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ABSTRACT: For the least-squares analysis of data having multiple uncertain
variables, the generally accepted best solution comes from minimizing the sum of
weighted squared residuals over all uncertain variables, with, for example, weights
in xi taken as inversely proportional to the variance σxi

2. A complication in this
method, here called “total variance” (TV), is the need to calculate residuals δi in
every uncertain variable. In x−y problems, that means adjustments must be
obtained for x as well as for the customary y. However, for the straight-line fit
model, there is a simpler procedure, a version of effective variance (EV) methods,
that requires only the residuals in y and agrees exactly with the TV method.
Furthermore, Monte Carlo calculations have shown that this EV2 method is
statistically comparable to the TV method for many common nonlinear fit
models. This method is easy to code for computation in Excel and programs like
KaleidaGraph, as is illustrated here for several examples, including implicit
nonlinear models. The algorithms yield estimates of both the parameters and
their standard errors and can be used as well for more traditional problems requiring weighting in y only.

KEYWORDS: Upper-Division Undergraduate, Graduate Education/Research, Physical Chemistry, Laboratory Instruction,
Analytical Chemistry, Problem Solving/Decision Making, Chemometrics

The straight line is surely one of the most widely used
mathematical models for the analysis of data, and its far-

and-away most common quantitative implementation is the
method of least-squares (LS), going back over 200 years to Gauss
(probably1). The properties of such linear LS (LLS) solutions are
well-known and frequently stated. They include importantly that
the standard errors (SE) of the parameter estimates are exactly
predictable if the error structure of the data is known; the
estimates are normally distributed if the data error is normal, and
even if it is not, in the limit of a large number of points, where the
central limit theorem ensures normality.2 I have maintained that
these and other properties of LLS solutions are best appreciated
through Monte Carlo (MC) simulations.3

An important premise of LLS is that all the statistical error
resides in a single dependent variable, commonly taken to be y in
x−y problems. If this assumption fails only weakly, with relative
error in x being much less than that in y, the LLS results remain
adequate for most purposes.4 However, there are situations
where the relative errors in x and y are comparable, and then
more complex methods are needed. Going back at least to
Deming’s work,5 the “best” solution has been assumed to be that
which minimizes

∑ δ δ= + +S w w ...xi xi yi yiTV
2 2

(1)

where the δi’s are residuals in the uncertain variables, here just x
and y but readily extended to more than two variables. A
complication in specifying and minimizing STV is the need for
“calculated” or “adjusted” values (designated Yi and Xi) for both y

and x, giving residuals Yi − yi and Xi − xi, where capital letters
represent the adjusted values. In LLS, Yi = ycalc(xi) and Xi = xi;
when both variables are uncertain, the calculated points are
displaced with respect to both yi and xi. Minimum-variance
estimates of the model parameters are assumed to result from the
use of weights inversely proportional to variance, wxi = Cσxi

−2, wyi
= Cσyi

−2, and so on (C a single constant for all variables), as holds
rigorously for LLS (where only y is uncertain).
The subscript TV in eq 1 stands for “total variance”, which

unfortunately has another meaning in the writings of some
statisticians, who have included under this label methods like
“orthogonal regression”, which pay no attention to differences in
the relative precisions of x and y. This means that results can
change with simple changes in scale, among other deficiencies.
Statisticians have also used terminology like “errors in variables
(EIV) models” and “Model II regression”, but both of these also
seem inadequately descriptive. Physical scientists have occasion-
ally used “generalized least squares” for cases with uncertainty in
multiple variables, but that term means something altogether
different among statisticians, namely, the simultaneous estima-
tion of the variance function and the response function for a data
set.6 At the same time, “Deming regression” has incorrectly come
to refer to just the straight-line model with two uncertain
variables, when in fact Deming’s treatment was completely
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general for nonlinear LS (NLS). With some minor corrections to
Deming’s expressions for the variable adjustments,7−10 the
solutions that minimize STV are invariant with respect to changes
in scale and changes in the manner in which the fit model is
expressed: for example, a + bx− y = 0 or (a− y)/b− x = 0 for the
straight-line model. These points are discussed more compre-
hensively elsewhere.11

The added complexity of adjusting multiple uncertain
variables for implementation of eq 1 has led to “effective
variance” (EV) treatments, in which one variable (or the
response function, see below) is designated as “dependent” (here
y) and the variances in the other uncertain variables are
converted into effective contributions to that in y. With just two
variables with independent random error, this treatment yields

σ σ∝ = +−w y y xvar( ) (d /d )y xeff eff
2 2 2

1 (2)

For y = f(x) = a + bx, σy,eff
2 = σy

2 + b2σx
2, yielding wi,eff ∝ (σy

2 +
b2σx

2)−1. The minimization target is now

δ= ΣS wi yiEV ,eff
2

(3)

in which x uncertainty is accommodated through the weights, but
only the y residuals, δyi = Yi− yi, need be evaluated, with xi treated
as error-free in the computations. As for the straight line, the
weights wi,eff generally depend on the parameters. Typically, (i)
SEV is minimized with respect to the parameters in the response
function f(x), with the wi,eff treated as constant, followed by (ii)
adjustment of thewi,eff using the results from step (i). This cycle is
repeated until there are no further changes in the parameters,
usually in 5−15 iterations. However, there is an alternative
approach, in which wi,eff is included directly in the minimization,
which I have labeled EV2.

11 Define F(x, y; β) as

β δ=F x y w( , ; ) ( ) yeff
1/2

(4)

where β represents the adjustable parameters. The minimization
target becomes

β= ΣS F x , y( ; )i iEV
2 2

(5)

which now has the form of the minimization target for an
unweighted fit. For the straight line, δyi = a + bxi − yi, and
(wi,eff)

1/2 = σi,eff
−1. Note that since the dependence on β in the

weights is included in the minimization, there is no required
consistency iteration, as in the EV method. Also, neither this nor
the EVmethod is restricted to functions that are explicit in y; they
just require that F be expressed such that F = 0 for exactly fitting
data. Then, the residuals δy are replaced by δF. In fact, this is the
manner in which NLS algorithms are normally implemented.11

If wi,eff contains a dependence on the parameters, the TV and
EV2methods require NLS for any response function; through the
iteration procedure described above, the EV method is also
effectively nonlinear. In ref 11 I usedMC simulations to compare
the performance of the three methods on a number of common
fitting problems, and I concluded that the performance
differences will rarely be significant compared with the difficulty
of obtaining reliable information about the statistical uncertain-
ties in the variables. The EV2 method is arguably the easiest to
use, and in fact Williamson long ago showed that, for the straight
line, the EV2 method is equivalent to the TV method.12 While
Williamson’s method has been used occasionally,13,14 there still
seems to be little awareness of this TV−EV2 equivalence, and
especially the ease with which the EV2 method can be coded for
computation.15 In the present work, I address this shortcoming,

through simple modifications of existing Excel algorithms that
also permit straightforward evaluation of the parameter SEs using
de Levie’s SolverAid routine.16,17 By extension, this approach
works for any weighted linear or nonlinear fitting problem. I also
illustrate the KaleidaGraph18 solutions to several of these
problems. Further, the algorithms provide an easy way to
appreciate the differences between the EV and EV2 methods.

■ COMPUTATIONAL NOTES
For Excel illustrations, I will draw on examples in the literature
and assume the reader knows enough about Excel to follow the
procedures in those examples. Many readers will be less familiar
with KaleidaGraph (KG), so I will provide more procedural
explanation. I also refer readers to my earlier papers in this
Journal on the use of KG.18−20 As regards the SEs, one point
requires special attention, namely, the difference between a priori
and a posteriori values.3 The former are appropriate when the
data errors are considered known in an absolute sense, the latter
when they are known in only a relative sense. (Minimum-
variance estimates require that all errors in x and y be known
apart from a single scaling constant.) KG provides the a priori
values any time a weighted fit is executed; de Levie’s SolverAid
normally provides a posteriori SEs.
The difference between the prior (a priori) and post (a

posteriori) covariance matrices is just the factor χ2/ν (the reduced
χ2), where χ2 is the sum of weighted squared residuals that
appears first in eq 1, and ν = n − p is the number of statistical
degrees of freedom for n data points and p adjustable parameters.
Accordingly, the prior and post SEs differ by the square root of
this quantity. For absolutely known weights, χ2 has statistical
expectation value ν, so χ2/ν has expectation value 1. The post
values are supplied for unweighted KG fits; if they are desired for
a weighted fit, the required χ2 is the quantity Chisq in the KG
output. SolverAid requests the address of a cell containing the
minimization target ($M), which for a weighted fit will be the
same as the Chisq output from KG. It takes the square root of
($M/ν), provides this quantity in the output, and includes it as a
scale factor for the SEs, thus producing the post values. To obtain
the prior SEs, one need only direct SolverAid to a cell containing
the value of ν in place of the minimization target, making this
scale factor 1.0. Note that, for unweighted fits, the sum of squares
divided by ν becomes an estimate of the variance in y (constant
by assumption), while for weighted fits of unknown scale it is the
variance in y for data having weight unity.
KaleidaGraph and some other desktop data analysis programs

are tailored for 2-dimensional problems, for which at most 3
columns of data can be accessed in conventional fitting: x, y, and
the weights (a σ value for each yi in KG). The data must first be
plotted in KG before a fit can be invoked. In the EV method, the
weights are estimated separately from the target minimization, so
one can display y versus x and execute an EV fit in the usual way,
with manual iteration to convergence, through reassessment of
the weights and refitting. However, the EV2 method normally
requires access to at least 4 columns of data: x, y, and their
weights or σ values. To accomplish this in the manner indicated
by eqs 4 and 5, I use KG’s cell(row, column) function, where
both indices are absolute, starting with 0.19,20 The “x” value
becomes the row entry, enumerating the points in the data set
and normally starting with 1 in the second row. A column of 0s
becomes the formal “y” for plotting, and designated columns
contain the actual x, y, and weighting data. A column of 1’s can be
selected as formal weights to obtain the prior SEs; leaving the
Weight Data box unchecked in the Define Fit box yields post SEs.
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Since there is no plotting associated with minimizing a target
with Solver in Excel, and since the cell instructions can reference
any other cells, there are no such unconventional operations
required for EV2 fitting in Excel. However, manual updating of
the weights and refitting to convergence are still required in the
EV method.

■ ILLUSTRATIONS

Harris’ van Deemter Model

In a frequently cited paper,21 Harris showed how to use Excel’s
Solver to fit gas chromatography data22 to the equation

= + +y x x CA B/ (6)

both without and with weighting. This is actually a linear LS
problem in both cases, even though the response function is

nonlinear in x. (It is linear in the 3 adjustable parameters.) A
quick check indicates that the “error” values (σyi) supplied in
column C of Figure 5 in ref 21 are about 5% of the respective y
values; if we instead take the errors to be 5% of the calculated y
values, this does become a nonlinear LS problem.
For reference, Figure 1 shows the KG results for the two fits

described by Harris. The parameter values agree completely, but
the SEs differ significantly from those estimated with the
jackknife (JK) procedure (on the unweighted fit) in ref 21. There
appears to be an error in the final expression for the SEs from this
procedure in Figure 6 of ref 21: the prefactor should be sqrt((n−
1)/n), making the corrected SEs close to the observed standard
deviations (SD). For a correct model and properly weighted data,
the parameter SDs for repeated realizations of the model should
approximate the parametric SEs from a single fit,2,3 and this
correction factor compensates for the use of 1 fewer points in

Figure 1.KaleidaGraph LS analyses of the problem treated by Harris21 for gas chromatographic data fromMoody,22 using the van Deemter model of eq
6. The results box to the left is for unweighted LS; to the right for weighting using the ∼5% uncertainties given by Harris (also used for the data error
bars). Both fits use KG’s General routine, which is required for parameter SEs. The a priori SEs (“Error”) are converted to a posteriori as indicated below
the weighted results box. The Chisq values are the sums of weighted squared residuals, with weights taken as unity in the unweighted fit, as σyi

−2 in the
weighted fit.

Figure 2. Excel worksheet for the weighted analysis in Figure 1. The computational instructions for columns D−F and for the minimization target, cell
$G$16, are shown at the bottom. For SolverAid, the requested calculated values are the scaled residuals in E.
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each such realization of the model in the JK procedure. The
appropriateness of the JK method is also questionable, since the
estimation precision can depend strongly on the data structure.
Thus, deleting the first point (accomplished by masking out that
line in the data sheet in KG) almost doubles the SE for B. In any
event, since this is a linear fit, the parametric SEs are completely
reliable, provided the data error structure is known, and exact if
the errors are known absolutely. Thus, the reliability of the SEs
hinges entirely on knowledge of the data error structure:
constant (unweighted analysis), proportional to signal, or
something else.
The Chisq value for the weighted fit in Figure 1 occurs less

than 2% of the time for a correct model with correct weighting for

ν = 10.23 This suggests that the assumed 5% error in y is
pessimistic by a factor of ∼2. In that case, the post SEs are more
reasonable. These are obtained as described earlier and provided
below the fit results box. They are now reasonably close to the
unweighted SE estimates for A and C. For B, we need more
information about the data error to decide which SE is better.
Most instrumental measurements are dominated by constant
error in the low-signal limit but display proportional error at high
signal.24 Assuming that this holds for these chromatographic
data, we still need to knowwhere in themeasurement range these
data fall. There is also the issue of uncertainty in x, which here is
the flow rate of helium. I address that below.

Figure 3. Excel worksheet modified for EV2 treatment of 2% error in y and 3% in x. The minimization target is now cell $H$16, and the SolverAid target
is set to $H$17, in order to obtain the prior parameter SEs.

Figure 4. KaleidaGraph version of weighted analysis shown in Figure 3. The computational instructions are entered in the Macro Library. Then, a
General curve fit is selected, and fitf and initial parameter values are entered in the Define··· box. In the latter, the weight data box is checked; then, when
the column of 0 values is selected for y, a column containing 1’s is selected in response to the prompt for weights.
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The Excel worksheet for the weighted analysis is shown in
Figure 2. Note the agreement with both parameters and post SEs
from the weighted fit in Figure 1. Now suppose we would like to
include uncertainty in x. Recognizing the too-small χ2 value for
the weighted fit, let us reduce the error in y to 2% and take that in
x to be 3%. From eq 2, the effective contribution to the variance
in y from that in x is

σ= = −y y x x xvar( ) (d /d ) (A B/ ) (0.03 )x xeff,
2 2 2 2

2 (7)

and is computed in column E in the worksheet in Figure 3. σeff is
then computed in column F, with the rest of the worksheet as in
Figure 2. The minimization target for Solver is again the sum of
weighted squared residuals, but for SolverAid we now use H17,
which contains the number of statistical degrees of freedom. In
this way, we obtain the a priori SEs. It is worth noting that now
the χ2 value (13.944) is reasonable for ν = 10; but this cannot be
taken as verification of our assumption of proportional error in
both x and y.
Figure 4 shows the data sheet, instructions, and results for the

KG counterpart of Figure 3, in which I have also chosen weighted
analysis with weights = 1 to obtain the prior SEs. Recall that to
generate a fit in KG, we must first plot the data, here just 0 for
each value of the index, 1−13. While this display is not very
informative, the fit results are more so, being the scaled residuals,
δyi/σi,eff (=fitf).

It is worth emphasizing the importance of parentheses in
Library definitions in KG. From the manner in which the
program parses out complex instructions by simply substituting
these expressions, omitted parentheses can lead to incorrect
results. For example, “bb = −3” in the Library gives −9 for bb^2
((bb)^2 does give 9).
Orear treated a model very similar to the present van Deemter

model, with a sign change for the second term and missing the
constant term.25 He found agreement to four significant figures
in the results from the TV and EV2 methods (see his erratum),
but I later confirmed that there were real though very small
differences.11 The same comparison for the proportional error
model of Figures 3 and 4, obtained from FORTRAN programs,
shows greater but still practically insignificant differences: slightly
higher χ2 for TV (by 0.12%) and differences <0.2% in the
parameters and <0.5% in the SEs.

The York Straight Line

In an example that has become a touchstone in x−y error tests,
York26 took a 10-point data set from Pearson27 and added
weights strongly favoring x at small x and y at large x, spanning
ranges of 1000 for x and 500 for y. This was, in fact, the example
treated byWilliamson.12 The results frommany efforts have been
summarized by Riu and Rius28 and Reed.29 While most of these
works employed tedious algebraic expressions, I have noted that
the purely numerical approach is good to at least 10 digits for the
parameters, 7 for the SEs, and 12 for STV.

11 Thus, there is little

Figure 5. Excel worksheet for EV2 (=TV) analysis of York model. The instructions in E15:G15 are copied to subsequent cells. Cell $B$8 is the Solver
target and is also used here by SolverAid to yield the post SEs. b in E10 is used in the weight computations in column E; here, it is also set equal to $D$4,
which with $D$3 is varied by Solver to minimize $B$8. In the call to SolverAid, the calculated values are those in G15:G24.
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reason to use algebraic expressions, especially considering how
easy the EV2 method can be implemented numerically and its
equivalence to TV for the straight line.
Figure 5 shows the Excel worksheet for this analysis. York

provided weights rather than data SDs or variances, so the
variances are taken as the reciprocals of York’s weights in
calculating σy,eff

2 in column E. The residuals are computed in
column F and used to calculate δy/σy,eff in column G. Note that
the calculations of σy,eff

2 in E reference the value of b in $E$10,
while the residuals computations use $D$4 for b. By this
procedure, we can do both the EV2 and EV analyses with a small

change. First, the instruction = $D$4 is put in $E$10, linking it to
the value that is varied by Solver in the minimization. This gives
the EV2 (=TV) fit in Figure 5. By removing this instruction and
simply entering a value for b, we can obtain the EV results, as
shown in Figure 6, where convergence has been achieved in 4
iterations. Note that in the first iteration the sum of weighted
squares in B8 actually drops, but it increases as the value of b is
updated, finally achieving a value about 0.1 higher than that for
the EV2 analysis.
In Exercise 4.19.1 in his book,30 de Levie used the same

Pearson data with much more strongly varying weights, from

Figure 6. EV analysis of the York model. Now b in E10 is decoupled from the optimization variable in $D$4, so it must be entered manually for each
cycle. The iterations (to right) show changes in the sum of weighted squares and b for 4 cycles.

Figure 7. Excel worksheet for EV2 analysis of the Wentworth kinetics model. The instructions in C15:G15 are copied to subsequent cells. Cell $D$6 is
the Solver minimization target, with the instruction = SUMSQ(G15:G21). D6 is used also by SolverAid to yield the post SEs; prior SEs are smaller by the
factor in E6. In the call to SolverAid, the calculated values are in G15:G21.
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10−5 for wy and 3 × 10−5 for wx for the first point, both increasing
by a factor of 10 for each successive point. The expression for the
weighted squared residuals given for his cell E20, though much
more complex than used here in column G, can be shown to be
equivalent (after the correction included in the citation of ref 30
below). Accordingly, the parameter estimates obtained using the
present Solver algorithmwith those weights agree with the values
given in Figure 4.19.3 of ref 30. However, the SEs given there are
not correct: they should be 0.24882 for a and 0.003403 for b.
Additional instructive computations can be done with this

example. First, change all the weights for x to a very large number
(say 1000) and those for y to 1. This approximates the conditions
for ordinary unweighted LS, and the EV and EV2 results both
agree with those from an unweighted fit to y = a + bx. Next,
reverse the weights for x and y. Now the EV2 results agree with
simple regression of x on y using x = y/b − a/b, as expected for
this weighting. But the EV results remain the same as for the
previous weighting, a basic flaw in the EV method that has been
lodged against it. The EV2 fit for the York weights can also be
done using x − y/b + a/b for the residuals and modifying σeff
accordingly. All results remain unchanged. However, if the
residuals are taken as 1/y − 1/(a + bx) and σeff is again changed
to be consistent with this model, the EV2 results are not the same,
confirming that the TV-EV2 equivalence holds only for the
straight line. If this “inverse” model is fitted by the TV method,
the results do remain unchanged.

Implicit Fit Models: Wentworth Kinetics Example

With the exception of the just-mentioned “inverse” model, the
previous examples have all been formulated to be explicit in one
variable: y in the Harris problem, both y and x in the York model.
It is not always possible or convenient to make the most
uncertain variable explicit in the fit model, but that is not a
problem, as is illustrated usingWentworth’s gas kinetics model,31

in which pressure (P) and time (t) are both considered to have
uncertainty 1 (in torr and s). The model can be expressed as
explicit in either t or P, and has been treated as such in ref 11,
along with the implicit model I consider here

≡ − − + − =− −F P P P n kt(2 ) (1 ) 0n n
0

1
0
1

(8)

The adjustable parameters are P0, n, and k. To compute the
effective variance, we need ∂F/∂P = (n − 1)/(2P0 − P)n and ∂F/
∂t = (1 − n)k. Figure 7 shows the Excel spreadsheet for the
solution, which can be seen to be identical to the values in the
fourth line of Table 6 in ref 11 (except the SEs, which are post
here, hence smaller by the factor in E6). However, achieving
these results did require dealing with an idiosyncrasy in Solver
that I also encountered when using it to solve systems of
equations in ref 20, namely, its difficulty in handling adjustable
parameters that differ greatly inmagnitude, particularly when one
or more are very small. Thus, with k in its native s−1 units, Solver
seemed to satisfy its convergence criteria long before it had
actually converged on the solution. Proper convergence was
achieved by scaling k up by a factor of 100 or more and adjusting
the other quantities accordingly.
There is a different problem with KG on this example, but one

that is likely to be important only in numerical tests. The
program evidently uses too-large increments in estimating
numerical derivatives, perhaps changes of about 0.1%. When
high precision is desired, the adjustable parameters can be
redefined in the Library to be much smaller quantities, for
example, in this case, as P0 = (363 + p), k = (7.4 × 10−6 + a), and
n = (1.97 + b), where p, a, and b are the adjustable parameters.

This leads to higher precision in the numerical derivatives, giving
agreement with the ref 11 results to the sixth or seventh digit, as
compared with about 2 fewer digits without this redefinition.
Implicit fit models can be useful in situations where the

nominal dependent variable seems to require solving a quadratic
or higher-order equation, for example, in binding and
equilibrium studies. The LS algorithm can solve these equations
in the course of obtaining the minimum-variance estimates of the
parameters, just as when it is used to solve systems of equations
for exactly fitting data.20 In some such studies, casting the
equations in the commonly used linear forms makes the
“dependent” variable a function of the measured and hence
uncertain “independent” variable, making the two correlated.
Both correlation and weighting are usually ignored in such
work.32 For example, in ligand binding studies where the
concentration of free ligand [L] (≡x) is measured as a function of
initial concentration x0 for total substrate concentration St, the
binding equation takes the form

+ − + − =x x S x K x K( 1/ ) / 02
t 0 0 (9)

where K is the binding constant. The effective variance
contributions from uncertainty in x and x0 are easy to evaluate,
making eq 9 preferred as fit model over the commonly used
rectangular hyperbolic and straight-line relationships.32 (An
example using eq 9 as fit model is included in the Supporting
Information, together with Excel and KG files for the other
examples treated here.)

■ CONCLUSION
The EV2 method for least-squares fitting of data having error in
more than one variable is easy to code for computations in Excel
and KaleidaGraph, and by extension other LS desktop programs
and program environments. It produces results that will rarely be
statistically inferior to those produced by what is assumed to be
“best” for such problems, the TV method. For the straight-line
model, the EV2 method is equivalent to the TV method. Its
capabilities have been illustrated in the present work for both
explicit and implicit fit models. The weighting procedures used
here are also suitable for more traditional problems with varying
uncertainty in y alone.
Correct use of the TV and EV methods does require that the

user address the matter of uncertainties in both x and y, since
minimum-variance estimation of the parameters requires that the
weights in x and y be defined to within a single scaling constant
and be proportional to the respective reciprocal variances. Those
who are accustomed to analyzing data by blithely clicking a “Fit”
button without considering their data error may find this an
inconvenience. However, such a consideration should always be
a part of data analysis, because neglected data heteroscedasticity
leads to erroneous parametric SEs and nonoptimal parameter
estimates. This is especially a problemwhen data are transformed
to a more convenient relationship, usually the straight line, as
such transformations invariably change the relative weights of the
data.2,32
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