THE JOURNAL OF PHYSICAL CHEMISTRY

Article

Subscriber access provided by MCGILL UNIV

Characterization of Ceria's Interaction with NO and NH

Li Zhang, John Pierce, Victor Leung, Di Wang, and William S. Epling J. Phys. Chem. C, Just Accepted Manuscript • DOI: 10.1021/jp401442e • Publication Date (Web): 01 Apr 2013 Downloaded from http://pubs.acs.org on April 2, 2013

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Physical Chemistry C is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Characterization of Ceria's Interaction with NO_x and NH₃

Li Zhang, John Pierce, Victor L. Leung, Di Wang and William S. Epling*

Department of Chemical and Biomolecular Engineering, University of Houston

Houston, TX, 77204, USA

*corresponding author

ABSTRACT

Ceria is a common component of engine aftertreatment catalysts, due to its oxygen storage ability, redox properties and its role in stabilizing Pt against sintering. In order to better understand the role of ceria in oxidation reactions occurring over a diesel oxidation catalyst (DOC), in the reduction of NO_x on lean NO_x traps (LNTs) and in the selective catalytic oxidation (SCO) of NH₃, the interactions between ceria and NH₃ and/or NO_x were investigated. Ceria proved active in NO oxidation, NH₃-SCR and NH₃-SCO reactions. Between 100-450°C, both NH₃ and NO_x adsorbed on ceria simultaneously. In the absence of NO_x, NH₃ was oxidized over CeO₂ forming N₂ via a two-step selective catalytic reduction mechanism at low temperature and NO_x at high temperature. In the presence of NO_x, NH₃ reacted with adsorbed NO_x species, again forming N₂ at lower temperatures (250-450°C) while at higher temperature, a significant portion of the NH₃ was oxidized, with product NO formed.

Keywords: ceria; selective catalytic reduction; diesel oxidation catalyst; selective catalytic oxidation

INTRODUCTION

Diesel engines are increasingly popular because of their better fuel economy, relative to gasoline engines, high torque output, resulting in their typical use as freight carriers, and durability. However, reducing some of the diesel engine exhaust emissions is challenging, with particulate matter (PM) and nitrogen oxide emissions receiving the most attention^{1, 2}. Currently, the diesel exhaust gas aftertreatment system is a combination of a diesel oxidation catalyst (DOC), a NO_x storage/reduction (NSR or lean-NO_x trap, LNT) catalyst and/or a selective catalytic reduction (SCR) catalyst, and a diesel particulate filter (DPF), to oxidize the CO and unburned hydrocarbons, reduce NO_x and remove particulate matter³. In some cases, an NH₃ selective catalytic oxidation (SCO) catalyst is also used to minimize NH₃ slip resulting from overdosing urea⁴. In many aftertreatment system catalysts, ceria is added as part of the formulation due to its oxygen storage ability, redox properties and its role in stabilizing Pt against sintering⁵⁻¹⁶.

Typically, the DOC is positioned upstream of the other catalysts to oxidize the CO and unburned hydrocarbon emissions and to oxidize NO to NO₂. Engine out ratios of NO₂:NO are typically low and a higher ratio of NO₂/NO increases the low temperature NO_x conversion efficiency of SCR and NSR catalysts and NO₂ can oxidize soot at lower temperatures than O_2^{17-22} . In terms of DPFs, recently it has been reported that ceria as a support results in interesting properties for soot combustion catalysts, due to a high availability of surface oxygen and good surface redox properties ^{8, 9, 11-13}.

In addition, CeO₂-based SCR catalysts, such as ceria supported Pt, Pd and Rh, Cu/Ag/CeO₂-ZrO₂, CeO₂-MnO_x, Ce/TiO₂, and Ce promoted Fe-exchanged TiO₂-pillared clay^{5,23-29} have been studied. It has been proposed that their NH₃-SCR activities are at

least in part due to NO oxidation over, or associated with ceria^{26, 30}. Also, a ceria-based catalyst has been studied for NH₃-SCO ³¹, providing high activity at low temperature due to its oxygen adsorption capacity. Many studies suggest that ceria promotes activity through its oxygen storage and redox properties, however, the published literature mainly focuses on the role of other catalytic materials, typically the precious metal components when studying DOCs and NSR catalysts, with the ceria playing a supporting role.

 NO_x is a primary diesel engine pollutant and NH_3 is a reductant formed during NSR regeneration or added upstream of a SCR catalyst. Ceria is a common DOC and NSR catalyst component, and seems to be commonly added in new SCR formulations, thus it is important to understand the chemistry of NO_x and NH_3 on ceria. In this study, the interactions between ceria and NO_x and/or NH_3 were investigated using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and reactor studies.

EXPERIMENTAL METHODS

The ceria used in this study was purchased from Sigma Aldrich. The BET surface area was measured after degassing at 350 °C using a Gemini VII 2390 instrument. The surface area was found to be $5.2 \text{ m}^2/\text{g}$.

The ceria particles were sieved to a particle size of 20-40 mesh and pretreated in a flow of 10% O_2/N_2 at 500°C for 1 h or pretreated in a 20% H_2/N_2 flow at 400°C for 1 h before testing. In the rest of this manuscript, the samples are labelled as fully oxidized ceria or reduced ceria, respectively, according to the pretreatment method.

NH₃-SCR and NH₃-SCO tests were carried out in a fixed bed reactor with 1.0 g of sample (20-40 mesh). The reaction gas mixture, using MKS mass flow controllers to set

The Journal of Physical Chemistry

the flow rates, for NH₃-SCR consisted of 500 ppm NO, 500 ppm NH₃, 10% O₂ and a N₂ balance. The total gas mixture flow rate was 200 cm³·min⁻¹, resulting in a gas hourly space velocity (GHSV) of 18,000 h⁻¹. The concentrations of NO, N₂O, NO₂ and NH₃were measured using a MKS MultiGas 2030 FTIR spectrometer. Similar reaction conditions were used for the NH₃-SCO test, but NO was not included in the feed. NO oxidation was also carried out in the fixed bed reactor, where the reaction gas mixture consisted of 500 ppm NO, 10% O₂ and a N₂ balance.

Reactions between NH₃ and the fully oxidized or reduced ceria (i.e. in the absence of gas-phase O_2) were also studied in the fixed bed reactor. The experiment was carried out in a 500 ppm NH₃/N₂ flow at 350, 400 and 450°C in the absence of gas-phase O_2 . Effluent gaseous NO, NO₂ and N₂O concentrations were monitored. NO interactions with the fully oxidized or reduced ceria were also monitored in the fixed bed reactor under similar conditions. Separate experiments were performed in order to quantify the surface oxygen available for reaction with NO and the formation of surface nitrates on ceria. The experiments were performed in a 125 ppm NO and balance N₂ flow over 1.0 g of fully oxidized ceria. The available/reactive oxygen was calculated by measuring the difference of the known inlet concentration of NO from the amount of NO detected during the reaction and assuming that was used for NO₂ and nitrate formation. The measurement ended when the outlet value reached within 2% of the inlet concentration value.

Surface species formed during exposure of the ceria to NO and NH₃ were characterized with in-situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). A Nicolet 6700 FT-IR spectrometer equipped with a Harrick Scientific DRIFTS cell and a mercury-cadmium-telluride (MCT) detector was used. 200 mg of

sample was placed in a ceramic crucible. A feed gas mixture, controlled using MKS mass flow controllers, was supplied at a flow rate of 50 cm³·min⁻¹. The samples were first treated in a flow of 10% O₂/He at 500°C for 0.5 h and then cooled to room temperature. For the experiments characterizing the reduced surface, the sample was exposed to a H₂pretreatment in a flow of 20% H₂/He at 400°C for 1 h before being cooled to the desired temperature in a flow of He. At the temperatures used for analysis, a background spectrum was recorded in flowing He, and it was subtracted from the sample spectrum obtained at the same temperature. The DRIFTS spectra were collected from 4000 to 650 cm⁻¹, accumulating 100 scans at a 4 cm⁻¹ resolution. Nicolet OMNIC software was used to convert the absorbance data into Kubelka-Munk (KM) format.

Note, water was not included in these studies although admittedly it could have an impact on the relative amounts of adsorbed species observed upon exposure to NH_3 and/or NO_x . However, to being to gain a fundamental understanding of ceria's interactions with these species, water was excluded in order to simplify the analysis. Future work will include its impact.

RESULTS AND DISCUSSION

*NH*₃-*SCR and NH*₃-*SCO*

The conversion results as a function of temperature obtained during NH_3 -SCR of NO over the fully oxidized ceria sample are shown in Figure 1. Appreciable NH_3 -SCR activity was observed between 270-420°C. The activity data for selective catalytic oxidation of NH_3 over ceria and product selectivity are shown in Figure 2. Between 300-450°C, NH_3 was oxidized to mainly N_2 ; while at higher temperature, the main product

The Journal of Physical Chemistry

was NO. With N_2 as the product, it is likely that the NH₃ is oxidized to NO, and then SCR occurs over the surface, since as shown in Figure 1, within this temperature range the SCR reaction readily occurs. A very small amount of N_2O was formed in the 400°C range. These results also demonstrate that above 400°C, the SCR activity dropped due to NH₃ oxidation leading to NO as a product. Thus there is not only the loss of the reductant but also formation of more NO.

The interaction of NH_3 with ceria's surface oxygen was studied be exposing the ceria to an NH₃/N₂ mixture in the absence of gas-phase O₂. NH₃, NO and N₂O concentrations as a function of time are shown in Figure 3. In this absence of gaseous O_{2} , no NO₂ was detected. With increasing temperature, there was increasing NH₃ consumption or adsorption, as shown in Figure 3a. During the approach to the inlet concentration, NH_3 was oxidized to both NO and N_2O , Figure 3b and c, respectively. The NO and N₂O product concentrations increased as a function of time, and then decreased, with the rate of decrease higher with increasing temperature. NH₃ was oxidized by the stored oxygen on ceria and as oxygen was consumed the NO and N₂O concentrations dropped, indicating a limited supply of oxygen was available. The consumed NH₃, and NO and N₂O formed, were quantified and are listed in Table 1. A significant amount of N_2 was produced in this reaction, as indicated in Figure 2b, resulting in the imbalance noted. Furthermore, surface N species formed, as will be discussed below. As temperature increased, more NH₃ was consumed but more NO was formed, which is consistent with the results obtained in the presence of gas-phase O_2 (Figure 2).

A similar experiment (results not shown), involving the interaction between NH_3 and reduced ceria, showed no NH_3 oxidation, indicating that the reduction process removed any reactive surface oxygen.

NO oxidation

Many studies have shown that if a zeolite-based SCR catalyst can oxidize NO to NO₂ in-situ, its low temperature SCR activity will be significantly enhanced, as the presence of NO₂ allows the "fast SCR" reaction to proceed^{21, 22}. In addition, if a DOC catalyst is active in NO oxidation to NO₂, this can lead to a decrease in the temperature required for soot oxidation on a DPF^{12, 19, 20, 32, 33}. NO oxidation conversion as a function of temperature over oxidized ceria results are shown in Figure 4. NO oxidation was observed above 200°C and increased with temperature to around 400°C, and then decreased with increasing temperature, due to thermodynamic equilibrium limitations.

To further investigate NO oxidation over ceria, the interaction of NO with stored surface oxygen was studied. Fully oxidized ceria was exposed to 500 ppm NO/N₂ at 350, 400 and 450°C and the NO and NO₂ concentration profiles as a function of time are shown in Figure 5. NO was oxidized to NO₂, with the most formed at 400°C, which is consistent with the results shown in Figure 4. In the presence of gaseous O₂, more NO₂ was formed as would be expected with ever diminishing oxygen reactant as a function of time in its absence. The higher NO oxidation activity at 400°C coincides with the best SCR of NO conversion being attained, suggesting that SCR of NO₂ proceeds at a faster rate than NO SCR or that NO₂ is a required intermediate, as has been proposed in previous studies^{29, 34, 35}. Additionally, the same experiment was performed with reduced

The Journal of Physical Chemistry

ceria, however, NO_2 was not detected (results not shown). This result, similar to that obtained with NH_3 exposure to the reduced ceria surface, further confirms that the stored surface oxygen on ceria can play a role in NO oxidation.

The amount of surface oxygen that reacted with NO, and the formed nitrates adsorbed on ceria, at various temperatures were quantified and the results are listed in Table 2. Although other surface NO_x species formed, verified via DRIFTS as will be discussed below, nitrate formation was dominant and is assumed for quantification comparison. Adsorption was observed in the entire temperature range examined and with little NO₂ produced, most resulted in nitrate formation. At lower temperatures, more surface NO_x species formed, suggesting a higher level of oxygen availability, compared to that at higher temperatures. This is somewhat surprising as typically oxygen mobility would increase with increasing temperature and the results shown in Figure 5 demonstrate NO₂ formation increased at least from 350 to 400°C. The consumption trend is instead due to nitrate stability, with the surface NO_x species decomposing and NO release occurring with increasing temperature, thus the lower levels measured. The total available oxygen, assuming CeO₂, had a maximum utilized at 100°C, and was 17% of the total available oxygen in the ceria sample.

*NH*₃ *adsorption*

DRIFTS was used to characterize the surface species formed during NH_3 adsorption on ceria. The DRIFTS spectra obtained during exposure of the fully oxidized and reduced ceria samples to NH_3 at various temperatures are shown in Figure 6. During exposure of the fully oxidized sample at room temperature, bands at 1676, 1433 and 1394

cm⁻¹ appeared and are assigned to Brønsted acid sites, i.e. NH_4^+ on $CeO_2^{-6, 31}$. The features at 1570, 1286 and 1147 cm⁻¹ are attributed to NH_3 coordinated to Lewis acid sites $^{6, 36}$ and at 1556 and 1261 cm⁻¹ are assigned to amide species ($-NH_2$) $^{36-38}$. The NH_3 coordinated Brønsted acid site and Lewis acid site features were less intense with increasing exposure temperature. However, NH_3 adsorbed on Brønsted acid sites disappeared at a lower temperature, indicating that NH_3 was more stable on the Lewis acid sites. In addition, the amide species bands (1556 and 1261 cm⁻¹) evident with room temperature exposure, increased in intensity with temperature and then decreased in intensity at higher temperatures (>400°C). These results indicate that upon heating, some adsorbed NH_3 on ceria formed $-NH_2$ through abstraction of hydrogen likely in reducing the ceria.

With increasing temperature, specifically in the 300-400°C range, new bands at 1545, 1371, 1358 and 1305 cm⁻¹ appeared, which are assigned to surface NO_x species. At temperatures above 400°C, these bands disappeared and four new features (1560, 1523, 1276 and 1220 cm⁻¹), also associated with adsorbed NO_x, appeared. Based on previous studies, these peaks are tentatively assigned to adsorbed monodentate (1523 and 1276 cm⁻¹), bidentate (1545 and 1305 cm⁻¹) and bridging nitrate species (1560 and 1220 cm⁻¹)^{6, 26, 36, 39-41}. The assignment of the bands at 1371 and 1358 cm⁻¹ is discussed in more detail below. According to the results shown in Figure 3, no NO₂ was formed during NH₃ oxidation in the absence of gas-phase O₂. As a result, the observed NO_x ad-species must be a result of NO formation via NH₃ oxidation with the participation of ceria surface or lattice oxygen, and further oxidation of this surface species via the available surface oxygen.

The Journal of Physical Chemistry

To further investigate the role of the surface or lattice oxygen on NH₃ adsorption, a similar experiment was performed on the reduced ceria sample (H₂ pre-treatment at 400°C). Bands associated with Bronsted acid sites (1676, 1516, 1433 and 1394 cm⁻¹) and Lewis acid sites (1570, 1286 and 1147 cm⁻¹) were again observed following NH₃ adsorption (Figure 6(b)). These bands disappeared at a lower temperature (250°C) relative to those on the oxidized sample. In addition, all adsorbed NH₃ band intensities on reduced ceria were lower than those on fully oxidized ceria, demonstrating that less NH₃ adsorbed and the NH₃ that did adsorb was more weakly bound to the reduced ceria surface. While the intensity of these bands decreased with increasing temperature, bands corresponding to $-NH_2$ (1556 and 1261 cm⁻¹)³⁶⁻³⁸ again were evident at room temperature, but simply decreased with increasing temperature. No new bands associated with NO_x adspecies were observed, which indicates that the NH₃ that adsorbed and further reacted on the reduced ceria mainly formed $-NH_2$ and was not oxidized to NO. This is consistent with reactor experiments that showed no NH₃ oxidation as mentioned above.

NO_x adsorption

DRIFTS spectra obtained during adsorption of NO, in the absence of gas phase O_2 , on the fully oxidized and reduced ceria samples at different temperatures are shown in Figure 7. Based on literature studies, the peaks in Figure 7(a), obtained with the fully oxidized sample, are tentatively assigned to adsorbed bidentate (1575 and 1305 cm⁻¹), monodentate (1535 and 1276 cm⁻¹), water-solvated (1485 cm⁻¹), and bridging (1608 and 1230 cm⁻¹) nitrate species ^{6, 26, 36, 39-41}. The band at 1442 cm⁻¹ is assigned to *trans*-N₂O₂^{2-26, ⁴². With increasing temperature, the bridging, monodentate and bidentate nitrate species'}

concentrations gradually decreased. In addition, bands that appeared at 1371 and 1358 cm⁻¹ show similar trends, which are close to the reported *cis*-N₂O₂²⁻ band (1350 cm⁻¹) of NO_x adsorption on pure ceria ²⁶.

According to the results obtained during NH₃ adsorption (Figure 6 (a)) on the oxidized ceria sample, the bands assigned to NO_x ad-species appeared in similar regions as those associated with the NO_x ad-species during the NO exposure experiment, which demonstrates that in the presence of surface oxygen, adsorbed NH₃ was indeed oxidized to form intermediate surface NO_x species at higher temperature.

The DRIFTS spectra obtained during NO adsorption on the reduced ceria are shown in Figure 7 (b), with significant differences observed compared to those obtained from the fully oxidized ceria. Features at 1608 (bridging nitrates), 1442, 1385 (*trans*- $N_2O_2^{2^-}$), 1371, 1358 (*cis*- $N_2O_2^{2^-}$), 1575, 1305 (bidentate nitrates), 1535, 1276 (monodentate nitrates), and 1176 cm⁻¹ were evident at room temperature. With increasing temperature (>100 °C), the adsorbed bidentate nitrates vanished, and the bridging and monodentate nitrate bands shifted to lower wavenumbers (1558, 1230 cm⁻¹ and 1523, 1276 cm⁻¹) due to the lower coverage. The band at 1176 cm⁻¹ can be assigned to NO⁻ adspecies (1180 cm⁻¹) on ceria ²⁶. The NO adsorption bands on reduced ceria were of lower intensity and thermal stability than those of the oxidized sample, thus the stored surface oxygen promoted NO adsorption as would be expected.

With available/reactive oxygen, NO reacted with stored surface oxygen to form NO_2 and surface nitrates. Previous literature density functional theory calculation results indicate that Ce (III) could be oxidized by NO_2 to form Ce (IV) ⁴³. However, experimental evidence regarding whether NO_2 could oxidize ceria and how it interacts

The Journal of Physical Chemistry

with the ceria has not been reported. To characterize this interaction, DRIFTS spectra of NO₂ adsorption on reduced ceria at various temperatures were obtained. As shown in Figure 8, similar species as those noted in Figure 7(a), bridging nitrates (1608 and 1230 cm⁻¹), bidentate nitrates (1575 and 1305 cm⁻¹), monodentate nitrates (1535 and 1276 cm⁻¹) ¹), water solvated nitrates (1485 cm⁻¹), trans-N₂O₂ (1442 cm⁻¹) and cis-N₂O₂ (1371 and 1358 cm⁻¹), were observed. The band intensities during NO₂ adsorption were larger in comparison to those associated with the fully oxidized or reduced ceria exposure to NO exposure (Figure 7), indicating more significant nitrate formation with NO_2 as the inlet NO_x species. Based on the results obtained during NO interaction with reduced ceria (Figure 5), no NO₂ formed. For NO interaction with the fully oxidized ceria, the band at 1176 cm⁻¹, NO⁻, was absent, which indicates that adsorbed NO was oxidized to form NO₂, or more highly oxidized surface species by the stored surface oxygen. In addition, bands at 1371 and 1358 cm⁻¹, due to the $N_2O_2^{2-}$ ad-species, were evident in Figure 8, likely due to NO₂ oxidizing the reduced ceria and NO dimerization then following. These combined results all indicate that a larger extent of NO_x adsorption on fully oxidized ceria can be realized with NO₂ formation or availability.

Reaction between NH_3 *and* O_2

The interaction of NH_3 and ceria in the presence of gaseous O_2 was also studied with results shown in Figure 9. The bands attributed to NH_3 coordinated on Brønsted acid sites (1676, 1433 and 1394 cm⁻¹), Lewis acid sites (1570, 1286 and 1147 cm⁻¹) and $-NH_2$ (1261cm⁻¹) decreased gradually with temperature and were absent at temperatures higher than 350°C, similar to the trends observed in the absence of gas-phase O_2 . While these band intensities decreased, features appeared at 1545, 1305 (bidentate nitrates), 1358 and 1371 cm⁻¹ (*cis*-N₂O₂²⁻) at temperatures above 300°C and disappeared at temperatures above 400°C. Above 400°C, several new bands appeared; at 1523, 1276 (monodentate nitrates), 1558, 1220 (bridging nitrates) and 1176 cm⁻¹ (NO⁻). These spectra demonstrate that NH₃ was oxidized to form NO at temperatures higher than 300°C, and the formed adsorbed NO was further oxidized to bidentate nitrates (1545 and 1305 cm⁻¹) between 300-400°C. At higher temperature (>400°C), the surface NO mainly formed monodentate nitrate (1523 and 1276 cm⁻¹), bridging nitrate (1558, 1220 cm⁻¹) and NO⁻ (1176 cm⁻¹) species. The same trends were noted in Figure 6a, indicating the stability of these species and the surface reactions were surprisingly not influenced by gas-phase O₂.

Reaction between NH₃ and NO_x

The interaction between NH₃, NO and O₂ on ceria was also investigated (Figure 9(b)). Features assigned to NH₃ coordinated on Brønsted acid sites (1676, 1516, 1433 and 1394 cm⁻¹), Lewis acid sites (1286 cm⁻¹) and $-NH_2$ (1261 cm⁻¹) species were detected at lower temperatures (<200°C). A NO⁻ band (1176 cm⁻¹) appeared at 100°C and decreased with increasing temperature, while bands assigned to other NO_x ad-species (1545, 1371, 1358 and 1305 cm⁻¹) appeared at <200°C, increased significantly as temperature increased, and then decreased at temperatures above 450°C. According to the results shown in Figure 9 (a), some NO_x ad-species (1545, 1371, 1358 and 1305 cm⁻¹) appeared at sove 450°C, increased at temperatures higher than 400°C during NH₃ oxidation, which indicates that the same peaks appearing at low temperature (<200°C) in Figure 9 (b) were not due to NH₃ oxidation, but specifically to

The Journal of Physical Chemistry

 NO_x adsorption. Combined with the results of NH_3 -SCR shown in Figure 1, NH_3 reacted with the NO to form N_2 below 350°C, further confirming these DRIFTS features are due to NO adsorption. These spectra show that ceria can adsorb NH_3 and NO_x simultaneously between 100-450°C.

Separate experiments were run with pre-adsorbed NO_x. As noted already, NO coordinated species (1560, 1535, 1371, 1358, 1280 and 1232 cm⁻¹) formed on ceria upon exposure to NO (Figure 10(a)). With exposure to NH₃ at 350°C, the NO_x species adsorbed at 1371, and 1358 cm⁻¹decreased gradually and then disappeared, which indicates that NH₃ reacted with the adsorbed NO_x. However, the intensity of the bands at 1560 and 1232 (bridging nitrates) decreased slightly, and the features at 1280 and 1535 cm⁻¹, assigned to monodentate nitrate species, did not decrease. Therefore, we conclude that NO_x adsorbed as *cis*-N₂O₂²⁻ reacted more favorably with NH₃ than other nitrates ad species. The lack of any new features appearing demonstrates that NH₃ readily reacted with the adsorbed NO at 350°C.

These results suggest a reaction route for NH₃ oxidation. NO_x ad species (1371 and 1358 cm⁻¹) were observed during NH₃ oxidation between 300-350°C (Figure 9 (a)). In addition, the results in Figure 10(a) demonstrate that the same surface NO_x species (*cis*-N₂O₂²⁻at 1371 and 1358 cm⁻¹) reacted with NH₃, suggesting that the NO species formed during NH₃ oxidation reacted with the NH₃ to form N₂. NH₃ oxidation over ceria thus follows a two-step SCR mechanism; some NH₃ is oxidized to form NO, which then reacts with the NH₃ to form N₂. At temperatures above 400°C (Figure 9 (a)), this intermediate NO_x surface species was absent, with other surface NO_x species observed: monodentate nitrates (1523 and 1276 cm⁻¹), bridging nitrates (1558 and 1220 cm⁻¹) and

NO⁻ (1176 cm⁻¹), which are apparently not reactive with the NH₃, or NH₃ is too quickly oxidized to higher oxidation states, but they do decompose to form gas-phase NO. This conclusion is consistent with the reactor results (Figure 2).

Ceria can catalyze NO oxidation (Figure 4) and thus the surface species formed via NO₂ adsorption can also react with NH₃; the DRIFTS results obtained during NH₃ exposure after a pre-exposure to NO₂ are shown in Figure 10 (b). Features were evident at 1594 and 1207 cm⁻¹ (weakly adsorbed NO₂),²⁶ and the other features had stronger intensities compared to those obtained during NO adsorption at 350° C (Figure 10 (a)). With the addition of NH₃, the adsorbed NO₂ (1594 and 1207 cm⁻¹) and *vis*-N₂O₂²⁻ (1371 and 1358 cm⁻¹), decreased gradually. Also, the bidentate, monodentate and bridging nitrate species were again not reactive with the NH₃.

CONCLUSIONS

Ceria readily adsorbs NH_3 and NO_x . The adsorbed NH_3 can be oxidized by ceria's surface oxygen at higher temperatures, forming surface NO_x species, and the NH_3 and surface NO_x species can in turn react to form N_2 . Upon NO_x exposure, NO_x adsorption on ceria was observed in the entire temperature range evaluated (30-500°C). At lower temperatures, more NO_x adsorbed or surface NO_x species formed, due to surface adspecies stability, i.e. formed nitrates decomposed at higher temperatures. NH_3 and NO_x can adsorb on the ceria simultaneously, also leading to some SCR, but only certain surface NO_x species participate. Furthermore, the stored surface oxygen on ceria induces more significant NH_3 and NO_x adsorption.

REFERENCES

 Johnson, T. V. Diesel Emission Control in Review -The Last 12 Months. SAE Technical Paper Series. 2003, 2003-01-0039.

2. Charlton, S. J. Developing Diesel Engines to Meet Ultra-low Emission Standards. *SAE Technical Paper Series*. 2005, 2005-01-3628.

3. Gurupatham, A.; He, Y. Architecture Design and Analysis of Diesel Engine Exhaust Aftertreatment System and Comparative Study with Close-coupled DOC-DPF System. *SAE Int. J. Fuels Lubr.* **2008**, *1*, 1387-1396.

4. Girard, J. W.; Cavataio, G.; Lambert, C. K. The Influence of Ammonia Slip Catalysts on Ammonia, N₂O and NO_x Emissions for Diesel Engines. *SAE Technical Paper Series*. **2007**, 2007-01-1572.

5. Chen, L.; Li, J.; Ge, M.; Zhu, R. Enhanced activity of tungsten modified CeO_2/TiO_2 for selective catalytic reduction of NO_x with ammonia. *Catal.Today.* **2010**, *153*, 77-83.

6. Shan, W.; Liu, F.; He, H.; Shi, X.; Zhang, C. Novel cerium-tungsten mixed oxide catalyst for the selective catalytic reduction of NO_x with NH₃. *Chem. Comm.* **2011**, *47*, 8046-8048.

7. Si, Z.; Weng, D.; Wu, X.; Ran, R.; Ma, Z. NH₃-SCR activity, hydrothermal stability, sulfur resistance and regeneration of $Ce_{0.75}Zr_{0.25}O^2$ -PO₄³⁻catalyst. *Catal. Comm.* **2012**, *17*, 146-149.

Fang, P.; Lu, J.; Xiao, X.; Luo, M. Catalytic combustion study of soot on Ce_{0.7}Zr_{0.3}O₂ solid solution. *J.Rare Earths.* 2008, *26*, 250-253.

9. Guillén-Hurtado, N.; Bueno-López, A. ; García-García, A. Catalytic performances of ceria and ceria-zirconia materials for the combustion of diesel soot under NO_x/O_2 and O_2 . Importance of the cerium precursor salt. *Appl. Catal. A.* **2012**, *437*, 166-172.

10. Kašpar, J.; Fornasiero, P.; Graziani, M. Use of CeO₂-based oxides in the three-way catalysis. *Catal.Today.* **1999**, *50*, 285-298.

11. Weng, D.; Li, J.; Wu, X.; Si, Z. Modification of CeO₂-ZrO₂ catalyst by potassium for NO_x-assisted soot oxidation. *J. Envi. Sci.* **2011**, *23*, 145-150.

Weng, D.; Li, J.; Wu, X.; Si, Z. NO_x-assisted soot oxidation over K/CuCe catalyst. *J.Rare Earths.* 2010, *28*, 542-546.

 Aneggi, E.; Boaro, M.; Leitenburg, C. d.; Dolcetti, G.; Trovarelli, A. Insights into the Redox Properties of Ceria-Based Oxides and Their Implications in Catalysis. *J. Alloy & Com.* 2006, 408-412, 1096-1102.

 Kai, L.; Xuezhong, W.; Zexing, Z.; Xiaodong, W.; Duan, W. Oxygen Storage Capacity of Pt-, Pd-, Rh/CeO₂-Based Oxide Catalyst. *J. Rare Earths.* 2007, 25, 6-10.

Trovarelli, A. Catalytic Properties of Ceria and CeO₂-Containing Materials. *Catal. Rev.* **1996**, *38*, 439-520.

16. Epling, W. S.; Campbell, L. E.; Yezerets, A.; Currier, N. W.; Parks, J. E. Overview of the Fundamental Reactions and Degradation Mechanisms of NO_x Storage/Reduction Catalysts. *Catal.Rev.* **2004**, *46*, 163-245.

17. Hauff, K.; Tuttlies, U.; Eigenberger, G.; Nieken, U. Platinum Oxide Formation and Reduction during NO Oxidation on a Diesel Oxidation Catalyst-Experimental Results. *Appl. Catal. B.* **2012**, *123-124*, 107-116.

 Neyertz, C. A.; Miró, E. E.; Querini, C. A. K/CeO₂ Catalysts Supported on Cordierite Monoliths: Diesel Soot Combustion Study. *J. Chem. Eng.* 2012, *81-182*, 93-102.

Konstandopoulos, A. G.; Papaioannou, E.; Zarvalis, D.; Skopa, S.; Baltzopoulou, P.;
 Kladopoulou, E.; Kostoglou, M.; Lorentzou, S. Catalytic Filter Systems with Direct and Indirect
 Soot Oxidation Activity. *SAE Technical Paper Series.* 2005, 2005-01-0670.

20. Renzullo, A.; Tarabocchia, A.; Villata, G.; Mescia, D.; Caroca, J. C.; Raimondi, A.; Russo, N.; Fino, D.; Saracco, G.; Specchia, V. DPF Supporting Nano-Structured Perovskite Catalysts for NO_x and Diesel Soot Emission Control in Commercial Vehicles. *SAE Technical Paper Series.* **2007**, 2007-01-4173.

The Journal of Physical Chemistry

2
3
4
4
5
6
7
0
0
9
10
11
12
12
13
14
15
16
17
17
18
19
20
21
∠ I 000
22
23
24
25
20
26
27
28
20
20
30
31
32
33
24
34
35
36
37
20
30
39
40
41
12
40
43
44
45
46
17
4/
48
49
50
51
51
52
53
54
55
55
30
57
58
59
60
υo

21. Grossale, A.; Nova, I.; Tronconi, E.; Chatterjee, D.; Weibel, M. The Chemistry of the NO/NO₂–NH₃ "fast" SCR Reaction over Fe-ZSM5 Investigated by Transient Reaction Analysis *J.Catal.* **2008**, *256*, 312-322.

22. Luo, J.-Y.; Hou, X.; Wijayakoon, P.; Schmieg, S. J.; Li, W.; Epling, W. S. Spatially Resolving SCR Reactions over a Fe/zeolite Catalyst. *Appl.Catal. B.* **2011**, *102*, 110-119.

23. Saidina Amin, N. A.; Chong, C. M. SCR of NO with C₃H₆ in the Presence of Excess O₂ over Cu/Ag/CeO₂-ZrO₂ Catalyst. *J. Chem. Eng.* **2005**, *113*, 13-25.

24. Kotsifa, A.; Kondarides, D. I.; Verykios, X. E. A Comparative Study of the Selective Catalytic Reduction of NO by Propylene over Supported Pt and Rh Catalysts. *Appl.Catal. B.* **2008**, *80*, 260-270.

25. Cant, N. W.; Angove, D. E.; Chambers, D. C. Nitrous Oxide Formation during the Reaction of Simulated Exhaust Streams over Rhodium, Platinum and Palladium Catalysts. *Appl. Catal. B.* **1998**, *17*, 63-73.

26. Qi, G.; Yang, R. T.; Chang, R. MnO_x-CeO₂ Mixed Oxides Prepared by Co-Precipitation for Selective Catalytic Reduction of NO with NH₃ at Low Temperatures. *Appl. Catal. B.* **2004**, *51*, 93-106.

27. Gao, X.; Jiang, Y.; Zhong, Y.; Luo, Z.; Cen, K. The Activity and Characterization of CeO₂-TiO₂ Catalysts Prepared by the Sol-Gel Method for Selective Catalytic Reduction of NO with NH₃. *J. Hazardous Mater.* **2010**, *174*, 734-739.

28. Shan, W.; Liu, F.; He, H.; Shi, X.; Zhang, C. A Superior Ce-W-Ti Mixed Oxide Catalyst for the Selective Catalytic Reduction of NO_x with NH₃. *Appl. Catal. B.* **2012**, *115-116*, 100-106.

29. Long, R. Q.; Yang, R. T. The Promoting Role of Rare Earth Oxides on Fe-Exchanged TiO₂-Pillared Clay for Selective Catalytic Reduction of Nitric Oxide by Ammonia. *Appl. Catal. B.* 2000, *27*, 87-95.

30. Qi, G.; Yang, R. T. Performance and Kinetics Study for Low-Temperature SCR of NO with NH₃ over MnO_x-CeO₂ Catalyst. *J. Catal.* **2003**, *217*, 434-441.

31. Zhang, L.; Liu, F.; Yu, Y.; Liu, Y.; Zhang, C.; He, H. Effects of Adding CeO₂ to Ag/Al₂O₃ Catalyst for Ammonia Oxidation at Low Temperatures. *Chin. J. Catal.* **2011**, *32*, 727-735.

32. Setiabudi, A.; Makkee, M.; Moulijn, J. A. The Role of NO₂ and O₂ in the Accelerated Combustion of Soot in Diesel Exhaust Gases. *Appl. Catal. B.* **2004**, *50*, 185-194.

33. Liu, S.; Obuchi, A.; Uchisawa, J.; Nanba, T.; Kushiyama, S. An Exploratory Study of Diesel Soot Oxidation with NO₂ and O₂ on Supported Metal Oxide Catalysts. *Appl. Catal. B.* **2002**, *37*, 309-319.

34. Shen, B.; Liu, T.; Zhao, N.; Yang, X.; Deng, L. Iron-Doped Mn-Ce/TiO₂ Catalyst for Low Temperature Selective Catalytic Reduction of NO with NH₃. *J. Envi. Sci.* **2010**, *22*, 1447-1454.

35. Burch, R.; Breen, J. P.; Meunier, F. C. A Review of the Selective Reduction of NO_x with Hydrocarbons under Lean-Burn Conditions with Non-Zeolitic Oxide and Platinum Group Metal Catalysts. *Appl. Catal. B.* **2002**, *39*, 283-303.

36. Zhang, L.; He, H. Mechanism of Selective Catalytic Oxidation of Ammonia to Nitrogen over Ag/Al₂O₃. *J. Catal.* **2009**, *268*, 18-25.

37. Lin, S. D.; Gluhoi, A. C.; Nieuwenhuys, B. E. Ammonia Oxidation over Au/MOx/ \Box - Al₂O₃-Activity, Selectivity and FTIR Measurements. *Catal. Today.* **2004**, *90*, 3-14.

38. Amores, J. G.; Escribano, V. S.; Ramis, G.; Busca, G. An FT-IR Study of Ammonia Adsorption and Oxidation over Anatase-Supported Metal Oxides. *Appl. Catal. B.* **1997**, *13*, 45-58.

39. Toops, T. J.; Smith, D. B.; Epling, W. S.; Parks, J. E.; Partridge, W. P. Quantified NO_x Adsorption on Pt/K/Gamma-Al₂O₃ and the Effects of CO₂ and H₂O. *Appl. Catal. B.* **2005**, *58*, 255-264.

40. Kantcheva, M. Identification, Stability, and Reactivity of NO_x Species Adsorbed on Titania-Supported Manganese Catalysts. *J. Catal.* **2001**, *204*, 479-494.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
40
46
47
40 40
49 50
5U 51
51 50
52 52
53 54
04 55
50
00 57
ວ/ 50
20 50
59

41. Westerberg, B.; Fridell, E. A Transient FTIR Study of Species Formed during NO_x Storage in the Pt/BaO/Al₂O₃ System. *J. Molec. Catal. A.* **2001**, *165*, 249-263.

42. Chen, L.; Li, J.; Ge, M.; Ma, L.; Chang, H. Mechanism of Selective Catalytic Reduction of NO_x with NH₃ over CeO₂-WO₃ Catalysts. *Chin. J. Catal.* **2011**, *32*, 836-841.

43. Nolan, M.; Parker, S. C.; Watson, G. W. Reduction of NO₂ on Ceria Surfaces. *J. Phy. Chem.B* **2006**, *110*, 2256-2262.

Figure captions

Figure 1. NH₃ and NO conversion over fully oxidized CeO₂. Reaction conditions: 500 ppm NH₃, 500 ppm NO, 10% O₂ and balance N₂ with a total flow rate of 200 cm³·min⁻¹ (GHSV = 18,000 h⁻¹).

Figure 2. NH₃ conversion and products selectivity over fully oxidized CeO₂. Reaction conditions: 500 ppm NH₃, 10% O₂ and balance N₂ with a total flow rate of 200 cm³·min⁻¹ (GHSV = 18,000 h⁻¹).

Figure 3. Reactor outlet (a) NH_3 , (b) NO and (c) N_2O concentration profiles upon exposure of 1.0 g fully oxidized ceria to 500 ppm NH_3 and balance N_2 .

Figure 4. NO₂ formed during NO oxidation over ceria. Reaction conditions: 500 ppm NO, 5% O₂ and balance N₂ balance with a total flow rate of 200 cm³·min⁻¹ (GHSV = $18,000 \text{ h}^{-1}$).

Figure 5. Reactor outlet (a) NO and (b) NO_2 concentration profiles upon exposure of the fully oxidized ceria to 500 ppm NO and balance N_2 .

Figure 6. DRIFTS spectra obtained during exposure of the (a) fully oxidized and (b) reduced CeO₂ to 500 ppm NH₃ and balance He at room temperature and then the temperature changed in only a He flow; with a total flow rate of 50 cm³·min⁻¹.

Figure 7. DRIFTS spectra obtained during exposure of the (a) fully oxidized and (b) reduced CeO₂ to 500 ppm NO and balance He at room temperature and then the temperature changed in only a He flow; with a total flow rate of 50 cm³·min⁻¹.

Figure 8. DRIFTS spectra obtained during exposure of the reduced CeO₂ to 500 ppm NO₂ and balance He at room temperature and then the temperature changed in only a He flow; with a total flow rate of 50 cm³·min⁻¹.

Figure 9. DRIFTS spectra obtained during exposure of the fully oxidized ceria to (a) 500 ppm NH₃ + 10% O₂ and (b) 500 ppm NH₃ + 500 ppm NO + 10 % O₂ with He as the balance with a total flow rate of 50 cm³·min⁻¹.

Figure 10. DRIFTS spectra obtained during exposure of the fully oxidized ceria to NH_3 after pre-adsorption of (a) NO and (b) NO_2 at 350°C. Reaction conditions: 500 ppm NO or NO_2 adsorbed over the sample at 350°C and then purged by He followed by exposure to 500 ppm NH_3 with a total flow rate of 50 cm³·min⁻¹.

Table1. NH₃ consumed and NO and N₂O formed during NO interaction with fully oxidized ceria at different temperatures.

Temperature	NO formed	N ₂ O formed	NH ₃ Consumed
(°C)	(µmol)	(µmol)	(µmol)
350	4.5	1.2	26.0
400	14.6	2.8	38.8
450	20.9	1.6	50.4

Table 2. Surface oxygen uptake by NO and the adsorbed nitrates on the surface of ceria at

 various temperatures during the transient NO interaction with fully oxidized ceria at different

 temperatures.

Temperature (°C)	Ο _s (μmol)	Nitrates (µmol)
30	664	664
100	1991	1991
150	1580	1580
200	1033	1033
250	640	640
300	363	363
350	318	318
400	292	288
450	268	266
500	223	219

Figure 1. NH₃ and NO conversion over fully oxidized CeO₂. Reaction conditions: 500 ppm NH₃, 500 ppm NO, 10% O₂ and balance N₂ with a total flow rate of 200 cm³·min⁻¹ (GHSV = 18,000 h⁻¹).

Figure 2. NH₃ conversion and products selectivity over fully oxidized CeO₂. Reaction conditions: 500 ppm NH₃, 10% O₂ and balance N₂ with a total flow rate of 200 cm³·min⁻¹ (GHSV = 18,000 h⁻¹).

Figure 3. Reactor outlet (a) NH_3 , (b) NO and (c) N_2O concentration profiles upon exposure of 1.0 g fully oxidized ceria to 500 ppm NH_3 and balance N_2 .

Figure 4. NO₂ formed during NO oxidation over ceria. Reaction conditions: 500 ppm NO, 5% O₂ and balance N₂ balance with a total flow rate of 200 cm³·min⁻¹ (GHSV = 18,000 h⁻¹).

Figure 5. Reactor outlet (a) NO and (b) NO_2 concentration profiles upon exposure of the fully oxidized ceria to 500 ppm NO and balance N_2 .

Figure 6. DRIFTS spectra obtained during exposure of the (a) fully oxidized and (b) reduced CeO₂ to 500 ppm NH₃ and balance He at room temperature and then the temperature changed in only a He flow; with a total flow rate of 50 cm³·min⁻¹.

Figure 7. DRIFTS spectra obtained during exposure of the (a) fully oxidized and (b) reduced CeO₂ to 500 ppm NO and balance He at room temperature and then the temperature changed in only a He flow; with a total flow rate of 50 cm³·min⁻¹.

Figure 8. DRIFTS spectra obtained during exposure of the reduced CeO_2 to 500 ppm NO_2 and balance He at room temperature and then the temperature changed in only a He flow; with a total flow rate of 50 cm³·min⁻¹.

Figure 9. DRIFTS spectra obtained during exposure of the fully oxidized ceria to (a) 500 ppm $NH_3 + 10\% O_2$ and (b) 500 ppm $NH_3 + 500$ ppm $NO + 10\% O_2$ with He as the balance with a total flow rate of 50 cm³·min⁻¹.

Figure 10. DRIFTS spectra obtained during exposure of the fully oxidized ceria to NH_3 after pre-adsorption of (a) NO and (b) NO_2 at 350°C. Reaction conditions: 500 ppm NO or NO_2 adsorbed over the sample at 350°C and then purged by He followed by exposure to 500 ppm NH_3 with a total flow rate of 50 cm³·min⁻¹.

TOC Figure

