Safe handling and storage of chemicals

From Sciencemadness Wiki
Jump to: navigation, search

Storage of many chemicals require additional or special requirements, to avoid hazards as well as contamination. However, manipulating said chemicals does not end with the storage area and handling them safely, during various lab practices, such as purification, distillation, transferring, reaction conditions or simply when moving them around the lab, is equally important.

Storage area guidelines

Storage cabinets and shelves

  • Oxidizing acids and flammable solvents must be stored in separate locations.
  • Solvents in general must be stored away from any source of heat and light.
  • Hazardous materials, especially those that are water sensitive, should not be stored under sinks (except cleaners).[1]

Corrosive chemicals cabinet

Strong acids are usually stored here

  • Such cabinets should either be made from chemical resistant materials or lined with such.
  • A double door is recommended.
  • Scrubbers are optional, but recommended. An open container of baking soda should take care of acidic vapors.
  • Do not store metals or other reducing chemicals in the same cabinet.
  • Do not store nitrates and oxochlorine anions in the acids cabinet.
  • Amines should also not be stored in the same cabinet as acids, as their fumes will react to form a very fine dust.


Refrigerators can be used to store volatile substances and to cool exothermic reactions. Although domestic refrigerators can be used to store many chemicals, they are unsuitable for storing corrosive chemicals, such as acids. Several important guidelines:

  • Avoid storing acids, as the escaping vapors will corrode the refrigerator.
  • Do not store food in the same refrigerator. Do not reuse a chemical refrigerator for food.


  • Avoid storing the cryogenic container in light or near a heat source.
  • Periodically check the valves.
  • Always ensure that cryogenic container has a pressure release valve


  • Always turn on the cooling first before performing any other operation.
  • Ethers and long-chained alcohols must never be distilled to dryness, as they tend form explosive peroxides during storage that can explode when dry.


  • Never store solvents in plastic containers, even those which are supposed to be insoluble in the solvent. One exception is hydrofluoric acid, which cannot be kept in glass, and is generally kept in thick polyethylene or PTFE bottles.
  • Periodically open the lids of chemicals which decompose, to allow pressure buildup to release itself. ALWAYS do this when you move a solvent bottle from a cold place to a warm one (some solvents have a very high vapor pressure and can burst if too much pressure builds up inside the reagent bottle).
  • Although it is usually not a safety hazard, make sure to store dehydrated chemicals in completely sealed, (usually) glass, containers.
  • While not a general rule, it's a good idea to keep extremely hazardous chemicals in plastic bottles, as long as they're compatible, as in the unfortunate event you drop the container on a hard surface, the container must not break, and thus spread the hazardous material all over the floor, which will require cleaning and decontamination. If the hazardous material cannot be stored in a plastic container, and only glass, keep the glass container in a plastic box at all times. This method however is impractical for large bottles, but except for volatile acids you won't usually work with large quantities of hazardous chemicals.

Storage of specific materials

Alkali metals


Lithium poses an unusual problem in that it is lighter than almost every single nonpolar organic solvent. The only ones in which it sinks are liquid ethane and methane, which are generally not available or feasible to the amateur chemist. Weighting pieces of lithium down with a heavier metal, such as copper or lead, is common practice. If the metal consists of large or flat pieces, a neat trick is to place a flipped small stainless steel sifter over them. The sieve's weight will hold the lithium chunks at the bottom of the oil container, while allowing the oil to pass through its holes. And since lithium is harder than the other alkali metals, it will not extrude itself through the sifter holes due to its buoyancy. Try using sifters with large holes.

If the bottle can be sealed efficiently, you can also simply flip it upside down, like seen here. This reduces significantly the amount of oxygen that enters the bottle, as oxygen is extremely poorly soluble in mineral oil.


Sodium is more reactive than lithium, but it's denser than mineral oil and most organic solvents and can be easily stored for months.


Potassium is more reactive than the first two and while it can be stored under mineral oil, it will corrode much faster. A a black layer of oxides and superoxides will slowly form on the surface of the metal after 1-2 months, which is known to be a shock sensitive explosive when thick enough. As such, sealing the bottle is recommended. Ampouling is sometimes used.

If you cannot ampoule the metal or use it quickly, you must clean it every few weeks by removing the black layer, using isopropanol.

Rubidium and caesium

Both rubidium and cesium are extremely reactive and even pyrophoric. They can only be stored under mineral oil for short periods, ampouling is used instead.


Unlike the pure alkali metals, the sodium-potassium mixture, in a 77:23 K-Na ratio, is liquid at standard conditions. It is pyrophoric and less dense than water. It is usually stored under hexane or ampouled, since it's lighter than most organic solvents used to store alkali metals. It will also corrode PTFE.

Ammonium compounds

While ammonium salts of strong acids are stable and can be kept for long periods of time, even in the presence of moisture, the salts of weaker acids will slowly decompose over time, to release ammonia gas, as well as vapors of the said acid (ammonium acetate for example tends to give off a strong vinegar smell over time). This can be limited if the container is kept at low temperatures. Such container should be open periodically, to release the ammonia build-up.


Alkali bases

Most alkali bases are extremely hygroscopic and will slowly attack glass, and will degrade plastic materials. They also tend to absorb carbon dioxide and sulfur dioxide from air. Alkali bases should be kept in closed thick bottles, made of PE. Stainless steel containers are also suitable for storage.

Alkali hydrides will react with both water and air, and must be kept in sealed containers or ampoules.

Alkaline earth bases

Alkaline earth bases are less hygroscopic that their alkali counterparts, but will still react with water and carbon and sulfur dioxides. They can be kept in both plastic and glass containers, as they react much slower with them than the alkali bases.

Alkaline earth hydrides are less reactive that their alkali counterparts, but they still have to be kept in sealed containers, away from moisture and most gasses.


Although beryllium and its compounds have very useful properties in many applications, their toxicity limits their use. Beryllium metal will slowly oxidize in open air to form beryllium oxide, which is easy to scrape off the metal and get airborne. If inhaled, beryllium can cause various illnesses, such as berylliosis. Bulk metal is less prone to releasing toxic dust, but finely powdered beryllium is a greater hazard, and is best to keep it ampouled or in a container with inert gas, to limit oxidation.


Calcium carbide

Calcium carbide, like most alkaline earth carbides is sensitive to moisture, and will release acetylene gas in contact with water. Consumer grade CaC2 also contains traces of calcium phosphide, which in contact with water releases toxic phosphine gas, which gives carbide its bad smell, and may also pose a fire hazard. Always keep the calcium carbide in a closed or sealed container, and absolutely away from moisture. Since air contains moisture, the bottle must also be kept airtight.


Ethers stored for long periods of time in contact with air will form explosive peroxides, that are a hazard, usually during the distillation, or when opening the storage bottle. Ethers like dimethyl ether, methyl tert-butyl ether or di-tert-butyl ether do not form explosive peroxides, while common ethers, like diethyl ether or THF will slowly form explosive peroxides over the course of several months. Diisopropyl ether tends to form explosive peroxides much easier than the former two, and its use in chemistry is generally avoided. To avoid this unpleasant effect, adding small amounts of an anti-oxidant like BHT (butylated hydroxytoluene), or a clean copper wire will prevent the formation of peroxides. Sodium metal can also be added to destroy the peroxides, though this is not recommended if you store large amounts of ether, as ether also contains traces of water, which will consume the sodium. Iron(II) sulfate can also be added to neutralize the peroxides. Sodium hydroxide flakes are generally added to precipitate any forming peroxides. Ethers in general are never distilled to dryness, as ether peroxides tend to explode when dry. Adding dry glycerin or some other solvent with a very high boiling point may help in keeping the distillation residue wet.


Gallium has a very low melting point of only 29.76 °C, which means it can melt in one's hand. While it is non-toxic, liquid gallium will rapidly diffuse in aluminium and severely damage it. The resulting gallium-aluminium alloy will react with acids much faster, but will also react with alcohols and even water. Because of this phenomenon, avoid putting gallium on aluminium objects or other gallium susceptible alloys. Unlike most materials, gallium will expand as it solidifies, a property similar to that of water, bismuth, germanium, silicon and plutonium. It cannot be stored in glass containers, as the expansion will crack the glass, nor metal as it will also deform metal container. Instead, gallium is best stored in thick PE bottles.

Halogenated carbons


Chloroform will form phosgene over long periods of time, in contact with air and UV light. Keep the chloroform in amber bottles and add a small quantity of ethanol or other preservative to limit the formation of phosgene.



Bromine is extremely difficult to safely store, as its vapors will escape the storing bottle and corrode most metals and many plastic materials. Sealing the storage bottle with parafilm or PTFE will slow the vapors from escaping, but parafilm will eventually degrade, and needs to be replaced periodically. Ampouling is recommended, though sealing the ampoule is complicated by the volatility of bromine. Unlike iodine vapors, the bromine ones are more toxic, and is recommended that the bottle should be stored in a container with a scrubbing agent, like a thiosulfate salt, inside the storage cabinet.


Iodine is notorious for escaping the storage vessel, as well as corroding almost any material, except glass and noble metals. Its vapors will destroy aluminium, severely corrode iron and its alloys and irreversibly stain most plastic materials. Ampouling is recommended, while sealing the bottle with parafilm or PTFE will only slow its escape. Since its vapors aren't as dangerous to health as bromine, simple storing the container in a corrosive cabinet is usually sufficient.


Mercury is the only liquid metal at room temperature, and as such it can flow from its container in the event of a spill. While the metal itself is relative inert, its vapors pose a hazard if inhaled over a long period of time. Mercury can be stored in glass or plastic bottles, away from certain metals such as aluminium. It is not always necessary to seal the container, but it is recommended to limit the exposure to mercury vapors. The mercury container can also be placed in another, where sulfur powder is added, to absorb its fumes and limit its escape.


Bulk osmium is extremely resistant to corrosion and does not oxidize under standard conditions, but fine osmium powder is much more reactive and will slowly oxidize to form the dangerous osmium tetroxide, which has a relative low melting point (40.25 °C) and tends to volatilize easily. The biggest hazard is that it takes a few hours for the poisoning symptoms to appear, so it's difficult to determine the level of exposure. A good tip is to add a gas heavier than air inside the container, like carbon dioxide, sulfur hexafluoride, argon, etc., to limit the oxidation of the osmium powder.


Phosphides, such as aluminium phosphide are, just like group II carbides, sensitive to water. The reaction of phosphides with water releases the extremely toxic phosphine gas, which in sufficient quantity may cause death. Always keep the phosphide in an air-tight sealed container, in a plastic bag to limit the moisture. It's also recommended to keep it very safe (or not experiment with it at all), as the phosphine smell is usually associated with meth labs, and you may not want the police to pay you a visit in case of a leak.


Radioactive elements and their compounds should be kept in thick glass vials, which offer sufficient protection. For more permanent storage, a box made of lead is preferred. When handling radioactive materials, always wear thick gloves, goggles and most importantly a mask. This is because radioactive metals, like uranium, thorium or americium rapidly oxidize in air and if the oxide dust is inhaled, it may lead to internal irradiation and heavy metal poisoning.

Secondary alchols

Alcohols such as isopropanol, sec-butanol, have been observed to form explosive peroxides upon storage in the presence of air over very long periods of time (usually years), in the absence of an anti-oxidant. Just like in the case of ethers, they have a much higher boiling point than their respective alcohols, and are prone to detonation when dry. Periodically check the alcohols for any signs of peroxides.

Volatile chemicals

Unless you're perfectly sealing the containers, volatile chemicals such as volatile solvents will eventually escape the bottle. While you can seal the bottles with tape to limit the evaporation, you must make sure the reagents are kept at low temperatures if stored for long periods of time.

Chemical compounds with a boiling point between the freezing point of water and room temperature should either be kept in a freezer, or in a gas cylinder under pressure, while compounds with a boiling point lower than the freezing point of water must always be kept in a gas cylinder.

White phosphorus

White phosphorus should be tightly sealed in an extremely durable container, away from light to prevent degradation. WP can be safely stored underwater. Always check the water lever, to make sure the phosphorus is not exposed to air.



Hydrofluoric acid

Hydrofluoric acid should never be kept or handled in glass containers (e.g. beakers), because of its ability to dissolve (most) oxides and silicates. It should be handled in thick plastic containers. It should only be handled in a fume hood, or gloveboxes. Nitrile gloves are not very useful at concentrations higher than 30%. For concentrations between 30-70%, butyl rubber and neoprene gloves offer protection for at least 4 hours, where as for concentrations higher than 70%, gloves made of neoprene rubber, Barrier® (PE/PA/PE), Trellchem® HPS or Tychem® TK will offer protection for a same time period.[2] Always use thick gloves, never thin. A good tip is to wear two pairs of gloves at a time, changing the outer pair after a few uses. NEVER use natural rubber, as HF readily penetrates it. For body protection, always wear a long-sleeved lab coat and chemical-resistant apron over long-sleeved shirt, long pants, and closed shoes. Goggles, along with a face shield or a mask should be worn as face protection. A neutralizing agent such as sodium bicarbonate or calcium carbonate should be kept near the working stand. An antidote, like calcium gluconate should be kept close in the event of an accident.

Perchloric acid

The maximum concentration at which perchloric acid can be safely stored is 70%. As it is a very powerful oxidizer, all the glassware where is about to be poured in should be inspected for any organic traces. The storage containers and beakers should be perfectly cleaned and dry. While experiments with perchloric acid can be performed outside, there is a risk of contaminating both the acid and glassware with organic materials such as dust, insects or other particulates, especially when working at high concentrations. Gloveboxes are not entirely suitable, as the closed environment may allow the build-up of dangerous perchloric acid vapors. If you have the skills, you may be able to construct a washing system to flush out the acid vapors and safely neutralize them. Specially designed fume hoods with wash down systems are generally preferred when working with perchloric acid. These fume hoods are lined with PVC or 316 type stainless steel and have a wash down system than removes the perchloric acid vapors, which are drained to labeled waste containers.

Legal considerations

In many jurisdictions, dangerous and toxic chemicals need to be stored in a locker, under key. Volatile chemicals must be stored in places with proper ventilation and a fire suppression system or fire extinguisher must be present at all times. Most residential areas do not allow the storage of large amounts of reagents, especially flammable materials or oxidizers.

Keep in mind that the information from this wiki is merely a collection of observations of various chemists and should NOT be used as a guideline when working with reagents. Always check your local laws first when working with reagents.

Incompatible chemicals

Chemical Keep out of contact with[3] Additional notes
1,2-Dichloroethane Alkali metals, chloric acid, chlorosulfuric acid, chromium (VI) oxide, manganese (VII) oxide, magnesium, metal hydrides, PCl3 Fire hazard, reaction
1,2,4-Butanetriol trinitrate Alkali metals, chloric acid, chlorosulfuric acid, chromium (VI) oxide, manganese (VII) oxide, magnesium, metal hydrides, PCl3 Fire hazard, explosion, reaction
1,4-Dioxane Chloric acid, chromic acid, chromium (VI) oxide, hydrogen peroxide, manganese (VII) oxide, nitric acid, ozone, perchloric acid, peroxides, permanganates Fire hazard; peroxide formation
2,2,4-Trimethylpentane Chloric acid, chromic acid, chromium (VI) oxide, hydrogen peroxide, manganese (VII) oxide, nitric acid, ozone, perchloric acid, peroxides Fire hazard
2,4-Dinitrobromobenzene Alkali hydroxides, alkali metals, chloric acid, chromic acid, chromium (VI) oxide, hydrogen peroxide, manganese (VII) oxide, nitric acid, ozone, perchloric acid, peroxides, permanganates Fire hazard, hydrolysis with bases
2-Chloroethanol Alkali hydroxides Hydrolysis
2-Nitrotoluene Alkali hydroxides, alkali metals, chloric acid, chromic acid, chromium (VI) oxide, hydrogen peroxide, manganese (VII) oxide, nitric acid, ozone, perchloric acid, peroxides, permanganates Fire hazard, hydrolysis with bases
2-Octanone Alkali metals, alkaline-earth metals, calcium chloride, hydrogen peroxide, ozone, perchloric acid, peroxides, permanganates, phosphorus pentoxide Fire and explosive hazard; Chemical reaction
4-Toluenesulfonyl chloride Alkali
Acetaldehyde Alkali metals, alkaline-earth metals, calcium chloride, chloric acid, chlorosulfuric acid, chromium (VI) oxide, hydrogen peroxide, ozone, perchloric acid, peroxides, permanganates Fire and explosive hazard; Chemical reaction
Acetamidine hydrochloride
Acetic acid Alkali metals, chloric acid, chlorosulfuric acid, chromium (VI) oxide, ethylene glycol, ethylene-imine, hydrogen peroxide, hydroxyl compounds, manganese (VII) oxide, magnesium, metal hydrides, nitric acid, oleum, ozone, perchloric acid, peroxides, permanganates, potassium tert-butoxide, PCl3 Fire hazard
Acetic anhydride Alkali metals, chloric acid, chlorosulfuric acid, chromium (VI) oxide, ethylene glycol, ethylene-imine, hydrogen peroxide, hydroxyl compounds, manganese (VII) oxide, magnesium, metal hydrides, nitric acid, oleum, ozone, perchloric acid, peroxides, permanganates, potassium tert-butoxide, PCl3, water Fire hazard
Acetone Alkali metals, calcium chloride, chloric acid, chlorosulfuric acid, chromium (VI) oxide, hydrogen peroxide, ozone, perchloric acid, peroxides, permanganates, phosphorus pentoxide Fire and explosive hazard; Chemical reaction
Acetone peroxide Most common metals, static-prone materials (cloths) Explosive hazard
Acetonitrile Acetic acid, acids, alkali metals, bases, chromic acid, nitrating agents, nitric acid, oleum, perchlorates, reducing agents, sodium peroxide, steam, diphenyl sulfoxide, trichlorosilane, certain plastics (ABD, CPVC, PVC) Fire hazard and decomposition
Acetyl chloride
Acetylene Alkali hydrides, brass, bromine, chlorine, copper, copper salts, fluorine, mercury, mercury salts, nitric acid, potassium. silver, silver salts Fire and explosive hazard
Acetylsalicylic acid
Activated carbon
Allyl alcohol
Aluminium chloride
Aluminium iodide
Aluminium isopropoxide
Aluminium nitrate
Aluminium oxide
Aluminium phosphide
Aluminium sulfate
Aluminium sulfide
Aminoguanidinium bicarbonate
Aminoguanidinium nitrate
Ammonium acetate
Ammonium azide Copper Explosion
Ammonium bicarbonate
Ammonium bisulfate
Ammonium bisulfite
Ammonium carbonate
Ammonium chlorate
Ammonium chloride
Ammonium chromate
Ammonium dichromate
Ammonium dihydrogen phosphate
Ammonium dinitramide
Ammonium ferrocyanide
Ammonium formate
Ammonium heptamolybdate
Ammonium hypophosphite
Ammonium iron(II) sulfate
Ammonium nitrate
Ammonium nitrite
Ammonium oxalate
Ammonium perchlorate
Ammonium permanganate
Ammonium persulfate
Ammonium sulfamate
Ammonium sulfate
Ammonium sulfide
Ammonium sulfite
Ammonium tetrafluoroborate
Ammonium thiosulfate
Anthranilic acid
Antimony(III) chloride
Antimony(III) oxide
Armstrong's mixture
Arsenic trichloride
Ascorbic acid
Barbituric acid
Barium acetate
Barium azide
Barium carbonate
Barium chlorate
Barium chloride
Barium chromate
Barium ferrate
Barium hypophosphite
Barium manganate
Barium nitrate
Barium nitrite
Barium oxide
Barium perchlorate
Barium permanganate
Barium peroxide
Barium sulfate
Basic lead chromate
Basic lead picrate
Benzododecinium bromide
Benzoic acid
Benzoyl chloride
Benzyl alcohol
Benzyl chloride
Benzyl cyanide
Bis(ethylenediamine)copper(II) perchlorate
Bismuth chloride
Bismuth trioxide
Biuret reagent
Black powder
Borazine Water Hydrolysis
Boric acid
Boron nitride
Boron trichloride
Boron trioxide
Bromoacetic acid
Bromocresol green
Bromothymol blue
Bromous acid
Butyl acetate
Butylated hydroxytoluene
Butyric acid
Cadmium acetate
Cadmium nitrate
Cadmium oxide
Cadmium sulfate
Caesium azide
Caesium chloride
Caesium hydroxide
Calcium acetate
Calcium bicarbonate
Calcium carbide
Calcium carbonate
Calcium chloride
Calcium chromate
Calcium cyanamide
Calcium fluoride
Calcium gluconate
Calcium hydride
Calcium hydroxide
Calcium hypochlorite
Calcium nitrate
Calcium oxide
Calcium perchlorate
Calcium propionate
Calcium sulfate
Carbon dioxide
Carbon disulfide
Carbon monoxide
Carbon tetrachloride
Carbonic acid
Cellulose Strong oxidizing agents Fire hazard
Cerium(IV) oxide
Chevreul's salt
Chloric acid
Chlorine dioxide Daylight and UV light, ammonia, flammable material Explosive hazard
Chloroacetamide Alkali hydroxides Hydrolysis
Chloroacetic acid Alkali hydroxides Neutralization and hydrolysis
Chloroacetone Alkali hydroxides Decomposition
Chloroauric acid
Chloroplatinic acid
Chlorous acid
Chromic acid
Chromium trioxide
Chromium(III) chloride
Chromium(III) oxide
Chromium(III) sulfate
Chromium(VI) oxide peroxide
Chromyl chloride
Citric acid
Cobalt (III) oxide
Cobalt(II) chloride
Cobalt(II) sulfate
Copper chromite
Copper citrate
Copper oxychloride
Copper(I) chloride Hydrogen peroxide
Copper(I) oxide Hydrogen peroxide
Copper(II) acetate
Copper(II) acetylsalicylate
Copper(II) carbonate
Copper(II) chloride
Copper(II) hydroxide
Copper(II) nitrate
Copper(II) oxide
Copper(II) phosphate
Copper(II) sulfate
Cyanuric acid
Di-tert-butyl ether
Diatomaceous earth
Dichlorine heptoxide Shock, open flames, iodine Explosion
Dichloroacetic acid
Dicyanoacetylene Open flames Flames of temperatures at around 4990°C (5260 K ,9010°F)
Diethyl ether Open flames Fire hazard
Difluoroacetic acid
Diisopropyl ether
Dimethyl dioxane
Dimethyl ether
Dimethyl sulfate
Dimethyl sulfoxide
Dinitrogen pentoxide
Dinitrogen tetroxide Flammable materials Fire or explosion
Dinitrogen trioxide
Dipicolinic acid
Dipotassium phosphate
Disulfur dichloride
Dysprosium(III) nitrate
Eosin Y
Erbium(III) oxide
Eriochrome Black T
Erythritol tetranitrate
Ethyl acetate
Ethyl formate
Ethyl iodide
Ethyl nitrate
Ethylene glycol
Ethylene glycol dinitrate
Ethylene oxide
Ethylenediamine Nitromethane Explosion
Ethylenediaminetetraacetic acid
Ferulic acid
Fluoroacetic acid
Fluoroboric acid
Fluorosulfuric acid
Formic acid
Fumaric acid
Glutamic acid
Glycolic acid
Glyoxal Amines Reaction
Guanidinium bicarbonate
Guanidinium carbonate
Guanidinium chloride
Guanidinium nitrate
Guanidinium perchlorate
Guanidinium sulfate
Guar gum
Gum arabic
Hexamethylene triperoxide diamine
Hexamethylphosphoramide Haloacids Decomposition
Holmium citrate
Hydrazine Heat, open flames Fire and explosive hazard
Hydrazine hydrochloride
Hydrazine nitrate
Hydrazine perchlorate
Hydrazine sulfate
Hydrazoic acid Shock, open flames Explosive hazard
Hydrobromic acid
Hydrochloric acid
Hydrofluoric acid
Hydrogen bromide
Hydrogen chloride
Hydrogen cyanide
Hydrogen fluoride
Hydrogen iodide
Hydrogen peroxide
Hydrogen sulfide
Hydroiodic acid
Hydroxylammonium chloride
Hydroxylammonium nitrate
Hydroxylammonium perchlorate
Hydroxylammonium sulfate
Hypochlorous acid
Hypophosphorous acid
Iodic acid
Iodine pentoxide Carbon monoxide, hydrazine, hydrochloric acid
Iodine trichloride
Iodoacetic acid
Iron(II) chloride
Iron(II) sulfate
Iron(II,III) oxide
Iron(III) chloride
Iron(III) nitrate
Iron(III) oxide
Iron(III) sulfate
Iron pentacarbonyl
Isopropyl nitrate
Isopropyl nitrite
Kojic acid
Lactic acid
Lead(II) acetate
Lead(II) azide Friction, shock, open flames, copper, zinc, cadmium Explosion
Lead(II) chloride
Lead(II) chromate
Lead(II) iodide
Lead(II) nitrate
Lead(II) oxide
Lead(II) sulfide
Lead(II,IV) oxide
Lead(IV) acetate
Lead(IV) oxide
Lead styphnate
Lithium aluminium hydride
Lithium azide
Lithium borohydride
Lithium carbonate
Lithium chloride
Lithium hydride
Lithium hydroxide
Lithium hypochlorite
Lithium nitrate
Lithium nitrite
Magnesium carbonate
Magnesium chloride
Magnesium diboride
Magnesium hydroxide
Magnesium nitrate
Magnesium oxide
Magnesium sulfate
Malonic acid
Manganese dioxide
Manganese heptoxide
Manganese(II) chloride
Manganese(II) sulfate
Mannitol hexanitrate
Mercury sulfide
Mercury(II) chloride
Mercury(II) fulminate
Mercury(II) nitrate
Mercury(II) oxide
Mercury(II) sulfate
Mercury(II) thiocyanate
Methyl acetate
Methyl blue
Methyl cellosolve
Methyl ethyl ketone
Methyl ethyl ketone peroxide
Methyl formate
Methyl iodide
Methyl isobutyl ketone
Methyl nitrate
Methyl orange
Methyl red
Methyl salicylate
Methyl tert-butyl ether
Methylene blue
Monopotassium phosphate
N-(1-Naphthyl)ethylenediamine dihydrochloride
Naphthol Green B
Neodymium oxalate
Nickel hydrazine nitrate
Nickel hydrazine perchlorate
Nickel(II) nitrate
Nickel(II) perchlorate
Nickel(II) sulfate
Nitric acid
Nitric oxide
Nitrogen dioxide
Nitrogen trichloride
Nitrogen triiodide
Nitromethane Amines
Nitronium perchlorate
Nitronium tetrafluoroborate
Nitrosonium tetrafluoroborate
Nitrosyl chloride
Nitrosylsulfuric acid
Nitrous acid
Nitrous oxide
Octyl acetate
Orotic acid
Osmium tetroxide
Oxalic acid
Oxalyl chloride
Pentaerythritol tetranitrate
Pentanoic acid
Peracetic acid
Perchloric acid
Periodic acid
Permanganic acid
Peroxydisulfuric acid
Peroxymonosulfuric acid
Petroleum ether
Phenethyl alcohol
Phenylacetic acid
Phosphoric acid
Phosphorus pentabromide
Phosphorus pentachloride
Phosphorus pentoxide
Phosphorus tribromide
Phosphorus trichloride
Phosphorus triiodide
Phosphoryl bromide
Phosphoryl chloride
Phthalic anhydride
Picric acid
Potassium antimony tartrate
Potassium azide
Potassium bicarbonate
Potassium bismuthate
Potassium bisulfate
Potassium bisulfite
Potassium bitartrate
Potassium bromate
Potassium bromide
Potassium carbonate
Potassium chlorate
Potassium chloride
Potassium chlorochromate
Potassium chromate
Potassium cyanide
Potassium dichromate
Potassium ferrate
Potassium ferricyanide
Potassium ferrocyanide
Potassium hexachlorostannate
Potassium hydrogen phthalate
Potassium hydroxide
Potassium hypochlorite
Potassium iodate
Potassium iodide
Potassium manganate
Potassium metabisulfite
Potassium nitrate
Potassium nitrite
Potassium perchlorate
Potassium periodate
Potassium permanganate
Potassium peroxochromate
Potassium peroxymonosulfate
Potassium persulfate
Potassium rhodizonate
Potassium sodium tartrate
Potassium sorbate
Potassium sulfate
Potassium sulfite
Potassium tert-butoxide
Propionic acid
Propionic anhydride
Propylene carbonate
Propylene glycol
Propylene glycol dinitrate
Propylene oxide
Prussian blue
Purple acid
Pyruvic acid
Rhodamine B
Ricinoleic acid
Rubidium azide
Rubidium chloride
Rubidium hydroxide
Rubidium nitrate
Rubidium nitrite
Salicylic acid
Schweizer's reagent
sec-Butanol Alkali hydroxides, alkali metals, alkaline-earth metals, carboxylic acids, chloric acid, chromic acid, chromium (VI) oxide, hydrogen peroxide, manganese (VII) oxide, nitric acid, organic acid anhydrides, ozone, perchloric acid, peroxides, permanganates Fire hazard, esterification with acids
Silicon carbide
Silicon dioxide
Silver acetate
Silver azide
Silver bromide
Silver carbonate
Silver chloride
Silver(I) fluoride
Silver fulminate
Silver iodide
Silver nitrate
Silver nitrite
Silver perchlorate
Silver sulfate
Sodium acetate
Sodium acetylsalicylate
Sodium aluminium hydride
Sodium amide
Sodium azide
Sodium benzoate
Sodium bicarbonate
Sodium bismuthate
Sodium bisulfate
Sodium bisulfite
Sodium borohydride
Sodium bromate
Sodium bromide
Sodium carbonate
Sodium chlorate
Sodium chloride
Sodium chlorite
Sodium chromate
Sodium cyanide
Sodium cyanoborohydride
Sodium dichromate
Sodium dithionite
Sodium dodecyl sulfate
Sodium ethoxide
Sodium ferrate
Sodium fluoride
Sodium formate
Sodium hexafluoroaluminate
Sodium hexametaphosphate
Sodium hydride
Sodium hydroxide
Sodium hypochlorite
Sodium hypophosphite
Sodium iodide
Sodium metabisulfite
Sodium methoxide
Sodium methyl sulfate
Sodium molybdate
Sodium nitrate
Sodium nitrite
Sodium nitroprusside
Sodium orotate
Sodium oxalate
Sodium oxide
Sodium perborate
Sodium percarbonate
Sodium perchlorate
Sodium permanganate
Sodium peroxide
Sodium persulfate
Sodium pyrosulfate
Sodium silicate
Sodium sulfate
Sodium sulfide
Sodium sulfite
Sodium thiosulfate
Sodium triacetoxyborohydride
Solochrome cyanine R
Sorbic acid
Strontium carbonate
Strontium chloride
Strontium nitrate
Strontium oxide
Strontium sulfate
Styphnic acid
Succinic acid
Sulfamic acid
Sulfanilic acid
Sulfur dichloride
Sulfur dioxide
Sulfur hexafluoride
Sulfur trioxide
Sulfuric acid
Sulfuryl chloride
Tartaric acid
Terbium acetate
Terbium sulfate
Terbium(III) oxide
tert-Amyl alcohol
tert-Butyl chloride
Tetraamine copper(II) complex
Tetraaminecopper(II) persulphate
Tetrachlorocupric acid
Thioglycolic acid
Thionyl chloride
Thiourea dioxide
Tin(II) chloride
Tin(IV) chloride
Titanium dioxide
Titanium nitrate
Titanium nitride
Titanium(IV) chloride
Trichloroacetic acid
Trichloroisocyanuric acid
Triethyl borate
Triethyl citrate
Trifluoroacetic acid
Trimethyl borate
Trimethyl phosphate
Tris(ethylenediamine)nickel perchlorate
Tungsten carbide
Urea nitrate
Urea peroxide
Vanadium pentoxide
Violuric acid
Whistle mix
Xanthan gum
Xylitol pentanitrate
Ytterbium(III) oxide
Yttrium(III) oxide
Zinc acetate
Zinc carbonate
Zinc chloride
Zinc chromate
Zinc nitrate
Zinc oxide
Zinc perchlorate
Zinc peroxide
Zinc phosphate
Zinc sulfate
Zinc sulfide
Zirconium nitrate
Zirconyl chloride



Relevant Sciencemadness threads