is Offline

Mood: ....getting old and drowning in a sea of knowledge

[*] posted on 15-2-2024 at 11:02


Reference Information



Base-Mediated Synthesis of Anhydrides from Activated Amides
Iliyasu Aliyu Bashir and Sunwoo Lee
J. Org. Chem.
2023, 88, 9, 6159–6167
doi:10.1021/acs.joc.2c03098




ABSTRACT:
Symmetrical anhydrides were synthesized from activated amides such as N-benzoylsaccharins and N-Boc-protected benzamides. The activated amides reacted with H2O in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) at 25 °C to produce the corresponding symmetrical anhydrides in high yields through C−N bond cleavage. In addition, N-benzoylsaccharins reacted with benzoic acid derivatives to generate unsymmetrical anhydrides in high yields.

...posted by fcttc from hyperlab


Attachment: Base-Mediated Synthesis of Anhydrides from Activated Amides.pdf (1.7MB)
This file has been downloaded 62 times





It's better to die on your feet, than live on your knees....Emiliano Zapata.
View user's profile View All Posts By User
 Pages:  1  ..  41    43

  Go To Top