Difference between revisions of "Azeotrope"

From Sciencemadness Wiki
Jump to: navigation, search
Line 1: Line 1:
+
An '''azeotrope''' is a mix of two liquids that cannot be separated by [[distillation]] as the vapor of both liquids comes at the same time. It is sometime possible to separate the liquids anyway by using various techniques, one of them being vacuum distillation to break the azeotrope, another being [[salting out]]. However, these do not work in every case.
 
+
 
+
An azeotrope is a mix of two liquids that cannot be separated by [[distillation]] as the vapor of both liquids comes at the same time. It is sometime possible to separate the liquids anyway by using various techniques, one of them being vacuum distillation to break the azeotrope, another being [[salting out]]. However, these do not work in every case.
+
  
  

Revision as of 18:32, 4 February 2016

An azeotrope is a mix of two liquids that cannot be separated by distillation as the vapor of both liquids comes at the same time. It is sometime possible to separate the liquids anyway by using various techniques, one of them being vacuum distillation to break the azeotrope, another being salting out. However, these do not work in every case.


Binary azeotropes

Data source color code
CRC & Lange's CRC only Lange's only other (see references)
Azeotropes of water, b.p.=100 °C
2nd Component b.p. of
comp. (˚C)
b.p. of
mixture (˚C)
 % by
weight
spef.
grav
with various alcohols
ethanol 78.4 78.1 95.5 0.804
methanol[1] 64.7 No azeotrope
n-propanol 97.2 87.7 71.7 0.866
iso-propanol 82.5 80.4 87.9 0.818
n-butanol 117.8 92.4 55.5
U 79.9
L 7.7

U 0.849
L 0.990
sec-butanol 99.5 88.5 67.9 0.863
iso-butanol 108.0 90.0 70.0
U 85.0
L 8.7

U 0.839
L 0.988
tert-butanol 82.8 79.9 88.3
allyl alcohol 97.0 98.2 72.9 0.905
benzyl alcohol 205.2 99.9 9
furfuryl alcohol 169.4 98.5 20
cyclohexanol[2] 161.1 97.8 20
benzyl alcohol[2] 205.4 99.9 9
with various organic acids
formic acid 100.8 107.3 77.5
acetic acid [1][3] 118.1 No azeotrope
propionic acid 141.1 99.98 17.7 1.016
butyric acid 163.5 99.94 18.4 1.007
iso-butyric acid 154.5 99.3 21
with mineral acids
nitric acid 86.0 120.5 68 1.405
perchloric acid 110.0 203 71.6
hydrofluoric acid 19.9 120 37
hydrochloric acid –84 110 20.24 1.102
hydrobromic acid –73 126 47.5 1.481
hydroiodic acid –34 127 57
sulfuric acid 290 338 98
with various alkyl halides
ethylene chloride 83.7 72 91.8
propylene chloride 96.8 78 89.4
chloroform 61.2 53.3 97.0
U 0.8
L 99.8

U 1.004
L 1.491
carbon tetrachloride 76.8 66.8 95.9
U 0.03
L 99.97

U 1.000
L 1.597
methylene chloride 40.0 38.8 99.6
U 2.0
99.9

U 1.009
L 1.328
with various esters
ethyl acetate 77.1 70.4 91.9
U 96.7
L 8.7

U 0.907
L 0.999
methyl acetate 57.0 56.1 95.0 0.940
n-propyl acetate[2] 101.6 82.4 86
ethyl nitrate 87.7 74.4 78
with various other solvents
acetone [1][3] 56.5 °C No azeotrope
methyl ethyl ketone 79.6 73.5 89 0.834
pyridine 115.5 92.6 57 1.010
benzene 80.2 69.3 91.1
U 99.94
L 0.07

U 0.880
L 0.999
toluene 110.8 84.1 79.8
U 99.95
L 0.06

U 0.868
L 1.000
cyclohexane 80.7 69.8 91.5
U 99.99
L 0.01

U 0.780
L 1.00
diethyl ether 34.5 34.2 98.7 0.720
tetrahydrofuran[1] 66 65 95
anisole 153.9 95.5 59.5
acetonitrile 82.0 76.5 83.7 0.818
chloral 97.75 95.0 93.0
hydrazine[4] 113.5 °C 120.3 °C 68.5

CRC 44th ed. lists azeotropes for acetic acid/water and acetone/water, Lange's 10th ed. as well as numerous web sources indicate no azeotrope for these pairs.


Azeotropes of allyl alcohol, b.p.=97.0 °C

2nd Component b.p. of
comp. (˚C)
b.p. of
mixture (˚C)
 % by
weight
spef.
grav
with various solvents
methyl butyrate 102.7 93.8 45
n-propyl acetate 101.6 94.2 47
benzene 80.2 76.8 82.6 0.874
toluene 110.8 92.4 50
cyclohexane 80.8 74 80
carbon tetrachloride 76.8 72.3 88.5 1.450
ethylene chloride 83.7 79.9 82
  Azeotropes of ethanol, b.p.=78.4 °C
2nd Component b.p. of
comp. (˚C)
b.p. of
mixture (˚C)
 % by
weight
spef.
grav
with various esters
ethyl acetate 77.1 71.8 69.2 0.863
methyl acetate 57.0 56.9 97
ethyl nitrate 87.7 71.9 56
isopropyl acetate[2] 88.4 76.8 47
with various hydrocarbons
benzene 80.2 68.2 67.6 0.848
cyclohexane[5] 80.7 64.9 69.5
toluene 110.8 76.7 32 0.815
n-pentane 36.2 34.3 95
n-hexane 68.9 58.7 79 0.687
n-heptane 98.5 70.9 51 0.729
n-octane 125.6 77.0 22
with various alkyl halides
ethylene chloride 83.7 70.5 63
chloroform 61.1 59.4 93 1.403
carbon tetrachloride 76.8 65.1 84.2 1.377
allyl chloride 45.7 44 95
n-propyl chloride 46.7 45.0 93
isopropyl chloride 36.3 35.6 97.2
n-propyl bromide 71.0 62.8 79.5
isopropyl bromide 59.8 55.6 89.5
n-propyl iodide 102.4 75.4 56
isopropyl iodide 89.4 71.5 73
methyl iodide 42.6 41.2 96.8
methylene chloride 40.1 39.85 95.0
ethyl bromide 38.0 37.0 97.0
trichloroethylene 87 70.9 73.0 1.197
trichlorotrifluoroethane (CFC 113) 47.7 43.8 96.2 1.517
tetrachloroethylene 121.0 76.75 37.0
with various other solvents
methyl ethyl ketone 79.6 74.8 60 0.802
acetonitrile 82.0 72.9 43.0 0.788
nitromethane 101.3 75.95 26.8
tetrahydrofuran[6]
P = 100 kPa
65.6 65.4 3.3
thiophene[5] 84.1 70.0 55.0
carbon disulfide[2] 46.2 42.4 92

Azeotropes of methanol, b.p.=64.7 °C
2nd Component b.p. of
comp. (˚C)
b.p. of
mixture (˚C)
 % by
weight
spef.
grav
with various esters
methyl acetate 57.0 53.8 81.3 0.908
ethyl acetate 77.1 62.3 56 0.846
ethyl formate 54.1 51.0 84
with various hydrocarbons
benzene 80.2 58.3 60.4 0.844
toluene 110.8 63.8 31 0.813
cyclohexane 80.8 54.2 62.8
U 97.0
L 39.0
n-pentane 36.2 30.8 91
n-hexane 68.9 50.6 72
n-heptane 98.5 59.1 48.5
n-octane 125.8 63.0 72.0
with various alkyl halides
ethylene chloride 83.7 61.0 68
chloroform 61.1 53.5 87.4 1.342
carbon tetrachloride 76.8 55.7 79.4 1.322
ethyl bromide 38.4 35.0 95.5
n-propyl chloride 46.6 40.5 90.5
isopropyl chloride 36.4 33.4 94
n-propyl bromide 71.0 54.5 79
isopropyl bromide 59.8 48.6 85.0
isopropyl iodide 89.4 61.0 62
trichloroethylene[2] 87.2 60.2 64
tetrachloroethylene[6] 121.1 63.5 40.6
trichlorotrifluoroethane (CFC 113)[2] 47.7 39.9 94
with various other solvents
nitromethane 101.2 64.6 9
acetone 56.5 55.7 87.9 0.796
acetonitrile 82.0 63.45 19.0
carbon disulfide 46.2 37.7 86.0
U 50.8
L 97.2

U 0.979
L 1.261
isopropanol[2] 82.5 64.0 20
tetrahydrofuran[7]
P = 984 mBar
65.6 60.7 69.0


Azeotropes of n-propanol, b.p.=97.2 °C
2nd Component b.p. of
comp. (˚C)
b.p. of
mixture (˚C)
 % by
weight
spef.
grav
with various solvents
methyl butyrate 102.7 94.4 51
n-propyl formate 80.8 80.65 97
n-propyl acetate 101.6 94.7 49 0.833
benzene 80.2 77.1 83.1
toluene 110.8 92.4 47.5 0.836
n-hexane 68.9 65.7 96
carbon tetrachloride 76.8 73.1 88.5 1.437
ethylene chloride 83.7 80.7 81
n-propyl bromide 71.0 69.7 91


Azeotropes of acetic acid, b.p.=118.5 °C


2nd Component b.p. of
comp. (˚C)
b.p. of
mixture (˚C)
 % by
weight
spef.
grav
with various solvents
benzene 80.2 80.05 98 0.882
cyclohexane[2] 80.8 79.7 98
toluene 110.8 105.0 72 0.905
m-xylene 139.0 115.4 27.5 0.908
n-heptane 98.5 92.3 70
n-octane 125.8 109.0 50
isopropyl iodide 89.2 88.3 91
carbon tetrachloride 76.8 76.6 97
tetrachloroethylene 121.0 107.4 61.5
ethylene bromide 131.7 114.4 45
1,1-dibromoethane 109.5 103.7 75.0
methylene bromide 98.2 94.8 84.0
pyridine 115.3 139.7 65.0 1.024
 
Azeotropes of isopropanol, b.p.=82.5 °C
2nd Component b.p. of
comp. (˚C)
b.p. of
mixture (˚C)
 % by
weight
spef.
grav
with various esters
ethyl acetate 77.1 75.3 75 0.869
isopropyl acetate 91.0 81.3 40 0.822
with various hydrocarbons
benzene 80.2 71.9 66.7 0.838
toluene [5] 110.8 80.6 42
cyclohexane 81.0 68.6 67.0 0.777
n-pentane 36.2 35.5 94
n-hexane 68.9 62.7 77
n-heptane 98.5 76.3 46
with various alkyl halides
carbon tetrachloride 76.8 69.0 82 1.344
chloroform 61.1 60.8 95.8
ethylene chloride 83.7 74.7 56.5
ethyl iodide 83.7 67.1 85
n-propyl chloride 46.7 46.4 97.2
n-propyl bromide 71.0 66.8 79.5
isopropyl bromide 59.8 57.8 88
n-propyl iodide 102.4 79.8 58
isopropyl iodide 89.4 76.0 68
tetrachloroethylene[5] 121.1 81.7 19.0
with various other solvents
methyl ethyl ketone 79.0 77.5 68 0.800
diisopropyl ether 69 66.2 85.9
nitromethane 101.0 79.3 70

CRC and Lange's disagree on this azeotrope, but web source corroborates CRC


Azeotropes of formic acid, b.p.=100.8 °C
2nd Component b.p. of
comp. (˚C)
b.p. of
mixture (˚C)
 % by
weight
spef.
grav
with various hydrocarbons
benzene 80.2 71.7 69
toluene 110.8 85.8 50
m-xylene 139.0 94.2 29.8
n-pentane 36.2 34.2 90
n-hexane 68.9 60.6 72
n-heptane 98.5 78.2 56.5
n-octane 125.8 90.5 37
with various alkyl halides
chloroform 61.2 59.2 85
carbon tetrachloride 76.8 66.7 81.5
methyl iodide 42.6 42.1 94
ethyl bromide 38.4 38.2 97
ethylene chloride 83.6 77.4 86
ethylene bromide 131.7 94.7 48.5
n-propyl chloride 46.7 45.6 92
isopropyl chloride 34.8 34.7 98.5
n-propyl bromide 71.0 64.7 73
isopropyl bromide 59.4 56.0 86
with various other solvents
carbon disulfide 46.3 42.6 83


Azeotropes of benzene, b.p.=80.1 °C
2nd Component b.p. of
comp. (˚C)
b.p. of
mixture (˚C)
 % by
weight
spef.
grav
cyclohexane 81.4 77.8 45.0 0.834
ethyl nitrate 88.7 80.03 12.0
methyl ethyl ketone 79.6 78.4 37.5 0.853
nitromethane 101.0 79.15 14.0
acetonitrile 82.0 73.0 34.0
n-heptane[2] 98.5 80.0 1
Azeotropes of ethylene glycol, b.p.=197.4 °C
2nd Component b.p. of
comp. (˚C)
b.p. of
mixture (˚C)
 % by
weight
spef.
grav
with various solvents
ethyl benzoate 212.6 186.1 53.5
diphenyl 254.9 192.0 36
mesitylene 164.6 156.0 87
naphthalene 218.1 183.9 49
toluene 110.8 110.2 93.5
m-xylene 139.0 135.6 85
o-xylene 144.4 139.6 84.0
ethylene bromide 131.7 129.8 96
nitrobenzene 210.9 185.9 41
chlorobenzene 132.0 130.1 5.6
benzyl chloride 179.3 167.0 70
benzyl alcohol 205.1 193.1 44
anisole 153.9 150.5 89.5
acetophenone 202.1 185.7 48
aniline 184.4 180.6 76
o-cresol 191.1 189.6 73


Azeotropes of glycerol, b.p.=291.0 °C
2nd Component b.p. of
comp. (˚C)
b.p. of
mixture (˚C)
 % by
weight
spef.
grav
diphenyl 254.9 243.8 45
naphthalene 218.1 215.2 90


Azeotropes of acetone, b.p.=56.5 °C
2nd Component b.p. of
comp. (˚C)
b.p. of
mixture (˚C)
 % by
weight
spef.
grav
carbon disulfide 46.3 39.3 67.0 1.04
chloroform 61.2 64.7 80.0 1.268
cyclohexane 81.4 53.0 33.0
n-hexane 68.8 49.8 41
ethyl iodide 56.5 55.0 40.0
carbon tetrachloride[5] 76.8 56.2 11.9


Miscellaneous azeotrope pairs
component 1 b.p.
comp. 1 (˚C)
component 2 b.p.
comp. 2 (˚C)
  b.p.
azeo. (˚C)
 % wt
comp. 1
 % wt
comp. 2
spec.
grav.
acetaldehyde 21.0 diethyl ether 34.6 20.5 76.0 24.0 0.762
n-butane[5] –0.5 –7.0 16.0 84.0
acetamide 222.0 benzaldehyde 179.5 178.6 6.5 93.5
nitrobenzene 210.9 202.0 24.0 76.0
o-xylene 144.1 142.6 11.0 89.0
acetonitrile 82.0 ethyl acetate 77.15 74.8 23.0 77.0
toluene[6] 110.6 81.1 25.0 75.0
acetylene –86.6 ethane –88.3 –94.5 40.7 59.3
aniline 184.4 o-cresol 191.5 191.3 8.0 92.0
carbon disulfide 46.2 diethyl ether 34.6 34.4 1.0 99.0 0.719
1,1-dichloroethane 57.2 46.0 94.0 6.0
methyl ethyl ketone 79.6 45.9 84.7 15.3 1.157
ethyl acetate[2] 77.1 46.1 97 3
methyl acetate[2] 57.0 40.2 73 27
chloroform 61.2 methyl ethyl ketone 79.6 79.9 17.0 83.0 0.877
n-hexane 68.7 60.0 72.0 28.0 1.101
carbon tetrachloride 76.8 methyl ethyl ketone 79.9 73.8 71.0 29.0 1.247
ethylene dichloride 84.0 75.3 78.0 22.0 1.500
ethyl acetate 77.1 74.8 57.0 43.0 1.202
cyclohexane 81.4 ethyl acetate 77.15 72.8 46.0 54.0
ethyl nitrate 88.7 74.5 64.0 36.0
diethyl ether 34.6 methyl formate 31.50 28.2 44.0 56.0
methylene chloride[1] 40 40.8 30 70
nitromethane 101.0 toluene 110.8 96.5 55.0 45.0
tetrahydrofuran[7] 65.6 chloroform 61.2 72.5 34.5 65.5
n-hexane 69 63.0 46.5 53.5
toluene 110.63 pyridine 115.3 110.2 78.0 22.0
propylene glycol[8] 188.2 aniline 184.4 179.5 43 57
o-xylene 144.4 135.8 10 90
toluene 110.6 110.5 1.5 98.5

References

  1. 1.0 1.1 1.2 1.3 1.4 "What is an Azeotrope?". B/R Corporation. Archived from the original on 24 April 2007. Retrieved 24 March 2007. 
  2. 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 John Durkee (November 2000). "Binary Organic Azeotropes Useful for Solvent Cleaning" (PDF). metalfinishing.com. Retrieved 13 February 2011. 
  3. 3.0 3.1 Hilmen, Eva-Katrine (November 2000). "Separation of Azeotropic Mixtures: Tools for Analysis and Studies on Batch Distillation Operation" (PDF). Norwegian University of Science and Technology, dept. of Chemical Engineering. Retrieved 24 March 2007. 
  4. Merck Index of Chemicals and Drugs, 9th ed. monograph 4653
  5. 5.0 5.1 5.2 5.3 5.4 5.5 Ponton, Jack (September 2001). "Azeotrope Databank" (Queriable database). The Edinburgh Collection of Open Software for Simulation and Education, Edinburgh University. Archived from the original on 24 April 2007. Retrieved 24 March 2007. 
  6. 6.0 6.1 6.2 "Binary Vapor-Liquid Equilibrium Data" (Queriable database). Chemical Engineering Research Information Center. 
  7. 7.0 7.1 "Tetrahydrafuran (THF) Storage and Handling" (PDF). BASF. Retrieved 24 May 2007. 
  8. "1,2-Propanediol". ChemIndustry.ru. Archived from the original on 21 December 2007. Retrieved 2007-12-28.